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Structured ring spectra and displays

TYLER LAWSON

We combine Lurie’s generalization of the Hopkins–Miller theorem with work of
Zink–Lau on displays to give a functorial construction of even-periodic E1 ring
spectra E , concentrated in chromatic layers 2 and above, associated to certain n� n

invertible matrices with coefficients in the Witt ring of �0.E/ . This is applied to
examples related to Lubin–Tate and Johnson–Wilson spectra. We also give a Hopf
algebroid presentation of the moduli of p–divisible groups of height greater than or
equal to 2 .

55P42; 55N22, 55P43, 14L05

1 Introduction

One of the most successful methods for understanding stable homotopy theory is
its connection to formal groups. By work of Quillen, a homotopy commutative and
associative ring spectrum R has M U –homology M U�R an algebra over the Lazard
ring L, which carries a universal 1–dimensional formal group law, and the M U –
homology cooperations precisely provide M U�R with rules for change-of-coordinates
on the formal group law.

In recent years much study has been devoted to the converse problem. Given a ring R

with a formal group on R, can we reconstruct a ring spectrum E whose associated
formal group lifts that on R? In addition, can more rigid multiplication (such as the
structure of an E1 algebra) be imposed on E? Can these constructions be made
functorial?

There are several specific examples of spectra related to the chromatic filtration in
stable homotopy theory for which this is of particular interest. The structure of an
E1 algebra on E allows the construction of a symmetric monoidal model category
of E–modules, a highly useful tool, and allows for the study of E–algebras. The
complex bordism spectrum M U , which carries a universal formal group law, has an
E1 structure and was one of the motivating examples for the definition of such a
structure. The Goerss–Hopkins–Miller theorem [4] showed the existence of canonical,
functorial E1 ring spectra En associated to the Lubin–Tate universal deformations of
height n formal group laws over a perfect fields.
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However, there are numerous other spectra in the chromatic approach to stable homotopy
theory, carrying formal group laws of simple type, for which E1 structures are not
known to exist. The most prominent example is the Brown–Peterson spectrum BP,
whose ring of homotopy groups is isomorphic to a polynomial ring Z.p/Œv1; v2; : : :�.
This spectrum carries a universal p–typical formal group law and serves as the basis
for much computational work. Other spectra arise from the height stratification of
p–local formal group laws. Johnson–Wilson spectra E.n/ have homotopy groups
Z.p/Œv1; : : : ; v

˙1
n � covering the strata of heights 0 through n, and truncated Brown–

Peterson spectra BPhni have homotopy Z.p/Œv1; : : : ; vn� covering heights 0 through n

and 1. (These definitions require making explicit choices of polynomial generators vk

of BP� , though several formal properties of these spectra are independent of the choice.)

Of these, only certain spectra E.1/ and their connective covers BPh1i are classically
known to admit E1 structures, as they can be constructed from the periodic complex
K–theory spectrum KU and its connective cover. There exist sequences of maps

BP! BPhni !E.n/!En

classifying progressively more restricted formal group laws, and so one might regard
our problem as trying to lift E1 lifts of the Lubin–Tate rings to progressively more
global objects.

In 2005 Lurie announced a theorem that lifts formal groups to E1 ring structures,
generalizing the Goerss–Hopkins–Miller theorem. The application of this theorem
requires extra data: an extension of the formal group to a p–divisible group. In addition,
the p–divisible group on R is required to satisfy a universality condition at each point.
This specifically can be applied to produce elliptic cohomology theories and the theory
of topological modular forms, and served as the basis for previous joint work with
Behrens [1] generalizing topological modular forms to moduli of higher-dimensional
abelian varieties that reach all chromatic levels. Joint work with Hill [5] showed that a
variant of BPh2i at the prime 3 can be constructed by this method, via a p–divisible
group on an Atkin–Lehner quotient of the Shimura curve of discriminant 14.

As the study of p–divisible groups originated with their connection to abelian va-
rieties, from a geometric point of view these are some of the most natural families
of 1–dimensional p–divisible groups. However, one of the major obstructions to
understanding the associated cohomology theories is that it rests on an understanding
of certain moduli of higher-dimensional abelian varieties, and in particular their global
geometry. This presents barriers both because of the necessary background and because
these moduli seem to be intrinsically difficult. Moreover, from the point of view of
homotopy theory one does not have as many of the “designer” tools of the subject
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(see Hopkins [6]), which construct spectra with the explicit goal of capturing certain
homotopy-theoretic phenomena.

