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Concerning the existence of
Einstein and Ricci soliton metrics on solvable Lie groups

MICHAEL JABLONSKI

In this work we investigate solvable and nilpotent Lie groups with special metrics.
The metrics of interest are left-invariant Einstein and algebraic Ricci soliton metrics.
Our main result shows that one may determine the existence of a such a metric by
analyzing algebraic properties of the Lie algebra and infinitesimal deformations of
any initial metric.

Our second main result concerns the isometry groups of such distinguished met-
rics. Among the completely solvable unimodular Lie groups (this includes nilpotent
groups), if the Lie group admits such a metric, we show that the isometry group of
this special metric is maximal among all isometry groups of left-invariant metrics.

22E25, 53C25, 53C30

1 Introduction

Homogeneous Einstein metrics are among the simplest examples of Einstein spaces and
are generally viewed as a preferred choice of metric, when they exist. Despite having
been actively studied for over a century, a classification of homogeneous Einstein
spaces does not seem to be close at hand.

In this work, we are primarily interested in left-invariant Einstein metrics on noncompact
Lie groups. All known examples of such metrics occur on solvable Lie groups and, in
fact, all known examples of noncompact homogeneous Einstein metrics are isometric
to solvable Lie groups with left-invariant metrics; this is the content of the well-known
Alekseevskiı̆ conjecture which has been verified in dimensions 4 and 5; see Jensen [14]
and Nikonorov [32]. We refer the reader to the recent survey of Lauret [19] for a more
thorough discussion of the current state of knowledge regarding Einstein metrics on
Lie groups.

As there exist solvable Lie groups which cannot admit (left-invariant) Einstein metrics,
we also consider the following generalization. Let G be a Lie group, with Lie algebra g,
and left-invariant metric h ; i. Denote the .1; 1/–Ricci tensor of fG; h ; ig by Ric. By
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736 Michael Jablonski

left-invariance, Ric is completely determined by its restriction to g' TeG and we say
that fG; h ; ig is an algebraic Ricci soliton if

(1-1) RicD c IdCD

for some c 2R and some D 2Der.g/. Here Der.g/ denotes the algebra of derivations
of g. Observe, when D D 0, the metric is an Einstein metric. When the Lie group G

is solvable, resp. nilpotent, such metrics have been called solvsolitons, resp. nilsolitons,
in the literature. If a nilpotent Lie group admits a nilsoliton, it is called an Einstein
nilradical. The only known examples of left-invariant Ricci solitons on Lie groups are
solvsoliton metrics.

Question Given a solvable Lie group, how can one determine if it admits an Einstein
or solvsoliton metric?

Theorem 7.1 Let G be a solvable Lie group with Lie algebra g. The existence of a
left-invariant Einstein metric on G can be determined by analyzing algebraic invariants
of g and infinitesimal deformations of any initial left-invariant metric on G .

See Section 7 for complete details and an algorithm which dictates which invariants
and deformations are to be measured. See Theorem 6.1 for the analogous statement for
nilsolitons on nilpotent groups.

Remark The existence of an Einstein metric on a solvable Lie group is now a local
question. Similarly, one can formulate the question of existence of a solvsoliton in
terms of local data.

On general manifolds, the existence of an Einstein or Ricci soliton metric is not a local
question. It might appear at first glance that the existence of left-invariant Einstein
metrics on Lie groups is a local question since the verification of Equation (1-1) uses
only the inner product and Lie bracket on g. However, asking if a Lie group admits such
a metric amounts to asking if there exists a zero of the function kRicg �sc.g/=n Id k2

on the open set of inner products on g. It is not clear if this is a local question for
nonsolvable Lie groups; eg, there does not exist a solution when the Lie algebra is sl2R.

In the setting of compact homogeneous spaces G=H , the Einstein question has received
a great deal of attention and there are some partial results on the existence of such
metrics. However, there are not any general, local conditions that guarantee/preclude
the existence of such metrics on compact homogeneous spaces; see Bohm, Wang and
Ziller [4] for the current state of research.
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Our work makes heavy use of Geometric Invariant Theory, building on the strong
structural results of Heber [9] and Lauret [20]. These works take the first step in reducing
the problem on the solvable group to a smaller solvable group, a one dimensional
extension of a nilpotent group. This smaller solvable Lie group admits an Einstein
metric if and only if its nilradical admits a so-called nilsoliton metric and the underlying
Lie algebra is the extension of the nilradical by a so-called pre-Einstein derivation.
Reducing the problem to analyzing the nilradical is an algebra problem.

To study the nilradical we build on the work of Nikolayevsky [31]. Using a combination
of measuring algebraic information and infinitesimal deformations of metrics on the
nilradical, we translate the Einstein problem into a local problem. (While we could
skip this analysis on the nilradical and couple our techniques directly with the work of
Heber [9, Section 6], we present our results in the given framework as these methods
extend directly to solvsoliton and nilsoliton metrics. See Section 6 for more details.)

Our second main result concerns the isometry groups of solvsoliton metrics. On
completely solvable unimodular Lie groups, soliton metrics are the most symmetric
metrics, when they exist. This class includes nilpotent Lie groups.

Theorem 4.1 Let S be a completely solvable unimodular Lie group that admits a
solvsoliton metric. Let g be any left-invariant metric. Then there exists a left-invariant
soliton metric g0 such that Isom.S;g/� Isom.S;g0/, as groups.

In addition to having large isometry groups, soliton metrics are useful for decomposing
the automorphism group of the underlying Lie group. In Section 5, we demonstrate a
convenient way to decompose the automorphism group of Einstein nilradicals using
the soliton metric. A similar procedure works for solvable groups admitting soliton or
distinguished metrics.

Lastly, using the techniques presented here, we reduce the classification of solvable
groups admitting Einstein, or solvsoliton metrics, to the case that the underlying Lie
algebra is indecomposable.

Theorem 3.4 Let G be a solvable Lie group whose Lie algebra gD g1Cg2 is a direct
sum of ideals. Then G admits a nonflat solvsoliton, resp. flat, metric if and only if both
G1 and G2 admit nonflat solvsoliton, resp. flat, metrics.

Corollary 3.5 Let G be a solvable Lie group whose Lie algebra g D g1 C g2 is a
direct sum of ideals. Then G admits an Einstein metric if and only if both G1 and G2

admit Einstein metrics of the same sign.

Geometry & Topology, Volume 15 (2011)



738 Michael Jablonski

A similar decomposition result has appeared for nilsolitons and nilpotent Lie groups;
see Nikolayevsky [31] and Jablonski [12]. To our knowledge, the above algebraic
decomposition theorem is the first of its kind for homogeneous Einstein spaces. It
would be interesting to know if there is a similar theorem in the compact setting.

This work is organized as follows. Section 2 discusses the space of Lie brackets,
moment maps and distinguished orbits. Section 3 compares the existence of solvsoliton
metrics and distinguished orbits. Section 4 discusses isometry groups of solvsolitons.
Section 5 studies the automorphism group of an Einstein nilradical. Section 6 and
Section 7 show the existence of nilsoliton and Einstein metrics are intrinsic to the
underlying Lie algebra, respectively.

Acknowledgements We are grateful to the referee for a thorough review and many
helpful comments which have improved the presentation of this work.

2 Preliminaries

A Riemannian Lie group is a Lie group G with a choice of left-invariant metric h ; i.
This gives rise to a metric Lie algebra fg; h ; ig, where g is the Lie algebra of G

and the inner product on g is the restriction of the left-invariant metric to TeG ' g.
Conversely, a metric Lie algebra gives a left-invariant metric on any Lie group with
said Lie algebra. We are primarily interested in simply connected Lie groups.

