Homology operations in the topological cyclic homology of a point

HÅkon Schad Bergsaker
John Rognes

Abstract

We consider the commutative \mathbb{S}-algebra given by the topological cyclic homology of a point. The induced Dyer-Lashof operations in mod p homology are shown to be nontrivial for $p=2$, and an explicit formula is given. As a part of the calculation, we are led to compare the fixed point spectrum \mathbb{S}^{G} of the sphere spectrum and the algebraic K-theory spectrum of finite G-sets, as structured ring spectra.

55S12, 55P43; 19D55, 55P92, 19D10

Introduction

Let $A(\star)=K(\mathbb{S})$ denote Waldhausen's algebraic K-theory of a point [23]. It is a commutative \mathbb{S}-algebra, in the sense of Elmendorf, Kriz, Mandell and May [7], and the algebraic K-theory $A(X)$ of any space X, or more generally the algebraic K-theory $K(R)$ of any \mathbb{S}-algebra R, is a module spectrum over it. Hence it makes sense to carefully study the commutative \mathbb{S}-algebra structure of $A(\star)$, or equivalently its structure as an E_{∞} ring spectrum. To the eyes of mod p homology, the primary incarnation of this structure is the Pontryagin algebra structure on $H_{*}(A(\star))$, together with the multiplicative Dyer-Lashof operations $Q^{i}: H_{*}(A(\star)) \rightarrow H_{*+i}(A(\star))$, as defined by Bruner, May, McClure and Steinberger [2]. Here and elsewhere we write $H_{*}(E)$ for the $\bmod p$ homology $H_{*}\left(E ; \mathbb{F}_{p}\right)$ of a spectrum E.

The additive structure of $H_{*}(A(\star))$ is known for $p=2$ and for p an odd regular prime, by the second author's papers [18; 19], but at present the Pontryagin product and Dyer-Lashof operations are not known for this E_{∞} ring spectrum. There is, however, a very good approximation to Waldhausen's algebraic K-theory, given by the cyclotomic trace map to the topological cyclic homology of Bökstedt, Hsiang and Madsen [1]. This is a natural map trc: $K(R) \rightarrow \mathrm{TC}(R ; p)$, which we write as trc: $A(\star) \rightarrow \mathrm{TC}(\star ; p)$ in the special case when $R=\mathbb{S}$, where $\mathrm{TC}(\star ; p)=\mathrm{TC}(\mathbb{S} ; p)$ is the topological cyclic
homology of a point. By a theorem of Dundas [5], there is a homotopy cartesian square

(after p-adic completion) of commutative \mathbb{S}-algebras (see Geisser and Hesselholt [9, Section 6]), and this square is the basis for our additive understanding of $H_{*}(A(\star))$.

We are therefore led to study the commutative \mathbb{S}-algebra structure of $\mathrm{TC}(\star ; p)$, including the Pontryagin algebra structure and the Dyer-Lashof operations on its $\bmod p$ homology. Like in the case of algebraic K-theory, the topological cyclic homology $\mathrm{TC}(X ; p)$ of any space X, and more generally the topological cyclic homology $\operatorname{TC}(R ; p)$ of any \mathbb{S}-algebra R, is a module spectrum over $\mathrm{TC}(\star ; p)$, and this provides a second motivation for the study of $\mathrm{TC}(\star ; p)$. In the present paper, we determine the Dyer-Lashof operations in $H_{*}(\mathrm{TC}(\star ; p))$ in the case when $p=2$, as explained in Theorem 0.2 and Corollary 0.3 below.

A third motivation stems from ideas of Jack Morava [17], to the effect that there may be a spectral enrichment of the algebro-geometric category of mixed Tate motives, given by A-theoretic (see Williams [24]) or TC-theoretic (see Dundas and Østvær [6]) correspondences, followed by stabilization. The trace map $A(\star) \rightarrow \mathrm{TC}(\star ; p) \rightarrow \mathrm{THH}(\star)=\mathbb{S}$ defines a fiber functor to the category of \mathbb{S}-modules, with Tannakian automorphism group realized through its Hopf algebra of functions, which will be of the form $\mathbb{S} \wedge_{A(\star)} \mathbb{S}$ or $\mathbb{S} \wedge_{\mathrm{TC}(\star ; p)} \mathbb{S}$. Rationally, this is well compatible with Deligne's results on the Tannakian group of mixed Tate motives over the integers [4]. A calculational analysis of the commutative \mathbb{S}-algebras $\mathbb{S} \wedge_{A(\star)} \mathbb{S}$ or $\mathbb{S} \wedge_{\mathrm{TC}(\star ; p)} \mathbb{S}$ clearly depends heavily on a proper understanding of the commutative \mathbb{S}-algebra structures of $A(\star)$ and $\mathrm{TC}(\star ; p)$.

Let \mathbb{T} be the circle group and let $C_{p^{n}} \subset \mathbb{T}$ be the (cyclic) subgroup of order p^{n}. The spectrum $\mathrm{TC}(\star ; p)$ is defined as the homotopy inverse limit of a diagram
of E_{∞} ring spectra, where $\mathbb{S}^{C_{p^{n}}}$ denotes the $C_{p^{n}}$-fixed points of the \mathbb{T}-equivariant sphere spectrum, the maps labeled R are restriction maps, and the maps labeled F are Frobenius maps. See Bökstedt, Hsiang and Madsen [1] or Hesselholt and Madsen [10] for the construction of these maps. Similarly, let $\mathrm{TC}^{(1)}(\star ; p)$ denote the homotopy
limit of the subdiagram

$$
\begin{equation*}
\mathbb{S}^{C_{p}} \underset{F}{\stackrel{R}{\rightrightarrows}} \mathbb{S}, \tag{0-2}
\end{equation*}
$$

that is, the homotopy equalizer of R and F. The canonical maps

$$
\begin{equation*}
\mathrm{TC}(\star ; p) \xrightarrow{f_{1}} \mathrm{TC}^{(1)}(\star ; p) \xrightarrow{g_{1}} \mathbb{S}^{C_{p}} \tag{0-3}
\end{equation*}
$$

are then maps of E_{∞} ring spectra.
The unit $\eta: \mathbb{S} \rightarrow \mathrm{TC}(\star ; p)$ and the restriction $R: \mathbb{S}^{C_{p}} \rightarrow \mathbb{S}$ let us split off a copy of \mathbb{S} from each term in ($0-3$). Let $\mathbb{C} P_{-1}^{\infty}$ be the Thom spectrum of the negative tautological complex line bundle $-\gamma_{\mathbb{C}}^{1}$ over $\mathbb{C} P^{\infty}$. Its suspension $\Sigma \mathbb{C} P_{-1}^{\infty}$ is equivalent to the homotopy fiber of the dimension-shifting \mathbb{T}-transfer map $t_{\mathbb{T}}: \Sigma^{\infty} \Sigma\left(\mathbb{C} P_{+}^{\infty}\right) \rightarrow \mathbb{S}$; see Knapp [13, 2.9] or Lemma 1.1 below. We define the spectrum L_{-1}^{∞} to be the homotopy fiber of the C_{p}-transfer $t_{p}: \Sigma^{\infty}\left(B C_{p}\right)_{+} \rightarrow \mathbb{S}$. For $p=2$, there is an equivalence $L_{-1}^{\infty} \simeq \mathbb{R} P_{-1}^{\infty}$, where $\mathbb{R} P_{-1}^{\infty}$ is the Thom spectrum of the negative tautological real line bundle $-\gamma_{\mathbb{R}}^{1}$ over $\mathbb{R} P^{\infty}$. The $\bmod p$ homology groups of these spectra are well known:

$$
\begin{aligned}
H_{*}\left(\Sigma \mathbb{C} P_{-1}^{\infty}\right) & \cong \mathbb{F}_{p}\left\{\Sigma \beta_{k} \mid k \geq-1\right\} \\
H_{*}\left(L_{-1}^{\infty}\right) & \cong \mathbb{F}_{p}\left\{\alpha_{k} \mid k \geq-1\right\} \\
H_{*}\left(\Sigma^{\infty}\left(B C_{p}\right)_{+}\right) & \cong \mathbb{F}_{p}\left\{\alpha_{k} \mid k \geq 0\right\}
\end{aligned}
$$