The aim of this paper is to provide a method for constructing E1 ring spectra from
purely algebraic data. Specifically, Theorem 5.2 allows the functorial construction of
even-periodic E1 ring spectra with �0 DR from the data of certain n� n invertible
matrices with coefficients in the Witt ring of R. This is obtained using Zink’s displays
on R [9], which correspond to certain p–divisible groups over Spec.R/. This general-
izes the Dieudonné correspondence between p–divisible groups over a perfect field and
their associated Dieudonné modules, and in particular restricts to this structure at any
perfect residue field k . Due to restrictions on the p–divisible groups constructible by
these displays, the associated spectra are concentrated in chromatic height greater than
or equal to 2. In Section 5 we construct E1 ring structures on spectra interpolating
between Lubin–Tate and Johnson–Wilson spectra.

The layout of this paper is as follows. In Section 2 we recall the definitions of displays
and nilpotent displays over a ring R from [9], specifically concentrating on those in
matrix form. We state the equivalence of categories between nilpotent displays and
formal p–divisible groups on Spec.R/ due to Zink and Lau. In Section 3 we apply
Serre duality to obtain a classification of p–divisible groups of dimension 1 and formal
height at least 2 on R and give a presentation of the moduli of such p–divisible
groups by a large Hopf algebroid. In Section 4 we study the deformation theory of
nilpotent displays in matrix form over a ring R and use this to give a criterion for
these to satisfy the universal deformation property. Specifically, a display in matrix
form determines a map to projective space Ph�1 that is formally étale if and only if
the associated p–divisible group is locally a universal deformation. In Section 5 we
recall the statement of Lurie’s theorem and apply it to functorially obtain even-periodic
ring spectra associated to certain displays. Finally, we relate this (as in Fargues [2]) to
the work of Gross and Hopkins on the rigid analytic period map [7]. In the specific
case of a Lubin–Tate formal group over RDW .k/Ju1; : : : ;uh�1K, there is a choice
of coordinates such that the above map Spec.R/! Ph�1 induces a rigid-analytic map
that agrees with the Gross–Hopkins period map modulo the ideal .u1; : : : ;uh�1/

p .

We mention that Zink’s theory of Dieudonné displays provides objects equivalent to
general p–divisible groups over certain complete local rings. These could be applied to
produce homology theories associated to universal deformations of p–divisible groups
of dimension 1 over a field, analogous to Lubin–Tate spectra, which are worth study in
their own right. However, our goal in this paper is to allow more global rather than
local constructions.
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Notation For a ring R, we write W .R/ for the ring of p–typical Witt vectors over R.
This carries Frobenius and Verschiebung maps f; vW W .R/!W .R/, the Teichmüller
lift Œ��W R!W .R/ and ghost maps wk W W .R/!R. We write IR for the ideal of
definition v.W .R//.

Acknowledgments The author would like to thank Eike Lau, William Messing and
Niko Naumann for discussions related to this material, as well as the organizers and
participants of a mini-FRG on p–divisible groups and stable homotopy theory at UIUC
in June 2009.

2 Displays

We will first briefly recall the classical Dieudonné correspondence. Let k be a perfect
field. The Dieudonné module functor D is a contravariant equivalence of categories
between p–divisible groups over Spec.k/ and finitely generated free modules M over
the Witt ring W .k/ that are equipped with operators F and V satisfying the following
properties.

� F is semilinear: for x 2W .k/, m 2M , F.xm/D f .x/F.m/.

� V is antisemilinear: for x 2W .k/, m 2M , xV .m/D V .f .x/m/.

� FV D VF D p .

Classical Dieudonné theory also incorporates duality. Each p–divisible group G has a
Serre dual G_ , whose associated Dieudonné module D.G_/ is isomorphic to the dual
module

D.G/t D HomW .k/.D.G/;W .k//

equipped with Frobenius operator V t and Verschiebung operator F t . The covariant
Dieudonné module of G is the Dieudonné module of G_ , and this provides a covariant
equivalence of categories between Dieudonné modules and p–divisible groups.

Zink’s theory of displays is a generalization of the Dieudonné correspondence. However,
over a nonperfect ring R defining the map V is no longer sufficient. This is instead
replaced by a choice of “image” of V , together with an inverse function V �1 .

Definition 2.1 (Zink [9, Definition 1]) A display over a ring R consists of a tuple
.P;Q;F;V �1/, where P is a finitely generated locally free W .R/–module, Q is a
submodule of P and F W P ! P and V �1W Q! P are Frobenius-semilinear maps.
These are required to satisfy the following:

� IRP �Q� P .

Geometry & Topology, Volume 14 (2010)
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� The map P=IRP ! P=Q splits.

� P is generated as a W .R/–module by the image of V �1 .

� V �1.v.x/y/D xF.y/ for all x 2W .R/, y 2 P .