We say that two metric Lie algebras fg1; h ; i1g and fg2; h ; i2g are isomorphic if there
exists a Lie algebra isomorphism �W g1 ! g2 such that h ; i1 D ��h ; i2 . Such an
isomorphism lifts to give an isometry between the simply connected Riemannian Lie
groups fG1; h ; ig ! fG2; h ; ig. Using such isometries, we analyze Riemannian Lie
groups by considering a metric Lie algebra as a collection of three objects: a vector
space Rn , a Lie bracket Œ � ; � � and an inner product h � ; � i. Given g 2 GL.n;R/, we
may consider a different (and isomorphic) Lie bracket g�Œ � ; � �D gŒg�1� ;g�1� � and
the inner product g�h � ; � i D hg�1� ;g�1� i. The following are isomorphic metric Lie
algebras

fRn;g�Œ � ; � �; h � ; � ig ' fRn; Œ � ; � �; .g�1/�h � ; � ig

via the isomorphism g�1W Rn! Rn . In this way, we convert our questions on left-
invariant metrics of a Lie group into questions on different (but isomorphic) underlying
Lie structures.
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The variety of Lie brackets

Consider the vector space V D ^2.Rn/� ˝ Rn of antisymmetric, bilinear maps
�W Rn �Rn!Rn . This vector space is endowed with a natural GL.n;R/ action:

.g��/.v; w/D g�.g�1v;g�1w/

for g 2 GL.n;R/, v;w 2Rn . Via differentiation, we also have an action of gl.n;R/
on V : .X � �/.v; w/ D X�.v;w/ � �.Xv;w/ � �.v;Xw/, for X 2 gl.n;R/ and
v;w 2Rn .

The points of V can be thought of as antisymmetric algebra structures on Rn , and
two algebra structures are isomorphic if and only if they lie in the same GL.n;R/–
orbit. Any Lie bracket Œ � ; � � on Rn can be realized as a point in V and the subset
V D f� 2 V j � satisfies the Jacobi identity g of such points is a variety in V . We
are interested in the following subsets of V : let N denote the Lie brackets which are
nilpotent and S denote the Lie brackets which are solvable. The varieties N , S and V
are GL.n;R/–invariant.

We will often abuse language and refer to �2 V as a Lie algebra, when we really mean
the pair fRn; �g. As it will be of interest later, we point out that the stabilizers of the
actions of GL.n;R/ and gl.n;R/ have relevant meaning: GL.n;R/� D Aut.�/ and
gl.n;R/� D Der.�/.

We now fix an inner product (the usual one) h ; i on Rn . Given a Lie bracket �2V , we
will denote by s� the metric Lie algebra fRn; Œ � ; � �; h � ; � ig; the corresponding simply
connected Lie group with left-invariant metric will be denoted by S� .

The moment map and geometry of orbits

To analyze the geometry of the GL.n;R/–orbits in V , we must first choose inner
products on V and gl.n;R/. The (usual) inner product on Rn extends of an O.n/–
invariant inner product h ; i on the vector space V D^2.Rn/�˝Rn as follows:

h�;�i D
X
i<j

h�.ei ; ej /; �.ei ; ej /i D
X
i<j

k

h�.ei ; ej /; ekih�.ei ; ej /; eki

where feig denotes the standard orthonormal basis of Rn . On gl.n;R/, we consider
the standard inner product

h˛; ˇi D tr˛ˇt
D

X
i

h˛ei ; ˇeii

where �t denotes transpose and tr is the trace. This inner product is Ad O.n/–invariant.
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Let G be a real algebraic, self-adjoint subgroup of GL.n;R/; by self-adjoint we mean
that G is closed under transpose. (The group being self-adjoint implies that it is
reductive and, conversely, any reductive group can be made self-adjoint relative to
some inner product on Rn .) The inner product on gl.n;R/ restricts to an inner product
on gD Lie G and we may define the moment map mG W V nf0g ! symm.n/\ g for
the action of G on V ; here symm.n/ denotes the symmetric n� n matrices. This
function is defined implicitly by

hmG.v/; ˛i D
1

kvk2
h�.˛/v; vi for ˛ 2 g; v 2 V

where � W g! V is the induced action of g on V . Observe that mG is fixed under
rescaling in V ; that is, for c 2R, m.cv/Dm.v/. When the group G is understood, we
will simply write mDmG . The moment map defined here for noncompact reductive
groups is a natural extension of the usual one defined for compact groups; cf Eberlein
and Jablonski [7].

Using the inner product on g, we consider the norm squared of the moment map

F D kmk2W V nf0g !R:

Notice that this function is invariant under rescaling in V and so it may be viewed
as a function on spheres in V or on projective space PV . The critical points of this
function have been extensively studied so as to develop a good understanding of the so-
called “nullcone” of complex representations; see Kirwan [16] and Ness [27]. Moment
maps have also been used in the study of general representations of noncompact real
reductive groups to study the geometry of orbits; see eg Richardson and Slodowy [34],
Marian [23], Eberlein and Jablonski [7] and Jablonski [11].

Definition 2.1 An orbit G � v � V is called distinguished if it contains a critical point
of the function F D kmk2 .

Observe that v 2 V is a critical point of F if and only if �.m.v//.v/D rv for some
r 2 R. It is a fact that any closed orbit is distinguished with critical value 0 and so
these orbits are a natural generalization of closed orbits [11]. The following theorem
from [17] motivates a deeper study of kmk2 .

Theorem 2.2 (Lauret) Let N� denote the simply connected nilpotent Riemannian
Lie group whose Lie algebra n� (with inner product) corresponds to the point � 2N .
Then N� is a nilsoliton if and only if � is a critical point of F.v/D kmk2.v/.
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Equivalently, N� is an Einstein nilradical if and only if the orbit GL.n;R/ � � is
distinguished. The above relationship between Einstein nilradicals and distinguished
orbits has been studied extensively in the literature; see eg Lauret [17] Will [37; 38],
Payne [33], Lauret and Will [22], Eberlein [6], Jablonski [11; 13] and Nikolayevsky [28;
29; 30; 31]. Motivated by this, we explore the relationship between distinguished orbits
and soliton metrics on solvable groups (cf Proposition 3.1).

Definition 2.3 A Riemannian Lie group S� is said to have a distinguished metric if
� is a critical point of F D kmk2 for the action of GL.n;R/ on V (defined above).

Remark 2.4 Geometrically, the moment map can be understood as follows. When �
is a nilpotent Lie algebra, m.�/D 4 Ric.N�/. More generally, if � is any Lie algebra
with corresponding Lie group S� , then m.�/D 4R where R is the tensor appearing
in the formula

RicDR�
1

2
B �S.ad H /

here Ric is the Ricci tensor of S� , B is the Killing form of the Lie algebra � and
S.ad H /D 1

2
.ad H C ad H t /, where ad H is a mean curvature vector. See Besse [2,

Corollary 7.38] for more discussion and details.

Bracket flow

As the critical points of F D kmk2 are related to the existence of soliton metrics, we
are motivated to analyze the behavior of the negative gradient flow of F .

Let G be an algebraic, self-adjoint subgroup of GL.n;R/ and define KG DG\O.n/.
Denote the moment map of this group action by mG and consider the function F D

kmGk
2 with critical set CG . Denote the negative gradient flow of F by 't . Given a

Lie algebra � 2 V , 't .�/ � V and we refer to this evolution as the bracket flow of
�D �0 .

Definition 2.5 The !–limit set of 't .p/�V is the set fq 2V j 'tn
.p/! q for some

sequence tn!1 in Rg. We denote this set by !.p/.

Proposition 2.6 (Sjamaar [35]) The omega limit set !.p/ is a single point.

The uniqueness of limits is a strong result and is due to the fact that F D kmk2 is real
analytic. As the limit is well-defined, we will denote it by !.p/D '1.p/. We point
out that many of the following results can be proven without knowing that there is a
unique point in the limit set.
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742 Michael Jablonski

Theorem 2.7 (Jablonski [12]) Consider p 2 CG . Then

(1) F.p/ is a minimum of F restricted to G �p ,

(2) CG \fsphere of radius kpkg\G �p DKG �p ,

(3) !.G �p/DKG �p , that is, '1.gp/ 2KG �p for all g 2G .