Here $\Sigma \beta_{k}$ has degree $2 k+1$ and α_{k} has degree k.
Lemma 0.1 After p-completion, diagram (0-3) is homotopy equivalent to a diagram

$$
\mathbb{S} \vee \Sigma \mathbb{C} P_{-1}^{\infty} \xrightarrow{1 \vee f} \mathbb{S} \vee L_{-1}^{\infty} \xrightarrow{1 \vee g} \mathbb{S} \vee \Sigma^{\infty}\left(B C_{p}\right)_{+} .
$$

In particular, the Pontryagin product on $H_{*}(\mathrm{TC}(\star ; p))$ is trivial.
Applying homology gives a sequence

$$
H_{*}(\mathbb{S}) \oplus H_{*}\left(\Sigma \mathbb{C} P_{-1}^{\infty}\right) \xrightarrow{1 \oplus f_{*}} H_{*}(\mathbb{S}) \oplus H_{*}\left(L_{-1}^{\infty}\right) \xrightarrow{1 \oplus g_{*}} H_{*}(\mathbb{S}) \oplus H_{*}\left(\Sigma^{\infty}\left(B C_{p}\right)_{+}\right) .
$$

Here f_{*} sends $\Sigma \beta_{k}$ to $\alpha_{2 k+1}$ for $k \geq-1$, and g_{*} is the identity on α_{k} for $k \geq 0$, while α_{-1} maps to zero.

We now state our main result, which concerns the Dyer-Lashof operations in the mod p spectrum homology $H_{*}(\operatorname{TC}(\star ; p))$ for $p=2$. The calculations will be done in the auxiliary E_{∞} ring spectra $\mathbb{S}^{C_{2}}$ and $\mathrm{TC}^{(1)}(\star ; 2)$.

Theorem 0.2 The Dyer-Lashof operations Q^{i} in $H_{*}\left(\mathrm{TC}^{(1)}(\star ; 2)\right)$ and $H_{*}\left(\mathbb{S}^{C_{2}}\right)$ are given by the formula

$$
Q^{i}\left(\alpha_{j}\right)=\binom{2^{N}+i-1}{2^{N}+j} \alpha_{i+j},
$$

where $j \geq-1$ and i is any integer, and N is sufficiently large.
Corollary 0.3 The Dyer-Lashof operations $Q^{2 i}$ in $H_{*}(\mathrm{TC}(\star ; 2))$ are given by the formula

$$
Q^{2 i}\left(\Sigma \beta_{j}\right)=\binom{2^{N}+i-1}{2^{N}+j} \Sigma \beta_{i+j}
$$

where $j \geq-1$ and i is any integer, and N is sufficiently large. The operations $Q^{2 i+1}$ are all zero for degree reasons.

Note that the binomial coefficients used in the theorem and corollary can be evaluated to

$$
\binom{2^{N}+i-1}{2^{N}+j} \equiv \begin{cases}\binom{i-1}{j} & \text { for } i>j \geq 0 \\ 1 & \text { for }(i, j)=(0,-1) \\ 0 & \text { otherwise }\end{cases}
$$

modulo 2, for all sufficiently large N. In particular $Q^{0}\left(\alpha_{-1}\right)=\alpha_{-1}$ and $Q^{0}\left(\Sigma \beta_{-1}\right)=$ $\Sigma \beta_{-1}$.

We prove Lemma 0.1 in Section 1 and Theorem 0.2 in Section 3, after a homological comparison of E_{∞} ring structures in Section 2. Corollary 0.3 follows immediately from the lemma and the theorem.

1 Topological cyclic homology of a point

In this preliminary section we review the calculation of $\operatorname{TC}(\star ; p)$ from Bökstedt, Hsiang and Madsen [1, 5.17], in order to describe the map f_{1} to $\mathrm{TC}^{(1)}(\star ; p)$.

For each $n \geq 1$ the Segal-tom Dieck splitting tells us that the norm-restriction homotopy cofiber sequence

$$
\Sigma^{\infty}\left(B C_{p^{n}}\right)_{+} \xrightarrow{N} \mathbb{S}_{p^{n}} \xrightarrow{R} \mathbb{S}^{C_{p^{n-1}}}
$$

is canonically split. The homotopy limit $\operatorname{TR}(\star ; p)=\operatorname{holim}_{n, R} \mathbb{S}^{C_{p^{n}}}$ of the R-maps in (0-1) thus factors as $\operatorname{TR}(\star ; p) \simeq \prod_{n \geq 0} \Sigma^{\infty}\left(B C_{p^{n}}\right)_{+}$. Let

$$
\mathrm{pr}_{n}: \operatorname{TR}(\star ; p) \rightarrow \Sigma^{\infty}\left(B C_{p^{n}}\right)_{+}
$$

denote the n-th projection, and let $\widetilde{\mathrm{TR}}(\star ; p) \simeq \prod_{n \geq 1} \Sigma^{\infty}\left(B C_{p^{n}}\right)+$ be the homotopy fiber of pr_{0}. There is a vertical map of horizontal homotopy fiber sequences

and the augmentation $\mathrm{TC}(\star ; p) \rightarrow \mathbb{S}$ factors as $R \circ p_{1} \circ \pi=\mathrm{pr}_{0} \circ \pi$. Replacing the left hand square by the homotopy fibers of the augmentations to \mathbb{S}, we get a second vertical map of horizontal homotopy fiber sequences

In the upper row we have used that $F-R$ restricted along the inclusion $I: \widetilde{\mathrm{TR}}(\star ; p) \rightarrow$ $\operatorname{TR}(\star ; p)$ is homotopic to $T-I$, where T is the product of the C_{p}-transfer maps $\Sigma^{\infty}\left(B C_{p^{n}}\right)_{+} \rightarrow \Sigma^{\infty}\left(B C_{p^{n-1}}\right)_{+}$for all $n \geq 1$. See Bökstedt, Hsiang and Madsen [1, (5.18)]. In the lower row we have used that $F-R$ restricted along $N: \Sigma^{\infty}\left(B C_{p}\right)_{+} \rightarrow$ $\mathbb{S}^{C_{p}}$ is homotopic to the C_{p}-transfer map t_{p}.

There is a third vertical map of horizontal homotopy fiber sequences

Replacing its left hand square by the homotopy fibers of the augmentations to \mathbb{S}, we also recover diagram (1-2).