If p is nilpotent in R, then W .R/!R is a nilpotent thickening [9, Proposition 1.3],
and P being locally free on W .R/ implies this is also true locally on Spec.R/. In
addition, P=Q and Q=IRP are locally free R–modules.

Therefore, locally on such R we may choose a basis fei j1 � i � hg of P such that
QD IRP ChedC1; : : : ; ehi. We refer to h as the height and d as the dimension of
the display, and these are locally constant on Spec.R/. As in [9], in such a basis we
may define an h� h matrix .bij / as follows:

Fej D

X
bij ei for 1� j � d;

V �1ej D

X
bij ei for .d C 1/� j � h:

These determine all values of F and V �1 :

Fej D V �1.v.1/ � ej /D
X

.pbij /ei for .d C 1/� j � h;

V �1.v.x/ � ej /D
X

.xbij /ei for 1� j � d;x 2W .R/:

The image of V �1 generates all of P if and only if this matrix is invertible, or
equivalently that its image under the projection w0W MhW .R/!MhR is invertible.

To aid calculation in Section 4 and further, we will refer to the inverse matrix B D

.bij /
�1 as a matrix form for the given display. Specifying the matrix form is equivalent

to specifying the inverse matrix.

If R is a perfect field of characteristic p , the operator V �1 has a genuine inverse
defining an antisemilinear map V W P !Q�P , and the maps satisfy VF DFV D p .
Under these circumstances, if

B�1
D
�

u1 u2

�
; B D

�
w1

w2

�
are block forms, then the operators reduce to the classical operators F and V on a
Dieudonné module which is free over W .k/ with basis feig, and these operators have
the matrix expression

F

�
x

y

�
D
�

u1 pu2

� � f x

fy

�
; Vx D

�
vw1

f �1w2

�
.f �1x/:
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A map between two displays is a W .R/–module map P!P 0 preserving submodules
and commuting with F and V �1 . Given an isomorphism � from .P;Q;F;V �1/

to .P 0;Q0;F 0; .V 0/�1/, the operators F 0 and .V 0/�1 are determined uniquely by
F 0 D �F��1 and similarly for V 0 . If these displays have matrix forms B and B0

respectively, we can write � in the block form

� D

�
a vb

c d

�
;

and calculate that the matrix form for the display .P 0;Q0; �F��1; �V �1��1/ is given
by the change-of-coordinates formula

(1) B0 D

�
fa b

p �fc fd

�
�B �

�
a vb

c d

��1

:

The associated map of displays induces the map of modules Q=IRP ! Q0=IRP 0

given in matrix form by w0.d/.

Given a matrix form B , let xB be the .h� d/� .h� d/ matrix in R=.p/ which is the
image of lower-right corner of B under the projection W .R/!R=.p/. We say that
the display is nilpotent if the product

f n xB � � � f 2 xB �f xB � xB

is zero for some n� 0. (This is independent of the choice of basis, as it is equivalent to
the semilinear Frobenius map acting nilpotently on the quotient of Q by .p/C IRP .)
Here f is the Frobenius on R=.p/ applied to each entry of the matrix. A general
display over R is nilpotent if it is locally nilpotent in the Zariski topology.

Define a formal Zp –algebra to be a topological ring R that is complete and separated
in the I –adic topology for an ideal of definition I containing p . We refer to a display
on a formal Zp –algebra RŠ lim R=Ik as nilpotent if its restrictions to the R=Ik are
nilpotent.

Theorem 2.2 (Zink [9, Theorem 9]; Lau [8, Theorem 1.1]) If R is a formal Zp –
algebra, there is a (covariant) equivalence of categories between nilpotent displays
over R and formal p–divisible groups on Spf.R/.

Remark 2.3 Under this correspondence, the Lie algebra of the p–divisible group
associated to a display .P;Q;F;V �1/ is the locally free R–module P=Q (see im-
mediately following Theorem 4 of [9]).
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3 Moduli of 1–dimensional p–divisible groups

Beginning in this section we specialize to the case of topological interest: the theory of
1–dimensional p–divisible groups. Unfortunately, there are very few 1–dimensional p–
divisible groups to which Theorem 2.2 applies. The only ones satisfying the conditions
of Lurie’s theorem (see Theorem 5.1) are analogues of the Lubin–Tate formal groups.