Observe that (iii) implies: if G �p contains a critical point of F , then '1.p/ 2G �p .
The first two statements originally appeared in Kempf and Ness [15] for complex
representations and in Marian [23] for real representations. The third statement has
appeared in Jablonski [12] but can also be derived from the work of Heinzner, Schwarz
and Stötzel [10].

3 Soliton metrics and distinguished orbits

Let g be a solvable Lie algebra with nilradical n. We say that an inner product
h ; i is standard if a D n? is abelian; the associated Riemannian Lie group will
also be called standard. If a Riemannian Lie group fG; h ; ig is Ricci flat, then it is
necessarily solvable and the metric is standard; see Alekseevskiı̆ and Kimel 0fel 0d [1]
and Milnor [24]. Only recently was it shown that every Einstein metric on a solvable
Lie group must be standard. Moreover, every solvsoliton is standard; see Lauret [20]
where other strong structural results are obtained. Using these new results, we obtain
the following relationship to distinguished orbits.

Proposition 3.1 Let S� be a solvable Lie group. If S� admits a solvsoliton metric,
then GL.n;R/ �� is a distinguished orbit. Moreover, if S� is a completely solvable
group, then S� admits a solvsoliton if and only if GL.n;R/ �� is distinguished.

Proof To prove this, one consults the work Lauret [18] where complex Lie algebras
are studied. All the results of that paper remain true for real Lie algebras with the
Hermitian transpose replaced with the usual transpose. For a detailed proof of this
fact, see Jablonski [11]. We warn the reader that the moment map defined there is a
multiple of the moment map defined here. If n denotes the moment map from [18] and
m denotes the moment map used in this work, then nD 2m. Our choice of moment
map m is consistent with Lauret’s in [19; 21].

Case 1 S� admits a flat metric. If � corresponds to the flat metric, then � is also a
critical point of F D kmk2 ; see [18, Theorem 4.7].

Case 2 S� admits a nonflat solvsoliton. We only prove this in the case that the
nilradical of s� is nonabelian. The abelian case is similar and we leave it to the diligent
reader.
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The proof of this case is just a careful comparison of [21, Theorem 4.8] with [18,
Theorem 4.7]. The soliton metric and the distinguished metric differ only in their
values on a � a, where a D n? . If the nilradical (which is a nilsoliton in either
case) satisfies Ricn D c IdCD , for some D 2 Der.n/, and has scD �1=4, then the
solvsoliton metric on a is

(3-1) hA;Ai D
�1

c
tr S.ad A/2

where S.ad A/ is the symmetric part of ad A, while the distinguished metric on a is

(3-2) hhA;Aii D
1

2
�
�1

c
tr.ad A .ad A/t /

In [18], a is viewed as a subset of Der.n/ with A' ad A. Clearly the existence of a
soliton metric implies the existence of a distinguished metric (ie, critical point of F ).

We now show the converse when g is completely solvable. Recall that g being
completely solvable means ad X W g ! g has only real eigenvalues for all X 2 g.
Assuming g admits a distinguished metric, the above work shows that g admits a
soliton precisely when hA;Ai D .�1=c/ tr S.ad A/2 is nondegenerate. This quadratic
form is degenerate precisely when ad A is skew-symmetric (relative to the nilsoliton
metric on n) and this cannot happen when g is completely solvable.

Furthermore, we see that ad A is symmetric relative to the nilsoliton metric on n, for
A 2 aD n? , (which follows quickly from Theorem 4.7 and Proposition 4.8 of [18])
and the soliton and distinguished metrics on g are related as follows: hh ; ii D 1

2
h ; i

on a� a.

Remark 3.2 There are solvable groups which admit a distinguished metric, but cannot
admit a solvsoliton. For example, if n is a nonabelian Einstein nilradical and a�Der.n/
is an abelian subalgebra of skew-symmetric endomorphisms, then S� with s� D aËn

cannot admit a solvsoliton but does admit a distinguished metric; cf [18, Theorem 4.7;
21, Theorem 4.8].

Remark 3.3 Given any initial metric, observe that one may find the soliton metric by
following two consecutive curves. The first curve follows the negative gradient flow of
F D kmk2 to a distinguished metric (cf Theorem 2.7) and the second curve picks up
by simply adjusting the metric on a.

Using the relationship between distinguished orbits and solvsoliton metrics, we may
prove the following decomposition theorem. This theorem has appeared in the literature
for nilpotent groups (see Nikolayevsky [31] and Jablonski [12]), but was not previously
known for solvable groups in general.
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Theorem 3.4 Let S� be a solvable Lie group whose Lie algebra s� D s�1
C s�2

is a
direct sum of ideals. Then S� admits a nonflat solvsoliton, resp. flat, metric if and only
if both S�1

and S�2
admit nonflat solvsoliton, resp. flat, metrics.

Corollary 3.5 Let S� be a solvable Lie group whose Lie algebra s� D s�1
C s�2

is
a direct sum of ideals. Then S� admits an Einstein metric if and only if both S�1

and
S�2

admit Einstein metrics of the same sign.

All known examples of Lie groups admitting Einstein (and soliton) metrics satisfy
such a decomposition property (as all such examples are either compact semisimple or
solvable groups). However, it is not clear if an analogous statement is true for compact
homogeneous spaces admitting Einstein metrics.

Lemma 3.6 Consider s�D s�1
Cs�2

which is a sum of ideals and write �D�1C�2 ,
where s�i

DfRni ; �ig and ni D dim s�i
. If GL.n;R/ �� is a distinguished orbit, then

both orbits GL.ni ;R/ ��i �^
2.Rni /˝Rni are distinguished for i D 1; 2.

This has been proven in [12, Theorem 4.5] for nilpotent groups. However, the proof
there only uses the fact that the orbits are distinguished and works in this setting with
no modifications.

Proof of Theorem 3.4 We prove the case that the solvsoliton is not flat. The flat case
is similar and we leave it to the reader.

One direction is trivial. Recall, a nonflat solvsoliton with RicD c IdCD satisfies c< 0;
see [21, Proposition 4.6]. If S�i

admit solvsolitons satisfying Ric�i
D ci IdCDi , then

one just needs to rescale so that c1D c2 . Endow s� with the product metric, ie the s�i

are orthogonal and the restriction to s�i
is the aforementioned metric. Then s� , with

�D �1C�2 , is a solvsoliton satisfying Ric� D Ric�1
˚Ric�2

D c1 IdC.D1˚D2/.

We now show the converse. Recall that S� admitting a solvsoliton implies the orbit
GL.n;R/ �� is distinguished by Proposition 3.1. By the lemma above, we may assume
that �i are distinguished points and write s�i

D ai ˚ ni where ni is the nilradical
and ai is a reductive subalgebra (cf [18, Theorem 4.7]). As s�i

are distinguished, the
nilradicals ni admit nilsolitons by [18, Theorem 4.7].

Write s� D s�1
C s�2

D .a1C a2/C .n1C n2/. As s� is solvable, we see that the
reductive subalgebra aD a1Ca2 is abelian and hence each ai is abelian. Furthermore,
for any A 2 a, we see that ad AW n ! n has no purely imaginary eigenvalues by
the observations in the proof of Proposition 3.1. The nilradicals ni admit soliton
metrics as nD n1˚ n2 does; see [31; 12]. Putting these facts together, we see that the
solvable groups S�i

admit solvsoliton metrics by the same observations in the proof
of Proposition 3.1.
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Proof of Corollary 3.5 The proof of the corollary follows immediately from the
proof of Theorem 3.4 and the fact that isomorphic distinguished points must be isomet-
ric. More precisely, isomorphic distinguished points lie in the same O.n/–orbit; see
Theorem 2.7.