Lemma 1.1 There are equivalences

$$
\widetilde{\mathrm{TC}}(\star ; p) \simeq \operatorname{hofib}\left(t_{\mathbb{T}}: \Sigma^{\infty} \Sigma\left(\mathbb{C} P_{+}^{\infty}\right) \rightarrow \mathbb{S}\right) \simeq \Sigma \mathbb{C} P_{-1}^{\infty}
$$

(after p-completion) and

$$
\widetilde{\mathrm{TC}}^{(1)}(\star ; p) \simeq \operatorname{hofib}\left(t_{p}: \Sigma^{\infty}\left(B C_{p}\right)_{+} \rightarrow \mathbb{S}\right)=L_{-1}^{\infty} .
$$

When $p=2, L_{-1}^{\infty} \simeq \mathbb{R} P_{-1}^{\infty}$.

Proof The dimension-shifting \mathbb{T}-transfer maps for the bundles $B C_{p^{n}} \rightarrow B \mathbb{T}$ induce an equivalence $\Sigma^{\infty} \Sigma\left(\mathbb{C} P_{+}^{\infty}\right) \simeq \operatorname{holim}_{n} \Sigma^{\infty}\left(B C_{p^{n}}\right)_{+}$after p-completion [1, 5.15]. The augmentation holim ${ }_{n} \Sigma^{\infty}\left(B C_{p^{n}}\right)_{+} \rightarrow \mathbb{S}$ then gets identified with $t_{\mathbb{T}}$, which implies the first claim.
There is a \mathbb{T}-equivariant homotopy cofiber sequence $S^{0} \xrightarrow{z} S^{\mathbb{C}} \xrightarrow{t} \mathbb{T}_{+} \wedge S^{1}$, where z is the zero-inclusion. The right hand map t is the Pontryagin-Thom collapse associated to the standard embedding $\mathbb{T} \subset \mathbb{C}$, as in Lewis, May and Steinberger [14, II.5.1]. The dimension-shifting \mathbb{T}-transfer $t_{\mathbb{T}}: \Sigma^{\infty} \Sigma\left(\mathbb{C} P_{+}^{\infty}\right) \rightarrow \mathbb{S}$ for $E \mathbb{T} \rightarrow B \mathbb{T}$ is constructed as the balanced smash product

$$
1 \wedge_{\mathbb{T}} \Sigma^{1-\mathbb{C}}(t): E \mathbb{T}_{+} \wedge_{\mathbb{T}} \Sigma^{1-\mathbb{C}}\left(S^{\mathbb{C}}\right) \rightarrow E \mathbb{T}_{+} \wedge_{\mathbb{T}} \Sigma^{1-\mathbb{C}}\left(\mathbb{T}_{+} \wedge S^{1}\right)
$$

(see Lewis, May and Steinberger [14, II.7.5]). Hence its homotopy fiber is $E \mathbb{T}_{+} \wedge_{\mathbb{T}}$ $\Sigma^{1-\mathbb{C}}\left(S^{0}\right) \cong \Sigma \mathbb{C} P_{-1}^{\infty}$.

The proof that $\mathbb{R} P_{-1}^{\infty}$ is the homotopy fiber of t_{p} for $p=2$ is essentially the same.
Proof of Lemma 0.1 Under the identifications of Lemma 1.1, the maps $f: \Sigma \mathbb{C} P_{-1}^{\infty} \rightarrow$ L_{-1}^{∞} and $g: L_{-1}^{\infty} \rightarrow \Sigma^{\infty}\left(B C_{p}\right)_{+}$correspond to the maps f_{2} and g_{2} in diagram (1-2), respectively.

The C_{p}-transfer map t_{p} induces multiplication by p on π_{0}, and the zero map in $\bmod p$ homology, so $\pi_{-1}(f)$ is surjective, f_{*} maps $\Sigma \beta_{-1}$ to α_{-1}, and g_{*} maps α_{k} to α_{k} for all $k \geq 0$. It remains to see that $g_{*} f_{*}$ maps $\Sigma \beta_{k}$ to $\alpha_{2 k+1}$ for $k \geq 0$. This is clear from diagram (1-3), since $g_{3} f_{3}$ agrees in positive degrees with the \mathbb{T}-transfer map $\Sigma^{\infty} \Sigma\left(\mathbb{C} P_{+}^{\infty}\right) \rightarrow \Sigma^{\infty}\left(B C_{p}\right)_{+}$, which has this behavior on homology.

2 Algebraic K-theory of finite G-sets

In this section we will compare the algebraic K-theory spectrum of finite G-sets with the G-fixed points of the sphere spectrum, as structured ring spectra. Before we state the result we recall some of the definitions involved.

The K-theory construction we use is that of Elmendorf and Mandell [8]. When the input category is a bipermutative category \mathcal{C}, their machine produces a symmetric spectrum $K(\mathcal{C})$, in the sense of Hovey, Shipley and Smith [11], with an action of the simplicial Barratt-Eccles operad. We will use the same notation for the geometrically realized symmetric spectrum in topological spaces, which has an action

$$
\kappa_{j}: E \Sigma_{j} \ltimes_{\Sigma_{j}} K(\mathcal{C})^{\wedge j} \rightarrow K(\mathcal{C})
$$

of the operad $E \Sigma$ consisting of the contractible Σ_{j}-free spaces $E \Sigma_{j}$. As usual, $E \Sigma_{j}$ can be defined as the nerve $N \widetilde{\Sigma}_{j}$ of the translation category $\widetilde{\Sigma}_{j}$, for $j \geq 0$. The K-theory construction itself is somewhat involved, but all we need to know is that the zeroth space $K(\mathcal{C})_{0}$ is the nerve $N \mathcal{C}$ of \mathcal{C}, so the zeroth space of $E \Sigma_{j} \ltimes^{\Sigma_{j}} K(\mathcal{C})^{\wedge j}$ is the nerve of $\tilde{\Sigma}_{j} \ltimes_{\Sigma_{j}} \mathcal{C}^{j}$, and the action of $E \Sigma$ on $K(\mathcal{C})_{0}$ is given by the maps $\lambda_{j}: E \Sigma_{j} \ltimes^{\prime} N \mathcal{C}^{\wedge j} \rightarrow N \mathcal{C}$ that are induced by the functors that take an object $\left(\sigma ; a_{1}, \ldots, a_{j}\right)$ in $\tilde{\Sigma}_{j} \ltimes \Sigma_{j} \mathcal{C}^{j}$ to the object $a_{\sigma^{-1}(1)} \otimes \cdots \otimes a_{\sigma^{-1}(j)}$ in \mathcal{C} (see Elmendorf and Mandell [8, Section 8]). Here \otimes denotes the product in the bipermutative structure on \mathcal{C}. Hence there is a commutative diagram

$$
\begin{aligned}
& E \Sigma_{j} \ltimes_{\Sigma_{j}} K(\mathcal{C})^{\wedge j} \kappa_{j} \\
&\left.E \Sigma_{j} \ltimes_{j}\left(\Sigma^{\infty} N \mathcal{C}\right)^{\wedge j} \xrightarrow{\cong} \Sigma^{\infty}\left(E \Sigma_{j} \ltimes_{\Sigma_{j}} N \mathcal{C}^{\wedge j}\right) \xrightarrow{\Sigma^{\infty} \lambda_{j}} \Sigma^{\infty} N \mathcal{C}\right)
\end{aligned}
$$