However, the category of p–divisible groups has a notion of duality, compatible
with a corresponding duality on the display. Serre duality is a contravariant self-
equivalence of the category of p–divisible groups over a general base X that associates
to a p–divisible group G of constant height h and dimension d a new p–divisible
group G_ D Hom.G;Gm/ of height h and dimension h� d . This equivalence takes
formal p–divisible groups to p–divisible groups whose Verschiebung endomorphism
is topologically nilpotent. Over an algebraically closed field, this is equivalent to G
containing no subobjects of height 1 and dimension 1. There is a compatible notion
of duality for displays [9, 1.13, 1.14], sending a display .P;Q;F;V �1/ to a new
display .P t ;Qt ;F t ;V �t / where P t D Hom.P;W .R// and Qt is the submodule of
maps sending Q into IR . The operators F t and V �t are determined by the formula
v..V �tf /.V �1x//D f .x/ for f 2Qt , x 2Q.

Composing this duality equivalence with Theorem 2.2, we find the following.

Corollary 3.1 If R is a formal Zp –algebra, there is a contravariant equivalence of
categories between nilpotent displays of height h and dimension .h� 1/ over R and
p–divisible groups of dimension 1 and formal height at least 2 on Spec.R/.

Under this correspondence, the Lie algebra of the p–divisible group associated to a
display .P;Q;F;V �1/ is the locally free R–module HomR.Q=IRP;R/, and the
module of invariant 1–forms is isomorphic to Q=IRP .

Remark 3.2 In particular, the p–divisible group associated to a display in matrix
form B , with basis e1 � � � eh , has a canonical nowhere-vanishing invariant 1–form u

which is the image of eh in Q=IRP , and a change-of-coordinates as in Equation (1)
acts on u by multiplication by w0.d/.

We can use this data to given a presentation for the moduli of p–divisible groups
of height � 2. We recall that the Witt ring functor W is represented by the ring
W D ZŒa0; a1; a2; : : :�.

Proposition 3.3 Displays in matrix form of height h and dimension .h � 1/ are
represented by the ring

AD ZŒ.ˇn/ij ; det.ˇ/�1�ŠW ˝h2

Œdet.ˇ/�1�

Geometry & Topology, Volume 14 (2010)
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The indices range over n 2N , 1� i; j � h. The element det.ˇ/ is the determinant of
the matrix ..ˇ0/ij /.

Isomorphisms between displays are represented by the ring

� DAŒ.�n/ij ; det.�/�1�ŠA˝W ˝h2

Œdet.�/�1�:

The indices range over n 2N , 1� i; j � h, with the convention that .�0/ij is zero if
1� i � .h� 1/, j D h. The element det.�/ is the determinant of the matrix ..�0/ij /.

The ideal J D .p; .ˇ0/hh/ of A is invariant. A display represented by A!R for R a
formal Zp –algebra is nilpotent if and only if it factors through the completion of A at
this ideal.

Proof The ring W ˝h2

represents the functor

R 7! f h� h matrices with entries in W .R/g;

and so the ring A represents h� h invertible matrices .ˇij /D B with entries in the
Witt ring. Similarly, the ring � represents pairs of a display in matrix form and an
isomorphism to a second display in matrix form, according to the change-of-coordinates
formula (1).

The change-of-coordinates formula, mod IR , takes ˇhh to a unit times itself, and
therefore the ideal .p; .ˇ0/hh/ is invariant.

Suppose R is a Z=pk –algebra and A!R represents a matrix B , which we view as
the matrix form of the display. The display is nilpotent as in Section 2 if and only if

.ˇ0/
pn

hh
� � � .ˇ0/

p

hh
� .ˇ0/hh

is zero in R=.p/ for some n. This is equivalent to .ˇ0/hh being nilpotent in R, and
so the display is then nilpotent over R if and only if the map A!R factors through
a continuous map A^ ! R. The corresponding statement for formal Zp –algebras
follows.

Corollary 3.4 The pair .A; �/ forms a Hopf algebroid, and the completion .A^; �^/
at the invariant ideal J has an associated stack (in the flat topology) isomorphic to the
moduli of p–divisible groups of height h, dimension 1, and formal height at least 2.

Proof The existence of a Hopf algebroid structure on .A; �/ is a formal consequence
of the fact that this pair represents a functor from rings to groupoids.

Let Mp.h/ be the moduli stack of p–divisible groups of height h and dimension 1.
The universal nilpotent display on A^ gives rise to a natural transformation of func-
tors Spf.A^/ ! Mp.h/. Corollary 3.1 implies that the 2–categorical pullback
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Spf.A^/�Mp.h/Spf.A^/, representing a pair of nilpotent displays in matrix form with
an isomorphism between the associated p–divisible groups, is Spf.�^/.