4 Isometry groups of solvsolitons

Due to the classification results of Heber and Lauret, it is known that not all solvable
Lie groups can admit Einstein metrics. As solvsolitons are a natural generalization of
Einstein metrics, and unique (up to scaling) when they exist, these have been considered
a natural choice of preferred metric in the absence of an Einstein metric. Moreover,
on nilpotent Lie groups, soliton metrics are measurably the closest metric to being
Einstein that such a group can admit (see Lauret [19] for a detailed account of such
metrics). We defend this preference with the following result.

Theorem 4.1 Let S be a completely solvable unimodular group admitting a solvsoli-
ton metric. Let h ; i be any left-invariant metric. Then there exists a left-invariant
soliton metric h ; i0 such that Isom.S; h ; i/� Isom.S; h ; i0/, as groups.

Corollary 4.2 Let N be an Einstein nilradical. Let h ; i be any left-invariant met-
ric. Then there exists a left-invariant soliton metric h ; i0 such that Isom.N; h ; i/ �
Isom.N; h ; i0/, as groups.

As nilpotent groups are all completely solvable and unimodular, the corollary is an
immediate consequence of the theorem.

Remark In this way, we see that these soliton metrics are the most symmetric (left-
invariant) metric that such nilpotent and solvable groups can admit.

To prove Theorem 4.1, we first recall a result of Gordon and Wilson [8, Theorem 4.3].

Theorem 4.3 (Gordon–Wilson) Let G be a completely solvable unimodular Lie
group with left-invariant metric h ; i. The full isometry group is a semidirect product

Isom.G; h ; i/DK Ë G

where K � Aut.G/ is the isotropy subgroup of Isom.G; h ; i/ preserving the identity
e2G . Under the natural identification Aut.G/'Aut.g/ we have K'Aut.g/\O.h ; i/,
where O.h ; i/ is the orthogonal group of the inner product h ; i on g.
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746 Michael Jablonski

For any Riemannian Lie group, the group G Ì .O.h ; i/\Aut.G// is a subgroup of
isometries. For nonunimodular solvable groups, it is well-known that the full isometry
group is significantly larger than this subgroup [8].

Lemma 4.4 Consider the action of GL.n;R/ on V (as in Section 2) and let G be a
real algebraic, self-adjoint subgroup. Let G �p be a distinguished orbit and denote by
'1.p/ the limit of the gradient flow of F Dkmk2 starting at p . Then Kp �K'1.p/ ,
where K DG \O.n/ and Kq is the stabilizer subgroup at q .

Proof This lemma is an immediate consequence of Theorem 2.7 by using the K–
equivariance of mG and the uniqueness of integral curves of the negative gradient flow
of kmGk

2 . In fact, one has Kp �K't .p/ and the result follows by taking the limit.

Lemma 4.5 [13] Consider an algebraic, self-adjoint subgroup G of GL.n;R/ acting
on V (as in Section 2). Suppose H is an algebraic, self-adjoint group of automorphisms
of �2V . The centralizer of H in G , ZG.H /Dfg2G jghDhg for all h2H;g2Gg,
is algebraic, self-adjoint and G �� is a distinguished orbit if and only if ZG.H / �� is
a distinguished orbit. Moreover, along the orbit ZG.H / ��, mG DmZG.H / .

This is an immediate consequence of [13, Theorem 4.4].

Remark In the above, there is no ambiguity as to the meaning of distinguished since
mG D mZG.H / along the subset ZG.H / ��. Also, the group H being a group of
automorphisms means precisely that H is a subgroup of the stabilizer of GL.n;R/
at �, and H being self-adjoint automatically makes H reductive.

Proof of Theorem 4.1 Recall that a completely solvable unimodular Lie group S�
admits a solvsoliton metric if and only if GL.n;R/ �� is a distinguished orbit (Propo-
sition 3.1). To show that such metrics have maximal isometry groups, we first show
that there exists a distinguished metric (ie critical point of F D kmk2 ) in which the
isometry group embeds and then show that this metric has the same isometry group as
a particular choice of soliton metric.

By the result of Gordon-Wilson above, the isometry group of a completely solvable
unimodular group S� is Isom.S�/D S� Ì .Aut.�/\O.h ; i/. Given g 2 GL.n;R/,
Aut.g��/Dg Aut.�/g�1 and O. .g�1/�h ; i/Dg�1O.h ; i/g , where .g�1/�h � ; � iD

hg � ;g � i. Recall that the following metric Lie algebras are isometric (see Section 2):

fRn;g��; h � ; � ig ' fRn; �; .g�1/�h � ; � ig:
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The corresponding Riemannian solvable Lie groups are isometric:

fSg��; h � ; � ig ' fS�; .g
�1/�h � ; � ig:

At e 2 S� , the isometry group of fS�; .g�1/�h � ; � ig has isotropy subgroup

Aut.�/\O. .g�1/�h ; i/D g�1.Aut.g��/\O.h ; i/ / g:

Step 1 Consider a Riemannian solvable group S� where GL.n;R/ �� is a distin-
guished orbit. As the group H D Aut.�/\O.h ; i/ is self-adjoint, Theorem 2.7 and
Lemma 4.5 imply the orbit ZGL.n;R/.H / �� contains the limit �1 of the negative
gradient flow of F D kmk2 . Let g 2 ZGL.n;R/.H / be such that g � � D �1 . By
Lemma 4.4, we see that

Aut.�/\O.h ; i/DK� �Kg�� D Aut.g��/\O.h ; i/

where K DO.n;R/. Using the fact that g 2ZGL.n;R/.H /, we obtain

Aut.�/\O.h ; i/D g�1. Aut.�/\O.h ; i/ / g

� g�1.Aut.g��/\O.h ; i/ / g D Aut.�/\O. .g�1/�h ; i/:

As the underlying Lie group structure of fS�; h ; ig and fS�; .g�1/�h ; ig is the same,

Isom.S�; h ; i/� Isom.S�; .g�1/�h ; i/

as Lie groups.

Step 2 So far we have imbedded the isometry group of S� into the isometry group of
a distinguished metric S�0 (the underlying Lie structures are the same). We finish by
constructing a soliton metric with the same isometry group as S�0 .

Write s�0 D aËn. In the proof of Proposition 3.1 it was observed that the distinguished
metric hh ; ii on s�0 can be transformed into a solvsoliton metric h ; i by simply
rescaling the metric on a by a factor of 2. As this rescaling does not change the
isotropy of the isometry groups

Aut.�/\O.hh ; ii/D Aut.�/\O.h ; i/;

and the underlying Lie groups are the same, these metrics have the same isometry
groups and the proof is complete.

Remark 4.6 Presently, we do not have such a theorem when the group is not com-
pletely solvable or for nonunimodular solvable Lie groups. Our techniques do allow
one to embed a large portion of the isometry group of any metric into the Einstein or
solvsoliton metric, however they do not allow one to embed the entire isometry group.
This question will be addressed in future work.
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It should be noted that every solvsoliton is isometric to a solvable Lie group which is
completely solvable [21]. This gives strong motivation that the above result should
hold without the requirement of being completely solvable.

5 Automorphisms of Einstein nilradicals

The main result of this section is a decomposition theorem for the automorphism group
of an Einstein nilradical. The reader who is primarily interested in the algorithm which
determines the existence of Einstein metrics on solvable Lie groups may skip to the
next section.

Given ˛ 2 symm� gl.n;R/, a symmetric matrix, we define the following groups:

G˛ D fg 2 GL.n;R/ j g˛g�1
D ˛g

U˛ D fg 2 GL.n;R/ j exp.t˛/ g exp.�t˛/! e as t !�1g

P˛ DG˛U˛

The group P˛ is the parabolic associated to ˛ with unipotent radical U˛ and reductive
complement G˛ . The group G˛ is the centralizer of ˛ in GL.n;R/ and, as ˛t D˛ , G˛
is self-adjoint with Cartan decomposition G˛ DK˛ exp.p˛/; here K˛ DG˛ \O.n/

and p˛ D g˛ \ symm.n/, where symm.n/ denotes the symmetric n� n matrices.