for each $j \geq 0$.
Let G be a finite group, and let \mathcal{E}^{G} denote the category of finite G-sets and $G-$ equivariant bijections. This is a symmetric bimonoidal category under disjoint union and cartesian product, taking (X, Y) to $X \bigsqcup Y$ and $X \times Y$, respectively. We give $X \times Y$ the diagonal G-action. There is a functorially defined bipermutative category $\Phi \mathcal{E}^{G}$, and a natural equivalence $\mathcal{E}^{G} \rightarrow \Phi \mathcal{E}^{G}$ [16, VI.3.5]. It follows that there is a homotopy commutative diagram

$$
\begin{gather*}
\left.E \Sigma_{j} \ltimes_{\Sigma_{j}} K\left(\Phi \mathcal{E}^{G}\right)^{\wedge j} \xrightarrow{1 \ltimes \epsilon^{\wedge j}}\right|^{\wedge} \kappa_{j} \tag{2-1}\\
E \Sigma_{j} \ltimes_{\Sigma_{j}}\left(\Sigma^{\infty} N \mathcal{E}^{G}\right)^{\wedge j} \xrightarrow{\cong} \xrightarrow{〔} \Sigma^{\infty}\left(E \Sigma_{j} \ltimes_{\Sigma_{j}}\left(N \mathcal{E}^{G}\right)^{\wedge j}\right) \xrightarrow{\Sigma^{\infty} \lambda_{j}} \Sigma^{\infty} N \mathcal{E}^{G}
\end{gather*}
$$

for each $j \geq 0$, where

$$
\lambda_{j}: E \Sigma_{j} \ltimes_{\Sigma_{j}}\left(N \mathcal{E}^{G}\right)^{\wedge j} \rightarrow N \mathcal{E}^{G}
$$

is induced by the functor $\tilde{\Sigma}_{j} \ltimes_{\Sigma_{j}}\left(\mathcal{E}^{G}\right)^{j} \rightarrow \mathcal{E}^{G}$ that takes $\left(\sigma ; X_{1}, \ldots, X_{j}\right)$ to the cartesian product

$$
X_{\sigma^{-1}(1)} \times\left(X_{\sigma^{-1}(2)} \times \cdots \times\left(X_{\sigma^{-1}(j-1)} \times X_{\sigma^{-1}(j)}\right) \cdots\right) .
$$

Let \mathcal{U} be a complete G-universe, and let \mathcal{L} denote the linear isometries operad with spaces $\mathcal{L}(j)$ consisting of linear isometries $\mathcal{U}^{j} \rightarrow \mathcal{U}$, where \mathcal{U}^{j} denotes the direct sum of j copies of \mathcal{U}. There is an action of G on each $\mathcal{L}(j)$ given by conjugation, and this gives \mathcal{L} the structure of an $E_{\infty} G$-operad in the sense of Lewis, May and

Steinberger [14, VII.1.1]. The E_{∞} ring structure on the G-equivariant sphere spectrum $\mathbb{S}_{G}=\Sigma_{G}^{\infty} S^{0}$ is given by an action

$$
\zeta_{j}: \mathcal{L}(j) \ltimes \Sigma_{j} \mathbb{S}_{G}^{\wedge j} \rightarrow \mathbb{S}_{G}
$$

of this operad (where, for once, \ltimes denotes the twisted half-smash product in Lewis-May spectra). It is compatible with a corresponding action

$$
\omega_{j}: \mathcal{L}(j) \ltimes \Sigma_{j} Q_{G}\left(S^{0}\right)^{\wedge j} \rightarrow Q_{G}\left(S^{0}\right)
$$

on the underlying infinite loop space $Q_{G}\left(S^{0}\right)=\Omega^{\infty} \mathbb{S}_{G}=\operatorname{colim}_{V \subset \mathcal{U}} \Omega^{V} S^{V}$, in the sense that the following diagram commutes.

Here ω_{j} sends an element in $\mathcal{L}(j) \ltimes \Sigma_{j} Q_{G}\left(S^{0}\right)^{\wedge j}$ represented by $\left(f ; g_{1}, \ldots, g_{j}\right)$, where $f: \mathcal{U}^{j} \rightarrow \mathcal{U}$ and $g_{i}: S^{V_{i}} \rightarrow S^{V_{i}}$, to the element represented by the composite of the following maps.

$$
S^{f\left(V_{1} \oplus \cdots \oplus V_{j}\right)} \underset{\cong}{\underset{\cong}{f_{*}}} S^{V_{1} \oplus \cdots \oplus V_{j}} \xrightarrow{g_{1} \wedge \cdots \wedge g_{j}} S^{V_{1} \oplus \cdots \oplus V_{j}} \xrightarrow{f_{*}} S^{\cong}\left(V_{1} \oplus \cdots \oplus V_{j}\right)
$$

By taking G-fixed points we get the nonequivariant E_{∞} ring spectrum $\mathbb{S}^{G}=\left(\mathbb{S}_{G}\right)^{G}$ with an action

$$
\xi_{j}: \mathcal{L}^{G}(j) \ltimes \Sigma_{j}\left(\mathbb{S}^{G}\right)^{\wedge j} \rightarrow \mathbb{S}^{G}
$$

of the nonequivariant E_{∞} operad \mathcal{L}^{G} of G-equivariant isometries. The corresponding infinite loop space $\Omega^{\infty}\left(\mathbb{S}^{G}\right)$ is the space $Q_{G}\left(S^{0}\right)^{G}=\operatorname{colim}_{V \subset \mathcal{U}}\left(\Omega^{V} S^{V}\right)^{G}$, with the inherited \mathcal{L}^{G}-action

$$
\eta_{j}: \mathcal{L}^{G}(j) \ltimes \Sigma_{j}\left(Q_{G}\left(S^{0}\right)^{G}\right)^{\wedge j} \rightarrow Q_{G}\left(S^{0}\right)^{G}
$$

Next we recall the definition of the Dyer-Lashof operations Q^{i}. Let $C_{*}(-)$ denote the cellular chains functor, from either CW complexes or CW spectra to chain complexes. Let E be a spectrum with an action of an E_{∞} operad \mathcal{O}, and let W_{*} be the standard free C_{p}-resolution of \mathbb{F}_{p} with basis elements e_{i} in degree i. There is a chain map $W_{*} \rightarrow C_{*}(\mathcal{O}(p))$ lifting the identity on \mathbb{F}_{p}, unique up to homotopy, and we also denote the image of e_{i} under this map by e_{i}. Let $x \in H_{q}(E)$ be represented by a cycle
$z \in C_{q}(E)$. Now consider the image of the cycle $e_{i} \otimes z^{\otimes p}$ under the map

$$
C_{*}(\mathcal{O}(p)) \otimes_{\Sigma_{p}} C_{*}(E)^{\otimes p} \xrightarrow{\cong} C_{*}\left(\mathcal{O}(p) \ltimes_{\Sigma_{p}} E^{\wedge p}\right) \xrightarrow{\xi_{p *}} C_{*}(E),
$$

and denote its image in homology by $Q_{i}(x)$. Here ξ_{p} is the E_{∞} structure map. Then for $p=2$ define $Q^{i}(x)=0$ when $i<q$, and

$$
Q^{i}(x)=Q_{i-q}(x)
$$

when $i \geq q$. For $p>2$ define $Q^{i}(x)=0$ when $2 i<q$, and

$$
Q^{i}(x)=(-1)^{i} v(q) \cdot Q_{(2 i-q)(p-1)}(x)
$$

when $2 i \geq q$, where $\nu(q)=(-1)^{q(q-1)(p-1) / 4}\left(\left(\frac{1}{2}(p-1)\right)!\right)^{q}$. See Bruner, May, McClure and Steinberger [2, Chapter III] for more details.
The spectra \mathbb{S}^{G} and $K\left(\Phi \mathcal{E}^{G}\right)$ should be equivalent as E_{∞} ring spectra, but we will only need the following weaker result.