By Corollary 3.1, the resulting natural transformation of groupoid valued functors from
the pair .Spf.A^/;Spf.�^// to Mp.h/ is fully faithful, and hence fully faithful on
the categories of descent data for any cover. Therefore, it remains to show that the
map from the associated stack is essentially surjective. Given a p–divisible group G
on a formal Zp –scheme X of height h, dimension 1, and formal height at least 2,
there exists a Zariski open cover of X by affine coordinate charts Spf.Ri/!X small
enough that each pullback of G to Spf.Ri/ can be represented by a display in matrix
form. Equivalently, there are factorizations Spf.Ri/! Spf.A^/!Mp.h/. It follows
that .A^; �^/ gives a presentation of the moduli as desired.

Remark 3.5 The Hopf algebroid described is unlikely to be the best possible. Zink’s
equivalence of categories shows that locally in the Zariski topology, a general p–
divisible group can be described in matrix form; there are more canonical matrix forms
locally in the flat topology.

For example, if hD 2 then a general matrix form�
˛ ˇ

 ı

�
(with ı topologically nilpotent) can be canonically reduced to the form�

0 1

 0 ı0

�
;

and by adjoining elements to R to obtain a solution of f 2t D t 0 we obtain a faithfully
flat extension in which the matrix can canonically be reduced to the form�

0 1

1 ı00

�
:

However, it is not immediately clear whether the resulting Hopf algebroid would have
any flatness properties. The existence of canonical forms at higher heights, as well as
more explicit determination of the associated Hopf algebroids, merits further study.

4 Deformation theory

In this section we briefly study the deformations of displays in matrix form. We note
that [9] has already fully interpreted the deformation theory of displays in terms of the
deformations of the Hodge structure Q=IRP . The approach there is specifically in
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terms of fixing deformations of F and V �1 and classifying possible deformations of
the “Hodge structure” Q. For calculational reasons we will instead fix the deformation
of Q and study possible deformations of the operators.

Let GLh�Ah2

Zp
be the group scheme of h�h invertible matrices. There is a projection

map Spec.A/!GLh classifying the map that sends a display represented by a matrix
B 2 GLh.W .R// to the matrix w0.B/. Let pW GLh! Ph�1 be the projection map
sending a matrix .ˇij / to the point with homogeneous coordinates Œˇ1h Wˇ2h W � � � Wˇhh�.

Let .A; �/ be the Hopf algebroid representing displays in matrix form, as in Proposition
3.3.

Theorem 4.1 Let k be a field of characteristic p , and Spec.k/ ! Spec.A/ �
Spec.W /h

2

be a point that defines a nilpotent display over k with matrix form B .
The composite map Spec.A/! GLh!Ph�1 maps the set of isomorphism classes of
lifts of this display to kŒ��=.�2/ bijectively to the set of extensions of the composite
Spec.k/! Ph�1 to Spec.kŒ��=.�2//, ie the tangent space of Ph�1

k
at Spec.k/.

Proof Suppose we are given the matrix form B of a display over k , and write in
block form

B D

�
˛ ˇ

 vı

�
2 GLh.W .k//:

(Nilpotence of the display forces the final entry to reduce to zero in k .) Given any lift
of the display on k to a display on kŒ��=�2 , Nakayama’s lemma implies that any lift
of the basis of the display gives a basis of the lift, whose matrix form is a lift of the
matrix form over k .

Lifts of the matrix form B to kŒ��=�2 are precisely of the form B C s where s is
a matrix in W .�k/, as any such element is automatically invertible. Applying the
change-of-basis formula (1), we find that the lifts isomorphic to this one are of the form�

I C

�
fa b

p �fc fd

��
.BC s/

�
I C

�
a vb

c d

���1

for a, b , c , d matrices in W .�k/. The ideal W .�k/ is square-zero and annihilated
by f , so this reduces to

BC

�
sC

�
0 b

0 0

�
B �B

�
a vb

c d

��
:
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The space of all isomorphism classes of lifts is therefore the quotient of Mh.W .�k//

by the subspace generated by elements of the form

B

�
�

�
a 0

c d

�
�

�
0 vb

0 0

�
CB�1

�
b 0

0 0

��
:

As B is invertible, this subspace consists of the h� h matrices in W .�k/ whose final
column is congruent to a multiple of the final column of B (mod IR ).

However, this coincides with the kernel of the (surjective) map on relative tangent
spaces Spec.A/! Ph�1 over Zp at Spec.k/.

Corollary 4.2 Suppose that we are given a display .P;Q;F;V �1/ of height h and
dimension .h� 1/ over a formal Zp –algebra R in matrix form .ˇij /. Then R gives a
universal deformation of the associated 1–dimensional p–divisible group at all points
if and only if the map Spec.R/! Ph�1

Zp
given by

Œw0.ˇ1h/ W w0.ˇ2h/ W � � � W w0.ˇhh/�

is formally étale.