Conjugating ˛ by an element of O.n/, we may assume that ˛ is diagonal with weakly
increasing eigenvalues. Now the group G˛ consists of block diagonal matrices (which
commute with ˛ ) while U˛ is the group of lower triangular elements beneath the
blocks of G˛ .

Proposition 5.1 Let � 2N correspond to a nilsoliton N� with Ricci tensor ˛ D Ric.
Then the automorphism group of N� decomposes as

Aut.�/DG˛U ˛
DK˛ exp.p˛/U ˛

where G˛ DG˛ \Aut, K˛ DK˛ \Aut, p˛ D p˛ \Der, U ˛ D U˛ \Aut.

While this decomposition is interesting in its own right, we use it to streamline the
algorithms in Sections 6 and 7. Recall, Der.�/ is the Lie algebra of Aut.�/ and so we
have an analogous decomposition of Der.�/. The following is presented for later use.

Lemma 5.2 Take a nilsoliton N� with Einstein derivation ˇ , ie, RicD c IdCˇ . Then
the derivation algebra decomposes as Der.�/D kˇ˚pˇ˚uˇ . Moreover, every element
of the form

ˇCX with X 2 uˇ

is semisimple (ie diagonalizable).
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Remark 5.3 The above proposition is stated just for nilpotent groups since nilsolitons
are precisely the critical points of F D kmk2 (Theorem 2.2) and the automorphism
group is the stabilizer of the GL.n;R/ action. More generally, the above is true for
solvable groups when � is a critical point of F D kmk2 (ie a distinguished metric)
and ˛ Dm.�/.

Before proving the proposition and lemma, we recall the following Morse theoretic
stratification coming from F D kmk2 . The following are real analogues of classic
results from Geometric Invariant Theory (over C ). Denote the critical set of F Dkmk2

by C.

Theorem 5.4 [20; 22] There exists a finite subset B � gl.n;R/ of diagonal elements
with rational entries, and for each ˇ 2 B a GL.n;R/–invariant smooth submanifold
Sˇ � V (a stratum), such that V nf0g D

F
ˇ2B Sˇ .

This stratification satisfies xSˇ �Sˇ D
F
kˇ0k>kˇk Sˇ0 , the critical set is a union CDF

ˇ2B Cˇ where Cˇ � Sˇ are the critical points with critical value kˇk2 , and the
ˇ–stratum is Sˇ D fp 2 V j '1.p/ 2 Cˇg.

We use this stratification to prove the proposition above. Given symmetric ˛ 2 gl.n;R/,
consider the subgroup H˛ � GL.n;R/ with Lie algebra h˛ D fX 2 g˛ j tr.X˛/D 0g.
This subgroup is self-adjoint, and algebraic when the eigenvalues of ˛ are rational. In
the following proposition, we maintain the notation from [20].

Definition 5.5 A point v 2 V is called H˛–stable if 0 62H˛ � v .

Proposition 5.6 (Lauret) Given ˇ 2 B , there exist subsets Zˇ and Yˇ with the
following properties:

(1) Yˇ is Pˇ–invariant, Y ss
ˇ
D Yˇ \ Sˇ consists of Hˇ–semistable points and

Sˇ DO.n/Y ss
ˇ

.

(2) For y 2 Yˇ , fg 2 GL.n;R/ j g �y 2 Yˇg D Pˇ .

(3) Zˇ D fv 2 Yˇ j �.ˇ/v D kˇk
2vg, Zˇ is Gˇ–invariant, Sˇ \Zˇ D Zss

ˇ
(the

Hˇ–semistable points of Zˇ ) and Sˇ D GL.n;R/Zss
ˇ
DO.n/PˇZss

ˇ
.

(4) The Hˇ orbits intersecting Zˇ \Cˇ are all closed.

Remark Part (2) above does not appear in [20]. However, one can show this immedi-
ately just as in the complex case (cf [16, Lemma 13.4]).

We are now in a position to prove Proposition 5.1 and Lemma 5.2.
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Proof of Proposition 5.1 This result follows quickly from Proposition 5.6. Let �2Sˇ
be the nilsoliton of interest, where Sˇ is the stratum defined above. By considering
O.n/ translates of �, we may assume that � 2Zˇ .

Let g 2Aut.�/. Since g ��D�2Zˇ �Yˇ , g 2Pˇ by Part (2) of Proposition 5.6, and
we may write gDg1g2 where g12Gˇ and g22Uˇ . Observe that exp.tˇ/ g exp.�tˇ/

also stabilizes � and letting t!�1 we see that g2 2Aut.�/ and hence g1 2Aut.�/.
This shows Aut.�/DGˇU ˇ .

Given g 2 Gˇ , write g D k exp.X / where k 2Kˇ and X 2 pˇ ; this is possible as
Gˇ is stable under the transpose. Observe, km.�/k D km.g ��/k D km.exp.X / ��/k
and by [27, Lemma 7.2] we see that exp.X / ��D �. Thus exp.X /; k 2 Aut.�/ and
the theorem is proved.

Proof of Lemma 5.2 As � is a nilsoliton with ˛ D Ric, the automorphism group
decomposes as Aut.�/ D K˛P˛U ˛ . And since Der.�/ D Lie Aut.�/, we have
Der.�/ D k˛ ˚ p˛ ˚ u˛ , where k˛ D Lie K˛ , P˛ D exp.p˛/, and u˛ D Lie U ˛ .
Now, if ˇ is the Einstein derivation (ie RicD c IdCˇ ), then clearly K˛ DKˇ , etc.

The proof of the second statement is analogous to showing that any upper triangular
matrix with nonzero distinct entries on the diagonal can be diagonalized. One carries
out similar computations in this case (as the entries of ˇ are all positive and uˇ has an
appropriate block structure) to show that ˇCX can be conjugated to ˇ via Uˇ .

6 Algorithm to determine Einstein nilradical

In this section, we demonstrate how the existence of a nilsoliton can be read off from
local data. In our setting, the phrase “local data” refers to invariants of the underlying
Lie algebra and infinitesimal deformations of left-invariant metrics. Within the class
of left-invariant metrics, an infinitesimal deformation of a left-invariant metric can be
viewed as a perturbation of the inner product on the underlying Lie algebra.

Let N be a nilpotent Lie group of interest with Lie algebra n.

Theorem 6.1 The existence of a nilsoliton metric on N can be determined by analyz-
ing algebraic invariants of n and infinitesimal deformations of any initial left-invariant
metric on N .

The existence of a nilsoliton being intrinsic to the Lie algebra was first shown by
Nikolayevsky [31]. There it was shown that the existence of such a metric is equivalent
to an orbit of a particular reductive group being closed in the space of Lie brackets (see
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Theorem 6.5). However, it was not shown that this could be determined by measuring
local data. We build on this result and use a Hilbert–Mumford criterion to achieve the
theorem above.

Before Nikolayevsky’s result, it was shown by Lauret [17] that the existence of such
a metric is equivalent to the full GL.n;R/–orbit in the space of Lie brackets being
so-called distinguished . However, it was not known before the present work that this
condition can be determined locally.

Algorithm to determine if N is an Einstein nilradical

Step 1 Find any nontrivial solution � 2 Der.n/ to

tr.� /D tr. / for all  2 Der.n/:

If the solution is � is not semisimple (ie diagonalizable) with (positive) real eigenvalues
then stop, n is not an Einstein nilradical.

If � is semisimple with (positive) real eigenvalues, then continue. (Remark: positivity
of the eigenvalues will be automatic if the following steps are valid.)