Lemma 2.1 There is an equivalence $\mathbb{S}^{G} \simeq K\left(\Phi \mathcal{E}^{G}\right)$ of spectra such that the induced isomorphism $H_{*}\left(\mathbb{S}^{G}\right) \cong H_{*}\left(K\left(\Phi \mathcal{E}^{G}\right)\right)$ commutes with the Dyer-Lashof operations.

Proof Our first goal is to construct a commutative diagram:

We start by describing the space $C_{\mathcal{U}}$. Let V be an indexing space in \mathcal{U}. For each finite G-set X, consider the space $E_{V}(X)$ of X-tuples of distance-reducing embeddings of V in V, closed under the action of G. More precisely, this is the space of G equivariant maps $山_{X} V \rightarrow V$ such that the restriction to each summand $g: V \rightarrow V$ is an embedding that satisfies $|g(v)-g(w)| \leq|v-w|$ for all $v, w \in V$. Let $K_{V}(X)$
be the space of paths $[0,1] \rightarrow E_{V}(X)$ such that the embeddings at the endpoint 0 are identities, and the embeddings at 1 have disjoint images. Now let

$$
K_{\mathcal{U}}(X)=\underset{V \subset \mathcal{U}}{\operatorname{colim}} K_{V}(X) .
$$

These are G-equivariant versions of the spaces in the Steiner operad [22]. The group Aut ${ }^{G}(X)$ acts freely on $K_{\mathcal{U}}(X)$ by permuting the embeddings, and the space $C_{\mathcal{U}}$ is to be the disjoint union

$$
C_{\mathcal{U}}=\coprod_{[X]} K_{\mathcal{U}}(X) / \operatorname{Aut}^{G}(X)
$$

where X ranges over all isomorphism classes of finite G-sets.
The action of the operad \mathcal{L}^{G} on $C_{\mathcal{U}}$ is defined as follows. Let $f: \mathcal{U}^{j} \rightarrow \mathcal{U}$ be a G-linear isometry, and let $\left[g_{i}\right], 1 \leq i \leq j$, be elements in $C_{\mathcal{U}}$, represented by paths of X_{i}-tuples of embeddings $g_{i} \in K_{\mathcal{U}}\left(X_{i}\right)$. Denote the component paths of embeddings that constitute g_{i} by $g_{i, x_{i}}$, where $x_{i} \in X_{i}$. The resulting element $v_{j}\left(f ;\left[g_{1}\right], \ldots,\left[g_{j}\right]\right)$ in $C_{\mathcal{U}}$ is represented by an element in $K_{\mathcal{U}}\left(X_{1} \times \cdots \times X_{j}\right)$, which on the summand indexed by $\left(x_{1}, \ldots, x_{j}\right)$ is given by $f \circ\left(g_{1, x_{1}} \times \cdots \times g_{j, x_{j}}\right) \circ f^{-1}$.
There is a map $C_{\mathcal{U}} \rightarrow Q_{G}\left(S^{0}\right)^{G}$, given by evaluating a Steiner path in $E_{V}(X)$ at 1 to get a G-equivariant embedding $e: \coprod_{X} V \rightarrow V$, and then applying a folded PontryaginThom construction to obtain a G-equivariant map $q: S^{V} \rightarrow S^{V}$, which is a point in $Q_{G}\left(S^{0}\right)^{G}$. Given the distance-reducing embedding e, let $S^{V} \rightarrow \bigvee_{X} S^{V}$ be the G-equivariant map that is given by e^{-1} on the image of e in $V \subset S^{V}$ and maps the remainder of S^{V} to the base point of $\bigvee_{X} S^{V} \supset \coprod_{X} V$. Let $\bigvee_{X} S^{V} \rightarrow S^{V}$ be the fold map that is the identity on each summand. The folded Pontryagin-Thom construction q is the composite of these two G-maps. If we permute the embeddings indexed by X we get the same element in $Q_{G}\left(S^{0}\right)^{G}$, so our map is well-defined. A comparison of definitions shows that this construction is compatible with the \mathcal{L}^{G}-actions on $C_{\mathcal{U}}$ and $Q_{G}\left(S^{0}\right)^{G}$, so the lower square in (2-3) commutes.

Let

$$
D_{\mathcal{U}}=\coprod_{[X]}\left(E \operatorname{Aut}^{G}(X) \times K_{\mathcal{U}}(X)\right) / \operatorname{Aut}^{G}(X),
$$

where $\operatorname{Aut}^{G}(X)$ acts diagonally on the product. The nerve $N \mathcal{E}^{G}$ splits as a sum of components

$$
\begin{equation*}
N \mathcal{E}^{G} \simeq \coprod_{[X]} B \operatorname{Aut}^{G}(X), \tag{2-4}
\end{equation*}
$$

where the disjoint union is over the isomorphism classes of G-sets X. Projection on the first factor in $D_{\mathcal{U}}$ followed by this homotopy equivalence gives the map
$D_{\mathcal{U}} \rightarrow N \mathcal{E}^{G}$ in (2-3), while the map $D_{\mathcal{U}} \rightarrow C_{\mathcal{U}}$ is the projection on the second factor. There is an induced action of the product operad $E \Sigma \times \mathcal{L}^{G}$ on $D_{\mathcal{U}}$, defined as follows. Let $(e, f) \in E \Sigma_{j} \times \mathcal{L}^{G}(j)$ and let $\left(e_{i}, f_{i}\right) \in E \operatorname{Aut}{ }^{G}(X) \times C_{\mathcal{U}}(X)$ represent elements in $D_{\mathcal{U}}$, for $1 \leq i \leq j$. The image under μ_{j} is the element represented by $\left(\lambda_{j}\left(e ; e_{1}, \ldots, e_{j}\right), v_{j}\left(f ; f_{1}, \ldots, f_{j}\right)\right)$. This makes the upper and middle squares in (2-3) commute.

Let

$$
N \mathcal{E}_{\text {tr }}^{G}=\left(\coprod_{(H)}\left(E \operatorname{Aut}^{G}(G / H) \times K_{\mathcal{U}}(G / H)\right) / \operatorname{Aut}^{G}(G / H)\right)_{+},
$$

where the coproduct is taken over the conjugacy classes of subgroups H of G. The map $N \mathcal{E}_{\text {tr }}^{G} \rightarrow D_{\mathcal{U}}$ in (2-3) is the inclusion of the components indexed by the isomorphism classes of transitive G-sets.