Proof The ring R gives a universal deformation of the associated p–divisible group
at a residue field Spec.k/D x if and only if the completed local ring R^x is mapped
isomorphically to the universal deformation ring of the p–divisible group. If k is
perfect, this is isomorphic to a power series ring W .k/Ju1; : : : ;uh�1K. It suffices
to check that the map Spf.R/!Mp.h/ is formally étale at geometric points x . In
particular, R gives a universal deformation at a geometric point x if and only if

� Spf.R/ is formally smooth over Zp at x , and

� the relative tangent space of Spf.R/ over Zp at x , which is the set of lifts
Spec.kŒ��=�2/! Spf.R/, maps isomorphically to the set of lifts of the display
to kŒ��=�2 .

However, because Ph�1
Zp

is formally smooth over Spf.Zp/, the map Spf.R/! Ph�1
Zp

is formally étale at Spec.k/ if and only if

� Spf.R/ is formally smooth over Zp at x , and

� the relative tangent space of Spf.R/ over Zp at x maps isomorphically to the
tangent space of Ph�1

k
at x .

By the previous theorem, these conditions coincide.
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5 Associated spectra

We recall a statement of Lurie’s generalization of the Goerss–Hopkins–Miller theorem
(as yet unpublished) [3]. We write Mp.h/ for the moduli of p–divisible groups of
height h and dimension 1, MFG for the moduli of 1–dimensional formal groups, and
Mp.h/!MFG for the canonical map representing completion at the identity.

Theorem 5.1 (Lurie) Let X be an algebraic stack, formal over Zp , equipped with a
morphism

X !Mp.h/

classifying a p–divisible group G . Suppose that at any point x 2 X , the complete
local ring of X at x is mapped isomorphically to the universal deformation ring of the
p–divisible group at x . Then the composite realization problem

X !Mp.h/!MFG

has a canonical solution; that is, there is a sheaf of E1 even weakly periodic E on
the étale site of X with E0 locally isomorphic to the structure sheaf and the associated
formal group isomorphic to the formal group Gfor . The space of all solutions is
connected and has a preferred basepoint.

We may then combine this result with Corollary 4.2 to produce E1–ring spectra
associated to schemes or stacks equipped with an appropriate cover by coordinate
charts carrying displays. Rather than stating in maximal generality, we have the
following immediate consequence.

Theorem 5.2 Suppose R is a formal Zp –algebra and B is the matrix form of a
nilpotent display over R, with associated p–divisible group G . If the associated map
Spf.R/! Ph�1

Zp
is formally étale, then there is an E1 even-periodic E DE.R;B/

with E0 ŠR, E2 ŠQ=IRP , and formal group isomorphic to the formal group Gfor .

Given matrix forms B , B0 of such displays over R and R0 respectively, gW R!R0

a ring map, and � a change-of-coordinates from g�B to B0 as in Equation (1), there
exists a map of E1 ring spectra E.R;B/!E.R0;B0/ inducing g on �0 and lifting
the associated map Gfor! .G0/for . This construction is functorial in B0 as an object
over B .

Proof The existence of E.R;B/ follows from Theorem 5.1 and Corollary 4.2. Given
any such map Spf.R0/! Spf.R/, the maps Spf.R0/! Ph�1 and Spf.R/! Ph�1

both being formally étale forces Spf.R0/ to be formally étale over Spf.R/. Lurie’s
theorem then implies that the map lifts.
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We recall from Remark 3.2 that in matrix form there is a nowhere vanishing 1–form u

on the cotangent space Q=IRP of the formal group Gfor , implying that the tensor
powers of the cotangent bundle are all free. This implies the strictly even-periodic
structure on E .

Associated to a display not in matrix form, we would instead obtain a weakly even-
periodic ring spectrum whose 2k –th homotopy group is the k –th tensor power of the
locally free module Q=IRP of invariant 1–forms.

Example 5.3 Let h�2 and RD .ZŒu1; : : : ;uh�1�/
^
.p;u1/

. Then we have the following
display over R:

(2)

266666664

0 0 0 0 1

1 0 0 � � � 0 Œuh�1�

0 1 0 0 Œuh�2�
:::

:::

0 0 0 0 Œu2�

0 0 0 � � � 1 Œu1�

377777775
Recall Œx� denotes the Teichmüller lift of the element x . The associated map Spf.R/!
Ph�1 is the map

Œ1 W uh�1 W � � � W u1�;

which is the completion of a coordinate chart of Ph�1 at the ideal .p;u1/ and is
therefore formally étale. Because this display is given in matrix form, there is a
canonical nonvanishing invariant 1–form u and the resulting spectrum has homotopy
groups

.ZŒu1; : : : ;uh�1�/
^
.p;u1/

Œu˙1�:

Here juj D 2. This spectrum carries an extension of a Lubin–Tate formal group to the
completion of a larger closed set in affine n–space An .