Step 2 Given � above, define the subalgebra g� D z.�/ \ Ker.T / \ sl.n;R/ of
sl.n;R/, where T is the linear function T .A/D tr.A�/ and z.�/ is the centralizer of
� in gl.n;R/. Consider the subalgebra h� WD g� \Der.n/.

If h� is not reductive, then stop, n is not an Einstein nilradical.

If h� is reductive then continue.

To determine if this algebra is reductive: (1) compute its radical, then (2) compute the
set of nilpotent elements of this radical. The algebra is reductive if and only if the set
of such nilpotent elements (in the radical) is trivial.

Step 3 Consider the subalgebra i� D fX 2 zg�
.h�/ j tr.XY /D 0 for all Y 2 z.h�/g ,

where za.b/ denotes the centralizer of b in a and z.b/ is the center of b . Let D denote
the matrices of gl.n;R/ which are diagonalizable over R; ie, DD

S
g2GL.n;R/ gtg�1 ,

where t D diagonal matrices of gl.n;R/. Let n D n� corresponding to some point
� 2 V D^2.Rn/�˝Rn (see Section 2). For X 2 i� \D , write �D

P
ai�i , where

f�ig is an eigenbasis of V relative to X , ie, X ��D
P
�iai�i .

If there is some X 2 i�\D such that �i � 0 whenever ai 6D 0, then n is not an Einstein
nilradical.

If for every X above there exists i with �i < 0 and ai 6D 0, then n is an Einstein
nilradical.
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Remark 6.2 In Step 3 we have the following:

(1) The identification of n with � 2 V is made by picking a basis of the vector
space. This is tantamount to prescribing n with an orthonormal basis, and hence,
endowing N with a choice of left-invariant metric.

(2) The X ��, with X 2 gl.n;R/, precisely represent infinitesimal deformations of
the above choice of left-invariant metric.

(3) The algebra h� is reductive (once getting to Step 3). If the inner product from n�
makes h� stable under the metric adjoint (and there will always be such a �
with this property), then Step 3 may be replaced by the following.

Step 3 0 Assuming h� is self-adjoint relative to the inner product on n� , we may
reduce the collection of X considered in Step 3 to those X 2 i� \ symm.n/, where
symm.n/ denotes the symmetric n� n matrices.

Remark 6.3 The verification of Steps 1 and 2 above can done by a computer. It is
not immediately clear to the author if Step 3 can be adapted to be implemented by a
computer.

Proof of the algorithm above

We begin by recalling a theorem Nikolayevsky, on which our work is built. Take �2V ,
with corresponding Lie algebra s� .

Definition 6.4 A derivation � of a Lie algebra s� is called pre-Einstein if it is
semisimple, with all eigenvalues real, and satisfies

(6-1) tr.� /D tr for any  2 Der.�/:

While these derivations exist for all Lie algebras, and are essentially unique, they are
of particular interest when � is nilpotent and admits a nilsoliton metric. Assume �
is said nilsoliton and let Ric D c IdCD be the Ricci tensor, then � D D

�c
is a pre-

Einstein derivation, conversely, one can obtain D from � . Remarkably, determining
the pre-Einstein derivation almost completely determines when a nilpotent Lie algebra
admits a nilsoliton metric. This derivation first appeared in [31].

Let n� be a nilpotent Lie algebra with a choice of pre-Einstein derivation � . Associated
to � we have the subalgebra g�D z.�/\ker.T /\sl.n;R/, where z.�/ is the centralizer
of � and T .A/D tr.A�/. Let G� � SL.n;R/ be the Lie group with algebra g� , this
is an algebraic group.
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Theorem 6.5 [31] For a nilpotent Lie algebra n� with a pre-Einstein derivation � ,
the following conditions are equivalent:

(1) n� is an Einstein nilradical.

(2) The orbit G� ��� V is closed.

We are now in a position to prove the algorithm.

Step 1 If n� is an Einstein nilradical, then any nontrivial solution to Equation (6-1)
will automatically be a pre-Einstein derivation, ie it is automatically semisimple with
real, positive eigenvalues.

Proof The proof amounts to analyzing Nikolayevsky’s proofs and combining those
details with Lemma 5.2. For the sake of completeness, we present Nikolayevsky’s proof
of existence and uniqueness (up to conjugation in Aut) of the pre-Einstein derivation.

First we find one pre-Einstein derivation. Let s� be a Lie algebra and denote by Der.�/
its algebra of derivations; this is an algebraic Lie algebra (meaning it is the Lie algebra
of an algebraic group). Consider a Levi decomposition Der.�/D s˚ t˚n where t˚n

is the radical of Der.�/, s is semisimple, and n is the set of nilpotent elements (the
nilradical) of t˚ n, t is a torus (abelian subalgebra with semisimple elements), and
Œt; s�D 0.

Recall, for  2 gl.n;R/ a semisimple endomorphism, there exist semisimple endo-
morphisms  R and  iR (the real and imaginary parts) which have real, resp. purely
imaginary, eigenvalues such that  D RC iR and all three endomorphisms commute.
Moreover, the subspaces tc D f 

iR j  2 tg and ts D f 
R j � 2 tg are the compact

and the fully R-reducible tori (the elements of ts are simultaneously diagonalizable)
with ts˚ tc D t.

We will find a pre-Einstein derivation contained in ts . Consider the quadratic form b

on Der.�/ defined by b. 1;  2/D tr. 1 2/. It is a general fact that n is in the kernel
of this quadratic form, hence

b.t;  /D 0D tr. / for any  2 n:

Using the ad–invariance of b (ie, b. 1; Œ 2;  3�/D b.Œ 3;  1�;  2/) and that sD Œs; s�
is semisimple, we see that

b.t;  /D 0D tr. / for any  2 s:

Thus it suffices to solve Equation (6-1) with �; 2 t. Additionally, observe that

b.ts;  /D 0D tr. / for any  2 tc :
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Lastly, as the quadratic form b restricted to ts is positive definite, the existence (and
uniqueness in t) follows.

To obtain the uniqueness of the pre-Einstein derivation up to conjugation in Aut,
Nikolaevsky exploits a theorem of Mostow [26, Theorem 4.1] which says that all fully
reducible subalgebras of Der.�/ are conjugate via an inner automorphism of Der.�/.
Lastly, as the center of a reducible algebra is uniquely defined, we have the desired
result.

Now we analyze this proof to study all solutions to Equation (6-1). Let A 2 s˚ t be
a solution to tr.A /D 0 for all  2 Der.�/. We will show that AD 0. To see this,
first assume that our Lie algebra n� is endowed with an inner product so that s˚ t is
stable under the transpose operation. This is always possible; when n� is an Einstein
nilradical such a metric is explicitly given in Proposition 5.1. Using this inner product,
 DAt 2 Der.�/ and 0D tr.A /D tr.AAt / implies AD 0.

Let � 2 t be a pre-Einstein derivation of n� , the above work shows that any solution
to Equation (6-1) is of the form �CX where X 2 n (the nilpotent part of the radical
of Der.�/). Applying Lemma 5.2 finishes the proof of this step.

Step 2 To prove this portion of the algorithm, we identify n with n� , for some �2V .
The algebra h� D g� \Der.n/ is precisely the stabilizer subalgebra of g� at �. As
we have fixed a basis of our Lie algebra, we may view h� � gl.n;R/.

In Theorem 6.5, it was shown that n� is an Einstein nilradical if and only if G� ��

is closed, where G� is the reductive algebraic Lie group with Lie algebra g� . It is
well-known that an orbit of such a group being closed implies the stabilizer subgroup
is reductive; see [34]. Lastly, the stabilizer subgroup is reductive if and only if its Lie
algebra h� is reductive.

Step 3 If the stabilizer of G� were finite, then we could apply the “Hilbert–Mumford
criterion” to determine whether or not the orbit G� �� is closed. This criterion uses
only local data, and we reduce to this case with the following proposition.