The maps ϕ and ψ are defined by commutativity of the right hand triangles in the diagram. We claim that the adjoints

$$
\begin{align*}
& \Sigma^{\infty} N \mathcal{E}_{\mathrm{tr}}^{G} \rightarrow K\left(\mathcal{E}^{G}\right) \simeq K\left(\Phi \mathcal{E}^{G}\right) \tag{2-5}\\
& \Sigma^{\infty} N \mathcal{E}_{\mathrm{tr}}^{G} \rightarrow \mathbb{S}^{G} \tag{2-6}
\end{align*}
$$

of the maps ϕ and ψ, respectively, are both equivalences. Here $K\left(\mathcal{E}^{G}\right)$ is the additive K-theory spectrum of \mathcal{E}^{G}, with zeroth space $K\left(\mathcal{E}^{G}\right)_{0}=N \mathcal{E}^{G}$, which only depends on the additive symmetric monoidal structure of \mathcal{E}^{G}. There is an equivalence

$$
\Sigma^{\infty} N \mathcal{E}_{\mathrm{tr}}^{G} \simeq \bigvee_{(H)} \Sigma^{\infty} B W_{G} H_{+},
$$

where $W_{G} H=N_{G} H / H \cong \operatorname{Aut}^{G}(G / H)$ is the Weyl group of H and the wedge sum is over the conjugacy classes of subgroups of G. By Waldhausen's additivity theorem [23, 1.3.2] applied to a suitable filtration of \mathcal{E}^{G} according to stabilizer types, there is a splitting

$$
K\left(\mathcal{E}^{G}\right) \simeq \bigvee_{(H)} K\left(\mathcal{E}\left(W_{G} H\right)\right),
$$

where $\mathcal{E}\left(W_{G} H\right)$ is the category of finite free $W_{G} H$-sets and equivariant bijections. The map (2-5) is equivalent under these identifications to the wedge sum of the maps

$$
\begin{equation*}
\Sigma^{\infty} B W_{G} H_{+} \rightarrow K\left(\mathcal{E}\left(W_{G} H\right)\right) \tag{2-7}
\end{equation*}
$$

that are left adjoint to the inclusions $B W_{G} H_{+} \rightarrow N \mathcal{E}\left(W_{G} H\right)=K\left(\mathcal{E}\left(W_{G} H\right)\right)_{0}$.
The Barratt-Priddy-Quillen-Segal theorem [20, 3.6] says that each of the maps (2-7) is an equivalence, hence (2-5) is an equivalence. The map (2-6) is an equivalence by
the Segal-tom Dieck splitting [14, V.11.2]. The composition of these two equivalences is the equivalence $\mathbb{S}^{G} \simeq K\left(\Phi \mathcal{E}^{G}\right)$ referred to in the statement of the lemma.
We apply the suspension spectrum functor Σ^{∞} to the diagram (2-3), combine it with diagram (2-1) and the G-fixed part of (2-2), take homology, and end up with the following commutative diagram.

We need the fact that ϵ_{1} and ϵ_{2} have the same kernel. In fact, all summands in $\widetilde{H}_{*}\left(D_{\mathcal{U}}\right)$ indexed by G-sets with more than one orbit map to zero under both ϵ_{1} and ϵ_{2}. This follows from the fact that Pontryagin products and additive Dyer-Lashof operations vanish after stabilization. More precisely, a decomposition of a G-set $X=$ $\coprod_{i=1}^{k} n_{i}\left(G / H_{i}\right)$, where the H_{i} lie in distinct conjugacy classes, induces a factorization

$$
B \operatorname{Aut}^{G}(X) \cong \prod_{i=1}^{k} B\left(\Sigma_{n_{i}} \prec W_{G} H_{i}\right)
$$

The homology group $H_{*}\left(B\left(\Sigma_{n_{i}} \prec W_{G} H_{i}\right)\right) \subset H_{*}\left(N \mathcal{E}^{G}\right)$ is generated by $H_{*}\left(B W_{G} H_{i}\right)$ under iterated Pontryagin products and Dyer-Lashof operations (see Cohen, Lada and May [3, I.4.1]), which all map to zero under ϵ_{1} and ϵ_{2} unless $k=1$ and $n_{1}=1$.
Let $x \in H_{*}\left(K\left(\Phi \mathcal{E}^{G}\right)\right)$, and let $y \in H_{*}\left(\mathbb{S}^{G}\right)$ be the element corresponding to x under $\psi_{*} \circ \phi_{*}^{-1}$, via an element $z \in H_{*}\left(N \mathcal{E}_{\mathrm{tr}}^{G}\right)$. We need to show that the image $Q_{i}(x)$ of $e_{i} \otimes x^{\otimes p}$ under the top map corresponds, via the isomorphism, to the image $Q_{i}(y)$ of $e_{i} \otimes y^{\otimes p}$ under the bottom map. The element $e_{i} \otimes z^{\otimes p} \in H_{*}\left(\Sigma_{p} ; H_{*}\left(N \mathcal{E}_{\text {tr }}^{G}\right)^{\otimes p}\right)$ maps to an element $Q_{i}(z) \in \widetilde{H}_{*}\left(D_{\mathcal{U}}\right)$, which further maps to $Q_{i}(x)$ and $Q_{i}(y)$ under ϵ_{1} and ϵ_{2}, respectively. Let $w \in H_{*}\left(N \mathcal{E}_{\mathrm{tr}}^{G}\right)$ map to $Q_{i}(x)$ under ϕ_{*}. Since the maps ϵ_{1} and ϵ_{2} have the same kernel, the elements $Q_{i}(z)$ and w have the same image in $H_{*}\left(\mathbb{S}^{G}\right)$, which implies the result.

Remark 2.2 The additive equivalence $\mathbb{S}^{G} \simeq K\left(\mathcal{E}^{G}\right) \simeq K\left(\Phi \mathcal{E}^{G}\right)$ of spectra can be realized as the G-fixed part of a G-equivalence $\mathbb{S}_{G} \simeq K_{G}(\mathcal{E})$ of G-spectra, for example using Shimakawa's construction [21] of G-equivariant K-theory spectra. Presumably this is a G-equivalence of E_{∞} ring G-spectra.

3 Proof of the main theorem

Recall the E_{∞} structure maps $\lambda_{j}: E \Sigma_{j} \ltimes \Sigma_{j}\left(N \mathcal{E}^{G}\right)^{\wedge j} \rightarrow N \mathcal{E}^{G}$. We have inclusions B Aut $^{G}(G) \rightarrow N \mathcal{E}^{G}$ and $\delta: B$ Aut $^{G}\left(G^{j}\right) \rightarrow N \mathcal{E}^{G}$, corresponding to the summands indexed by $X=G$ and $X=G^{j}=G \times \cdots \times G$, respectively, in the decomposition (2-4) of $N \mathcal{E}^{G}$. Restricting λ_{j} to these summands, we have a commutative diagram

$$
E \Sigma_{j} \ltimes_{\Sigma_{j}}\left(N \mathcal{E}^{G}\right)^{\wedge j} \xrightarrow{\lambda_{j}} \underset{\underbrace{}_{j} \ltimes \Sigma_{j} B \operatorname{Aut}^{G}(G)^{j} \xrightarrow{\cong} B\left(\Sigma_{j} \ltimes \operatorname{Aut}^{G}(G)^{j}\right) \xrightarrow{B \phi} B \operatorname{Aut}^{G}\left(G^{j}\right)}{ }
$$

where the homomorphism ϕ sends an element $\left(\sigma ; f_{1}, \ldots, f_{j}\right)$ in $\Sigma_{j} \ltimes \operatorname{Aut}^{G}(G)^{j}$ to the G-automorphism $f_{\sigma^{-1}(1)} \times \cdots \times f_{\sigma^{-1}(j)}$ of G^{j}.