Example 5.4 Let S DW .Fph/Œu1; : : : ;uh�1�
^
.p;u1/

, with the same display as given
in the previous example. Let � be a primitive .ph � 1/’st root of unity in Fph with
Teichmüller lift Œ��. Then the group F�

ph D h�i acts on S with generator � acting by

� � .u1; : : : ;uh�1/D .�
1�pu1; �

1�p2

u2; : : : ; �
1�ph�1

uh�1/;
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and the action of � lifts to an action on the display via the change-of-coordinates matrix26666664
Œ�ph�1

� 0 0 0

0 Œ�ph�2

� � � � 0 0
:::

:::

0 0 � � � Œ�p � 0

0 0 0 Œ��

37777775 :

This acts on the invariant 1–form u by multiplication by � . This gives a well-defined
action on the p–divisible group associated to the display.

Similarly, there is a Galois automorphism � of S which acts by the Frobenius on
W .Fph/ and acts trivially on the generators ui . This automorphism preserves the
display, and satisfies the relations �h D id, �� D �p� . Together these give an action
of G D .F�

ph Ì GalF
ph=Fp

/ on Spf.S/ which lifts to an action on the associated p–
divisible group.

Theorem 5.2 implies that this lifts to an associated spectrum with an action of G .
(More generally, there is an associated sheaf of E1–ring spectra on the quotient stack
ŒSpf.S/==G�.) The canonical invariant 1–form u is acted on by � by left multiplication,
and acted on trivially by � . The homotopy fixed point object (which is the global
section object of the quotient stack) has homotopy groups�

W .Fph/Œu1; : : : ;uh�1�
^
.p;u1/

Œu˙1�
�G
Š ZŒv1; : : : ; vh�1; v

˙1
h �^.p;u1/

:

Here vi D upi�1ui has degree 2pi � 2. This has the homotopy type of a generalized
Johnson–Wilson spectrum after application of K.2/_ � � � _K.n/–localization.

6 The period map

In Section 4 we associated to each display in matrix form over R a map Spec.R/!
Ph�1 . In this section we will briefly relate this, in a specific choice of coordinates, to
the rigid analytic period map constructed by Gross and Hopkins [7]. The formulas of
this section appear as the special case OD Zp of [2, I.2.4].

Let k be a perfect field of characteristic p . Let RDW .k/Ju1; : : : ;uh�1K, equipped
with the ring homomorphism � W R!R which acts by the Frobenius on W .k/ and
sends ui to u

p
i ; this is a lift of the Frobenius map on R=p , and provides a splitting

R!W .R/ commuting with the Frobenius. We write J for the ideal .u1; : : : ;uh�1/.
This ring R carries the display of Equation (2). This display is a universal deformation
of a 1–dimensional formal group of height h over the residue field k , and so the
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associated p–divisible group on Spf.R/ is a universal deformation of the formal group
on Spec.k/. The map Spf.R/! Ph�1 of Section 4 is the map Œ1 W uh�1 W � � � W u1�.

To translate this into the (covariant) language of the Gross–Hopkins map, we first
convert the display into the dual, covariant, display, which is a free W .R/–module P t

with dual basis e1; : : : ; eh and Hodge structure Qt � P t generated by e1; : : : ; eh�1 ,
and IReh . (This Hodge structure is determined by the linear functional

P
aie

i 7! ah .)
A straightforward calculation finds that the matrix of F t with respect to this basis is

(3)

26666666664

0 p 0 0 0

0 0 p � � � 0 0

0 0 0 0 0
:::

:::

0 0 0 p 0

0 0 0 0 1

p pŒuh�1� pŒuh�2� � � � pŒu2� Œu1�

37777777775
:

As in [9], there is a Dieudonné crystal associated to this display. The data of such a
crystal produces: a module M DR˝W .R/ P t , a Hodge structure Qt=IRP t �M , a
� –semilinear Frobenius map F W M !M , and a � –antisemilinear map V W M !M

satisfying FV D VF D p . Associated to this data there is a unique connection
rW M !M ˝�R=W .k/ for which F and V are horizontal.