Proposition 6.6 Consider G� as above and assume the subgroup H� DG� \Aut is
reductive. There exists a real algebraic reductive subgroup I� of G� satisfying the
following.

(1) Lie I� D i� D fX 2 zg�
.h�/ j tr.XY /D 0 for all Y 2 z.h�/g.

(2) The stabilizer of I� at � is finite.

(3) n� is an Einstein nilradical if and only if I� �� is closed.

Geometry & Topology, Volume 15 (2011)



Existence of soliton metrics on solvable Lie groups 755

Before proving this proposition, we continue with the proof of the algorithm. As
the stabilizer of I� at � is finite, we may apply the “Hilbert–Mumford criterion” to
determine when I� � � is closed. This criterion was adapted to the real setting by
Birkes [3] which states (in our setting):

I� �� is closed if and only if
[
t2R

exp.tX / �� is closed for all X 2D\ i� .

Roughly speaking, this criterion says that closedness of the I� –orbit is equivalent to
closedness of the orbits of all algebraic reductive 1–parameter subgroups.

We finish by writing exp.tX / ��D expt.tX /
P

ai�i D
P

et�i ai�i where �i is the
eigenvector of X above. This set is not closed if and only if for all i such that ai 6D 0,
either all �i � 0 or �i � 0. Observe that replacing X with �X changes the sign of
the eigenvalues above and this step is proven.

Step 3 0 Reducing the Hilbert–Mumford criterion to this smaller set of symmetric
elements of h� is the content of [34].

Proof of Proposition 6.6 The group H� is the (algebraic) Lie group with Lie alge-
bra h� . As h� and � are reductive, there exists g 2 GL.n;R/ such that gh�g�1 and
g�g�1 are simultaneously self-adjoint; see [25]. Observe that

g Der.�/g�1
D Der.g ��/,

g�g�1 is a pre-Einstein derivation of g ��,

gg�g�1 D gg�g�1,

hg�g�1 D gh�g�1,

zg
g�g�1

.hg�g�1/D gzg�
.h�/g

�1,

ig�g�1 D gi�g�1:

Moreover, Ig�g�1 � .g ��/D gI�g�1g�D g.I� ��/ is closed if and only if I� �� is
closed. As such, we may reduce to the case that h� and � are self-adjoint.

Since � is self-adjoint, we immediately have that g� and zg�
.h�/ are self-adjoint.

Observe that the stabilizer subalgebra of i� at � is trivial since it is contained in the
stabilizer subalgebra .g�/� D h� and i� is orthogonal to h� under the inner product
hA;Bi D tr.ABt /. Once I� is shown to be algebraic, we immediately have that the
stabilizer of I� at � is finite, as it is discrete and algebraic.
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Algebraicity of I� We include a proof of this fact as such details are often not readily
available in the literature (for real algebraic groups) and, to apply the tools from
geometric invariant theory, the group must be algebraic.

An element X 2 gl.n;R/ will be called algebraic if it is tangent to a real algebraic
1–parameter subgroup of GL.n;R/. More generally, a Lie subalgebra will be called
algebraic if it is tangent to an algebraic subgroup of GL.n;R/. Given ˛ which is
symmetric or skew-symmetric, we define the subalgebra

g˛	˛ D fX 2 g˛ j tr.X˛t /D 0g

where g˛DfX 2 g j ŒX; ˛�D 0g. Since ˛t D˙˛ , it follows that g˛	˛ is a self-adjoint
ideal of g˛ .

Lemma 6.7 Given ˛ which is algebraic and either symmetric or skew-symmetric, the
subalgebra g˛	˛ is an algebraic Lie subalgebra.

Using this lemma, we show that I� is algebraic. Observe that the algebra z.h�/ D

zg�
.h�/\ h� is algebraic and self-adjoint, and decompose z.h�/D z.h�/k˚ z.h�/p

into its Cartan decomposition (the skew-symmetric and symmetric components). The
algebraic elements of z.h�/k and z.h�/p are dense in each subspace. Applying the
above lemma to all of these algebraic elements, and using the fact that the intersection
of algebraic groups is algebraic, we see that I� is algebraic.

Proof of Lemma 6.7 The cases of ˛ symmetric and skew-symmetric must be handled
separately.

Case ˛ is symmetric. Every such ˛ is conjugate via O.n;R/ to a diagonal matrix.
As the bilinear form tr.XY t / on gl.n;R/ is Ad O.n;R/ invariant and the conjugate
of an algebraic group is algebraic, we may reduce to the case that ˛ is diagonal. Also,
we may reduce to the case G D GL.n;R/ as the intersection of algebraic groups is
algebraic.

Further more, we may assume (via conjugation by O.n;R/) that the eigenvalues
are weakly increasing: ˛ D diagfa1; : : : ; a1; : : : ; ak ; : : : ; akg. After rescaling, the
eigenvalues ai are rational as ˛ is algebraic. Now the subalgebra g˛ consists of block
diagonal matrices gl.n1;R/� � � � � gl.nk ;R/. This is clearly an algebraic Lie algebra
whose Lie group G˛ consists of the block matrices which are invertible.

The condition X 2 g˛ is now †aiXi D 0 where X D blockdiagfX1; : : : ;Xkg. Write
g 2 G˛ as a block diagonal matrix g D blockdiagfg1; : : : ;gkg. Then the algebraic
group with Lie algebra g˛	˛ is˚

g 2G˛ j
Q

det.gi/
qai D 1

	
where q is the common integer such that qai 2 Z for all i D 1; : : : ; k .
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Case ˛ is skew-symmetric. To prove the result in this case, we reduce to the above
case and use complex algebraic groups. We will construct a complex algebraic group
whose intersection with GL.n;R/ is the desired Lie group. This Lie group will be
algebraic as it is the intersection of algebraic groups. We refer the reader to Whitney [36]
for an introduction to the relationship between real and complex varieties.

Observe that the above work for ˛ symmetric could have been carried out over C .
Consider gC

˛ D fX 2 gl.n;C/ j ŒX; ˛�D 0g. As ˛ is skew-symmetric, the eigenvalues
of i˛ are real (and may be assumed to be rational, as above). Now we have gC

˛ D gC
i˛

and gC
˛ 	˛D gC

i˛	 i˛ . By conjugating with U.n/�GL.n;C/, we may assume i˛ is
diagonal. Following the above work, but with complex groups instead of real, we have
a complex algebraic group over gC

˛ 	˛ D gC
i˛	 i˛ . Moreover, this group intersected

with GL.n;R/ is a real Lie group with the desired Lie algebra. Counting dimensions,
we see that the real points of this complex algebraic group are Zariksi dense and hence
this Lie group is real algebraic.

Einstein nilradical vs closedness of I�–orbit

By Theorem 6.5, n� is an Einstein nilradical if and only if G� �� is closed. However,
by Lemma 4.5, G� � � is closed if and only if ZG�

.H�/ is closed. Now, by the
construction of I� , we have ZG�

.H�/D I� �Z.H�/ and I� ��DZG�
.H�/ ��. This

proves the proposition and the proof of the algorithm is complete.

Closed orbits for general representations

The above work concerning the geometry of orbits holds in the more general framework
of representations of reductive groups. We state this result without proof, as the proof
is similar to the above work. Although probably known to experts, we do not know of
this statement appearing in the literature before.

Theorem 6.8 Let G be a real reductive algebraic group acting linearly and rationally
on a vector space V . Determining whether an orbit G � v is closed in V can be
determined using only data from the induced representation of the Lie algebra g at the
point v 2 V .

7 Algorithm to determine if a solvable Lie group admits a
left-invariant Einstein metric

The existence of an Einstein metric on a solvable Lie group can be determined by
measuring purely local data, as in the case of nilsolitons and nilpotent Lie groups;
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see Section 6. The following theorem builds on the works of Heber, Lauret, and
Nikolayevsky. (A similar algorithm can be written to test for the existence of solvsoliton
metrics.)