We write $\Sigma_{j} \backslash \operatorname{Aut}^{G}(G) \cong \Sigma_{j}\left\langle G\right.$ for the wreath product $\Sigma_{j} \ltimes \operatorname{Aut}^{G}(G)^{j}$. The free G-set G^{j} splits into $k=|G|^{j-1}$ orbits, and we fix a G-equivariant bijection $G^{j} \cong \coprod_{k} G$. This induces an isomorphism $\operatorname{Aut}^{G}\left(G^{j}\right) \cong \operatorname{Aut}^{G}\left(\coprod_{k} G\right)$, and we also have Aut ${ }^{G}\left(\bigsqcup_{k} G\right) \cong \Sigma_{k} \prec G$. Thus we get a commutative diagram

$$
\begin{align*}
& B\left(\Sigma_{j} \ltimes \operatorname{Aut}^{G}(G)^{j}\right) \xrightarrow{B \phi} B \operatorname{Aut}^{G}\left(G^{j}\right) \tag{3-2}
\end{align*}
$$

where we also write ϕ for the induced homomorphism $\Sigma_{j} \prec G \rightarrow \Sigma_{k} \prec G$.
Now we specialize to the case $p=2$. First we study the Dyer-Lashof operation $Q^{2}: H_{1}\left(\mathbb{S}^{C_{2}}\right) \rightarrow H_{3}\left(\mathbb{S}^{C_{2}}\right)$.

Lemma 3.1 The operation Q^{2} in $H_{*}\left(\mathbb{S}^{C_{2}}\right)$ satisfies $Q^{2}\left(\alpha_{1}\right)=\alpha_{3}$.

Proof Let $C=C_{2}$. By Lemma 2.1, we may instead compute Q^{2} in $H_{*}\left(K\left(\Phi \mathcal{E}^{C}\right)\right)$. We let $j=2$, combine diagrams (2-1), (3-1) and (3-2), apply homology, and end up
with the upper half of the diagram:

The vertical homomorphisms in the lower square are induced by the homomorphism $d=1 \times \Delta$ that sends (σ, x) to $(\sigma ; x, x)$, and the inclusion ι of the subgroup $C \times C=C^{2}$ in $\Sigma_{2} \prec C=\Sigma_{2} \ltimes C^{2}$. The homomorphism ψ is the restriction of ϕ to $\Sigma_{2} \times C$. It is easily checked that ψ takes values in the subgroup $C \times C$ (since $p=2$) and is given by $\psi(\sigma, x)=(x, \sigma x)$, using the description of ϕ given after diagram (3-1). We have $B \psi_{*}\left(e_{i} \otimes 1\right)=1 \otimes \alpha_{i}$ and

$$
B \psi_{*}\left(1 \otimes \alpha_{j}\right)=\Delta_{*}\left(\alpha_{j}\right)=\sum_{s+t=j} \alpha_{s} \otimes \alpha_{t}
$$

which combine to give

$$
B \psi_{*}\left(e_{i} \otimes \alpha_{j}\right)=\sum_{s+t=j} \alpha_{s} \otimes\left(\alpha_{i} * \alpha_{t}\right),
$$

where $*$ denotes the Pontryagin product in $H_{*}(B C)$ induced by the topological group multiplication $B C \times B C \rightarrow B C$. We recall that $\alpha_{i} * \alpha_{t}=\binom{i+t}{i} \alpha_{i+t}$.

By May's paper $[15,9.1]$ the map $B d_{*}$ is given by

$$
B d_{*}\left(e_{i} \otimes \alpha_{j}\right)=\sum_{k} e_{i+2 k-j} \otimes \operatorname{Sq}_{*}^{k}\left(\alpha_{j}\right) \otimes \mathrm{Sq}_{*}^{k}\left(\alpha_{j}\right)
$$

Recall that $\mathrm{Sq}_{*}^{k}\left(\alpha_{j}\right)=\binom{j-k}{k} \alpha_{j-k}$, where Sq_{*}^{k} denotes the dual of the Steenrod operation Sq^{k}. In particular $B d_{*}\left(e_{1} \otimes \alpha_{2}\right)=e_{1} \otimes \alpha_{1} \otimes \alpha_{1}$, which further maps to $Q_{1}\left(\alpha_{1}\right)$ in the upper right hand corner of (3-3). But now $Q_{1}\left(\alpha_{1}\right)$ is also the image of $e_{1} \otimes \alpha_{2}$ under $\epsilon_{*} \circ \delta_{*} \circ B \iota_{*} \circ B \psi_{*}$. Using the description of $B \psi_{*}$ above, we see that $Q_{1}\left(\alpha_{1}\right)$ equals

$$
\begin{equation*}
\sum_{s+t=2} \epsilon_{*} \delta_{*}\left(1 \otimes \alpha_{s} \otimes\left(\alpha_{1} * \alpha_{t}\right)\right) \tag{3-4}
\end{equation*}
$$

The map ϵ_{*} vanishes on decomposables with respect to the product in $H_{*}\left(N \mathcal{E}^{C}\right)$ which is induced by the additive symmetric monoidal structure on \mathcal{E}^{C}. The element
$\delta_{*}\left(1 \otimes \alpha_{s} \otimes\left(\alpha_{1} * \alpha_{t}\right)\right)$ is the image of

$$
\alpha_{s} \otimes\left(\alpha_{1} * \alpha_{t}\right) \in H_{*}\left(B \operatorname{Aut}^{C}(C) \times B \operatorname{Aut}^{C}(C)\right)
$$

in $H_{*}\left(B \mathrm{Aut}^{C}(C \amalg C)\right) \subset H_{*}\left(N \mathcal{E}^{C}\right)$ under the map induced by disjoint union, thus the only nonzero term in (3-4) is the one with $s=0$ and $t=2$, and $Q^{2}\left(\alpha_{1}\right)=$ $Q_{1}\left(\alpha_{1}\right)=\epsilon_{*}\left(1 \otimes \alpha_{0} \otimes\left(\alpha_{1} * \alpha_{2}\right)\right)=\alpha_{3}$.

Proof of Theorem 0.2 We now turn to the operations in

$$
H_{*}\left(\mathrm{TC}^{(1)}(\star ; 2)\right)=\mathbb{F}_{2} \oplus H_{*}\left(\mathbb{R} P_{-1}^{\infty}\right) .
$$

The general formula for the Q^{i} will follow from Lemma 3.1 and the Nishida relations, which say in particular (see Bruner et al [2, III.1.1]) that

$$
\begin{equation*}
\mathrm{Sq}_{*}^{i+j+1} Q^{i}\left(\alpha_{j}\right)=\sum_{k}\binom{2^{N}-j-1}{2^{N}-i-2 j-2+2 k} Q^{k-j-1} \mathrm{Sq}_{*}^{k}\left(\alpha_{j}\right), \tag{3-5}
\end{equation*}
$$

where N is sufficiently large. When $k \geq j+2$ the element $\mathrm{Sq}_{*}^{k}\left(\alpha_{j}\right)$ is zero for degree reasons, and when $k \leq j$ the fact that Q^{k-j-1} vanishes on classes in degree higher than $k-j-1$ implies that $Q^{k-j-1} \mathrm{Sq}_{*}^{k}\left(\alpha_{j}\right)=0$. Hence the sum in (3-5) simplifies to the single term

$$
\mathrm{Sq}_{*}^{i+j+1} Q^{i}\left(\alpha_{j}\right)=\binom{2^{N}-j-1}{2^{N}-i} Q^{0} \mathrm{Sq}_{*}^{j+1}\left(\alpha_{j}\right)
$$