We recall the construction of the period map. Let K DW .k/˝Q. For a sufficiently
large ring R�S �KJu1; : : : ;uh�1K the horizontal sections of this crystal on Spec.S/
form a vector space V over K of rank h, containing a family of rank .h � 1/–
submodules determined by the Hodge structure. The Gross–Hopkins period map
Spec.S/! P .V / sends a point of this rigid-analytic extension of Lubin–Tate space to
the Hodge structure at that point.

Let ‰ be the matrix of F in this basis (the reduction mod IR of Equation (3)) and S‰ the
image given by sending ui to 0. There exists a deformation of the basis feig to a basis of
horizontal sections for this connection; ie, there is a matrix A2GLh.KJu1; : : : ;uh�1K/
whose columns are annihilated by r satisfying A� I mod J . The expression in this
basis for the linear functional cutting out the Hodge structure is given by the last row
of A.

As F is horizontal, it takes horizontal sections to horizontal sections, and hence applying
the Frobenius to the columns of A gives a linear combination of the combinations of A.
This implies that ‰A� D AB for some matrix B with coefficients in K . Reducing
mod J we find that B D S‰ . Thus, such a matrix must satisfy AD‰A�S‰�1 . (Taking
a limit of iterative substitutions recovers A itself.)
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As A � I mod J , A� � I mod J p . Therefore, we find A � ‰S‰�1 mod J p .
Applying this to Equation (3), we find

A�

2666664
1 0 0 0

0 1 � � � 0 0
:::

:::

0 0 1 0

uh�1 uh�2 � � � u1 1

3777775 mod J p:

As a result, the Gross–Hopkins map classifying the Hodge structure is congruent to
Œuh�1 W � � � W u1 W 1� mod J p . With an appropriate choice of coordinates we can then
regard the map defined in Section 4 as an approximation of the Gross–Hopkins map.
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Progr. Math. 262, Birkhäuser, Basel (2008) 1–325 MR2441312

[3] P G Goerss, Realizing families of Landweber exact homology theories, from: “New
topological contexts for Galois theory and algebraic geometry (BIRS 2008)”, (A Baker,
B Richter, editors), Geom. Topol. Monogr. 16, Geom. Topol. Publ., Coventry (2009)
49–78 MR2544386

[4] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: “Struc-
tured ring spectra”, (A Baker, B Richter, editors), London Math. Soc. Lecture Note Ser.
315, Cambridge Univ. Press (2004) 151–200 MR2125040

[5] M Hill, T Lawson, Automorphic forms and cohomology theories on Shimura curves of
small discriminant, to appear in Adv. Math.

[6] M J Hopkins, The mathematical work of Douglas C Ravenel, Homology, Homotopy
Appl. 10 (2008) 1–13 MR2475614

[7] M J Hopkins, B H Gross, The rigid analytic period mapping, Lubin–Tate space, and
stable homotopy theory, Bull. Amer. Math. Soc. .N.S./ 30 (1994) 76–86 MR1217353

[8] E Lau, Displays and formal p–divisible groups, Invent. Math. 171 (2008) 617–628
MR2372808

[9] T Zink, The display of a formal p–divisible group, from: “Cohomologies p–adiques
et applications arithmétiques. I”, Astérisque 278 (2002) 127–248 MR1922825

Geometry & Topology, Volume 14 (2010)

http://dx.doi.org/10.1090/S0065-9266-09-00573-0
http://www.ams.org/mathscinet-getitem?mr=2441312
http://dx.doi.org/10.2140/gtm.2009.16.49
http://www.ams.org/mathscinet-getitem?mr=2544386
http://dx.doi.org/10.1017/CBO9780511529955.009
http://www.ams.org/mathscinet-getitem?mr=2125040
http://www.intlpress.com/HHA/v10/n3/a1/pdf
http://www.ams.org/mathscinet-getitem?mr=2475614
http://dx.doi.org/10.1090/S0273-0979-1994-00438-0
http://dx.doi.org/10.1090/S0273-0979-1994-00438-0
http://www.ams.org/mathscinet-getitem?mr=1217353
http://dx.doi.org/10.1007/s00222-007-0090-x
http://www.ams.org/mathscinet-getitem?mr=2372808
http://www.ams.org/mathscinet-getitem?mr=1922825


Structured ring spectra and displays 1127

Department of Mathematics, University of Minnesota
206 Church Street SE, Minneapolis, MN 55455

tlawson@math.umn.edu

Proposed: Paul Goerss Received: 21 January 2010
Seconded: Haynes Miller, Bill Dwyer Revised: 17 February 2010

Geometry & Topology, Volume 14 (2010)

mailto:tlawson@math.umn.edu

	1. Introduction
	2. Displays
	3. Moduli of 1-dimensional p-divisible groups
	4. Deformation theory
	5. Associated spectra
	6. The period map
	References