Theorem 7.1 The existence of an Einstein metric on a solvable Lie group S can be
determined by analyzing algebraic invariants of s and infinitesimal deformations of any
initial left-invariant metric on S .

As (nonabelian) solvable Lie groups are noncompact, any left-invariant Einstein metric
on such a group must have scalar curvature less than or equal to zero by Bonnet–Myers
theorem. Using the following result, we distinguish between zero and negative curvature
by means of algebra.

Theorem 7.2 (Alekseevskiı̆–Kimel’fel’d [1], Dotti [5]) Let S be a solvable Lie
group with left-invariant Einstein metric.

(1) The scalar curvature is negative if and only if S is nonunimodular.

(2) The scalar curvature is zero if and only if S is unimodular.

In the case of Ricci flat, the metric is actually flat (ie, constant zero sectional curvature).

Remark In [1] it is actually shown that any homogeneous Ricci flat space must be
flat.

This result is the first step in proving Theorem 7.1:

� If the underlying Lie algebra is unimodular, check to see if the group admits a
flat metric.

� If the underlying Lie algebra is nonunimodular, check to see if the group admits
a negative Einstein metric.

Flat Einstein metrics

Lie groups with flat left-invariant metrics are necessarily unimodular solvable and have
been classified [24].

Theorem 7.3 (Milnor) A Riemannian Lie group S is flat if and only if its Lie
algebra s (with inner product) splits as an orthogonal direct sum sD a˚ n where n

is an abelian ideal (the nilradical) and a is an abelian Lie algebra such that ad X is
skew-symmetric for X 2 a. Such S is necessarily solvable.
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Using Milnor’s classification, we prove Theorem 7.1 in the case that scalar curvature is
zero. Note: this case does not require any infinitesimal deformations of metrics on n.

Consider the adjoint action ad s� Der.s/ on s. Compute the nilradical n of s, ie, the
set of nilpotent elements. Compute any Levi decomposition ad sD TCN, where N

is the nilradical and T is a reductive compliment. Let t� s be any preimage of T (ie,
ad tD T) such that dim tD dimT.

Lemma 7.4 A (unimodular) solvable Lie group S admits a flat metric if and only
if the nilradical n is abelian, t is an abelian subalgebra, and ad T has only purely
imaginary eigenvalues for T 2 t.

Proving this lemma proves Theorem 7.1 in case of zero curvature as verifying the
conditions on t in the lemma amount to simply analyzing the adjoint representation
of s.

Proof of Lemma 7.4 We prove necessity first. Assume s admits a flat Einstein metric.
Decompose sDaCn where n is the nilradical and a is an abelian, reductive subalgebra
such that ad A has only purely imaginary eigenvalues for A 2 a, as in Theorem 7.3.

Observe that ad s D ad a C ad n is a Levi-decomposition of ad s. Thus ad a and
T D ad t are equal up to conjugation by Aut.s/ as they are both maximal reductive
subalgebras of ad s (conjugacy of such subalgebras is the main result of [26]). As the
relevant properties of a do not change after applying an automorphism, we may assume
ad aD ad t. Now, the elements of t differ from the elements of a by only elements
of the center. Hence t has precisely the same properties of a and this direction of the
lemma is proven.

We prove sufficiency. Picking a basis of n, we may identify it with Rn . Via this
identification, the abelian, reductive algebra t is a subalgebra of gl.n;R/. It is well-
known that there exists an inner product on Rn such that t is stable under the transpose
operation; see [25]. As the eigenvalues of every element in t are purely imaginary,
we see that t consists of skew-symmetric derivations. Now Milnor’s theorem above
applies.

Negative Einstein metrics

Here we prove Theorem 7.1 in the case that scalar curvature is negative. Let S be the
solvable group in question with Lie algebra s. Denote by n the commutator subalgebra
Œs; s� of s (when s admits an Einstein metric, this will be the full nilradical). We prove
the theorem by producing an algorithm.
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Step 1

� If n is not an Einstein nilradical, then stop, S cannot admit a negative Einstein
metric.

� If n is an Einstein nilradical, then continue.

This step can be determined using the algorithm of Section 6.

Step 2 Find any nontrivial solution � to

tr.� /D tr. / for all  2 Der.n/

within the set ad sD fad X jX 2 sg � Der.n/.

� If there is no nontrivial solution in this subset, or the solution is not semisimple
with (positive) real eigenvalues, then stop; S cannot admit a negative Einstein
metric.

� If there is a nontrivial solution � D ad X� , and this solution is semisimple with
(positive) real eigenvalues, then continue. Fix this choice of X� .

This step can be verified using a computer for a given solvable Lie algebra of interest.
As before, positivity of the eigenvalues will follow if the remaining steps are valid.

Step 3 Compute zs.X�/D fY 2 s j ŒY;X� �D 0g.

� If zs.X�/ is not abelian or dim zs.X�/C dim n< dim s, then stop, S does not
admit a negative Einstein metric.

� If zs.X�/ is abelian, and dim zs.X�/C dim nD dim s, then continue.

Recall, zs.X�/ is automatically reductive as X� is reductive, and zs.X�/ being reduc-
tive abelian implies that no element is nilpotent. This step may be verified using a
computer.

Step 4

� If some element of zs.X�/ has only purely imaginary eigenvalues, then stop; S

does not admit a negative Einstein metric.

� If no element of zs.X�/ has only purely imaginary eigenvalues, then S admits
a negative Einstein metric.
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Proof of the algorithm above

Step 1 This fact is well-known; see [20].

Step 2 This is a slight refinement of a result of Nikolayevsky [31, Theorem 1] and
Lauret [21, Proposition 4.3]. The proof is the same as Step 1 of the algorithm in
Section 6.

Step 3 This holds immediately by the structural results of Lauret [21, Theorem 4.8].

Step 4 This step gives algebraic form to the rigid structural results of Lauret [21,
Theorem 4.8] for Einstein metrics on nonunimodular solvable Lie groups. We prove
this below.

Denote zs.X�/ by a and consider it as a subalgebra of gl.n�/. Let A be the connected
subgroup of GL.n�/ with Lie algebra a. Denote by xA the Zariski closure of A in
GL.n�/ (ie, the smallest algebraic group containing A) and its Lie algebra by xa. As
Aut.n�/ is an algebraic group, xA� Aut.n�/. Moreover, xA is abelian and reductive.
The fact that xA is abelian follows immediately from being the closure of an abelian
group. To see that this group is reductive, one can “diagonalize” a to see that xA
is a subgroup of a torus (abelian, reductive) of GL.n�/ and hence has no nontrivial
nilpotent elements.

It is a classical fact that there exists g 2GL.n;R/ such that gxag�1 is self-adjoint since
xA is both algebraic and reductive; see [25]. We note that the eigenvalue conditions on a

do not change under conjugation. Now a0 D gag�1 is a reductive, abelian subalgebra
of Der.g��/ and

aË n� ' a0 Ë ng��

via the isomorphism which is the identity on a and g on n� . The nilpotent Lie group
Ng�� is an Einstein nilradical if and only if N� is so, as they are isomorphic.

We apply Lemma 4.5 to the subgroup xA0Dg xAg�1�GL.n;R/ with Lie algebra Sa0D

gxag�1 . This group is self-adjoint as its Lie algebra is so. Let �0 D g�� and consider
the limit �1 of the bracket flow �t . The Riemannian nilpotent Lie group N�1 is
a nilsoliton and, by Theorem 2.7, �1 D g0��0 for some g0 2ZGL.n;R/. xA0/. As g0

commutes with a0 we see that the following solvable algebras are isomorphic:

aËN� ' a0 ËN�0
' g0a0g0�1 ËNg0��0

D a0 ËNg0��0
D a0 ËN�1 ;

but the last metric algebra satisfies all of Lauret’s the criteria [21, Theorem 4.8] to be
an Einstein metric Lie algebra.
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