for $k=j+1$, where N is large.
Bob Bruner has observed that

$$
\binom{2^{N}-j-1}{2^{N}-i} \equiv\binom{2^{N}+i-1}{2^{N}+j}
$$

$\bmod 2$, for large N. Here is a quick proof. Let x_{k} denote the k-th bit in the binary expansion of a natural number x. Then

$$
\binom{2^{N}-j-1}{2^{N}-i} \equiv 1
$$

if and only if $\left(2^{N}-i\right)_{k}=1$ implies $\left(2^{N}-j-1\right)_{k}=1$ for all k, and

$$
\binom{2^{N}+i-1}{2^{N}+j} \equiv 1
$$

if and only if $\left(2^{N}+j\right)_{k}=1$ implies $\left(2^{N}+i-1\right)_{k}=1$ for all k. But for N large compared to i, j and k the bit $\left(2^{N}-i\right)_{k}$ is complementary to $\left(2^{N}+i-1\right)_{k}$, and
$\left(2^{N}-j-1\right)_{k}$ is complementary to $\left(2^{N}+j\right)_{k}$, so

$$
\binom{2^{N}-j-1}{2^{N}-i} \equiv 1
$$

if and only if

$$
\binom{2^{N}+i-1}{2^{N}+j} \equiv 1
$$

The operations Sq_{*}^{k} in $H_{*}\left(\mathbb{R} P_{-1}^{\infty}\right)$ are given by the formula

$$
\mathrm{Sq}_{*}^{k}\left(\alpha_{j}\right)=\binom{j-k}{k} \alpha_{j-k} .
$$

This follows by the corresponding formula for $\mathbb{R} P^{\infty}$ and James periodicity. More precisely, a theorem of James [12] says that given $m \leq n$, there is a positive integer M, depending only on $n-m$, such that $\mathbb{R} P_{m+\ell}^{n+\ell} \simeq \Sigma^{\ell} \mathbb{R} P_{m}^{n}$ when ℓ is a positive multiple of 2^{M}. The space $\mathbb{R} P_{m}^{n}$ is the stunted projective space $\mathbb{R} P^{n} / \mathbb{R} P^{m-1}$. If we now define the spectrum $\mathbb{R} P_{-1}^{n}$ to be $\Sigma^{-\ell} \Sigma^{\infty} \mathbb{R} P_{\ell-1}^{n+\ell}$ for such ℓ (depending on n), we have that $\mathbb{R} P_{-1}^{\infty}=\operatorname{colim}_{n} \mathbb{R} P_{-1}^{n}$. The Steenrod operations in $H_{*}\left(\mathbb{R} P_{-1}^{\infty}\right)$ can now be calculated from the operations in $H_{*}\left(\mathbb{R} P_{\ell-1}^{n+\ell}\right)$, and the stated formula follows by noting that the relevant binomial coefficients are 2^{M}-periodic in the numerator.
In particular $\mathrm{Sq}_{*}^{j+1}\left(\alpha_{j}\right)=\alpha_{-1}$ for all $j \geq-1$, and we have

$$
\mathrm{Sq}_{*}^{i+j+1} Q^{i}\left(\alpha_{j}\right)=\binom{2^{N}+i-1}{2^{N}+j} Q^{0}\left(\alpha_{-1}\right) .
$$

If $Q^{0}\left(\alpha_{-1}\right)$ were zero, it would follow that $Q^{i}\left(\alpha_{j}\right)=0$ for all i and j, since Sq_{*}^{i+j+1} is an isomorphism to dimension -1. But this contradicts Lemma 3.1. Hence $Q^{0}\left(\alpha_{-1}\right)=\alpha_{-1}$, and the formula stated in the theorem follows.

References

[1] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (1993) 465-539 MR1202133
[2] RR Bruner, JP May, J E McClure, M Steinberger, H_{∞} ring spectra and their applications, Lecture Notes in Math. 1176, Springer, Berlin (1986) MR836132
[3] F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, Lecture Notes in Math. 533, Springer, Berlin (1976) MR0436146
[4] P Deligne, Le groupe fondamental de la droite projective moins trois points, from: "Galois groups over \mathbf{Q} (Berkeley, CA, 1987)", (Y Ihara, K Ribet, J-P Serre, editors), Math. Sci. Res. Inst. Publ. 16, Springer, New York (1989) 79-297 MR1012168
[5] B I Dundas, Relative K-theory and topological cyclic homology, Acta Math. 179 (1997) 223-242 MR1607556
[6] B I Dundas, P A Østvær, A bivariant Chern character, in preparation
[7] A D Elmendorf, I Kriz, M A Mandell, JP May, Rings, modules, and algebras in stable homotopy theory, Math. Surveys and Monogr. 47, Amer. Math. Soc. (1997) MR1417719 With an appendix by M Cole
[8] A D Elmendorf, MA Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163-228 MR2254311
[9] T Geisser, L Hesselholt, Topological cyclic homology of schemes, from: "Algebraic K-theory (Seattle, WA, 1997)", (W Raskind, C Weibel, editors), Proc. Sympos. Pure Math. 67, Amer. Math. Soc. (1999) 41-87 MR1743237
[10] L Hesselholt, I Madsen, On the K-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29-101 MR1410465
[11] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149-208 MR1695653
[12] I M James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc. (3) 9 (1959) 115-140 MR0102810
[13] K-H Knapp, Some applications of K-theory to framed bordism: e-invariant and transfer, Habilitationsschrift, Universität Bonn (1979)
[14] L G Lewis, Jr, J P May, M Steinberger, J E McClure, Equivariant stable homotopy theory, Lecture Notes in Math. 1213, Springer, Berlin (1986) MR866482 With contributions by JE McClure
[15] J P May, A general algebraic approach to Steenrod operations, from: "The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970)", Lecture Notes in Math. 168, Springer, Berlin (1970) 153-231 MR0281196
[16] J P May, E_{∞} ring spaces and E_{∞} ring spectra, Lecture Notes in Math. 577 , Springer, Berlin (1977) MR0494077 With contributions by F Quinn, N Ray, and J Tornehave
[17] J Morava, A theory of base motives arXiv:0908. 3124
[18] J Rognes, Two-primary algebraic K-theory of pointed spaces, Topology 41 (2002) 873-926 MR1923990
[19] J Rognes, The smooth Whitehead spectrum of a point at odd regular primes, Geom. Topol. 7 (2003) 155-184 MR1988283
[20] G Segal, Categories and cohomology theories, Topology 13 (1974) 293-312 MR0353298
[21] K Shimakawa, Infinite loop G-spaces associated to monoidal G-graded categories, Publ. Res. Inst. Math. Sci. 25 (1989) 239-262 MR1003787
[22] R Steiner, A canonical operad pair, Math. Proc. Cambridge Philos. Soc. 86 (1979) 443-449 MR542690
[23] F Waldhausen, Algebraic K-theory of topological spaces. I, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., 1976), Part 1", (R J Milgram, editor), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 35-60 MR520492
[24] B Williams, Bivariant Riemann Roch theorems, from: "Geometry and topology: Aarhus (1998)", (K Grove, I H Madsen, E K Pedersen, editors), Contemp. Math. 258, Amer. Math. Soc. (2000) 377-393 MR1778119

Department of Mathematics, University of Oslo Oslo, Norway
hakonsb@math.uio.no, rognes@math.uio.no
Proposed: Ralph Cohen Received: 18 November 2008

Seconded: Haynes Miller, Paul Goerss
Revised: 11 December 2009

