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A cartesian presentation of weak n—categories

CHARLES REZK

We propose a notion of weak (n+k, n)—category, which we call (n+k, n)—®—spaces.
The (n+ k,n)—®—spaces are precisely the fibrant objects of a certain model category
structure on the category of presheaves of simplicial sets on Joyal’s category ©,.
This notion is a generalization of that of complete Segal spaces (which are precisely
the (0o, 1)—®—spaces). Our main result is that the above model category is cartesian.

18D05; 55U40

1 Introduction

In this note, we propose a definition of weak n—category, and more generally, weak
(n + k,n)—category for all 0 <n < oo and —2 < k < o0, called (n + k,n)—-0-
spaces. The collection of (n + k, n)—®-spaces forms a category @nszb, and there is
a notion for a morphism in this category to be an equivalence. The category ® ,,Sp,ﬁcb
together with the given class of equivalences has the following desirable property: it is
cartesian closed, in a way compatible with the equivalences. More precisely, we have
the following.

(1) The category @nSpgb is cartesian closed; in other words, it has products Y x Z
and function objects ZY for any pair of objects Y, Z in ®nSp2b, so that
OxSpiP(X x Y, Z) ~ ©,Spi°(X, ZY).

(2) If f: X =Y isanequivalence in @nSp,Eb, thensoare fxZ: X xZ —>YxZ
and Z/: 72V - 7z X,

The category @nszb will be defined as the full subcategory of fibrant objects in a
Quillen model category ®,Sp, . The underlying category of ®,Sp; is the category
sPSh(®;,) of simplicial presheaves on a certain category ®,. We equip this category
with a model category structure, obtained as the Bousfield localization of the injective
model structure on presheaves with respect to a certain set of morphisms 7, . We
will prove that ®,Sp;. is a cartesian model category, ie, the model category structure
is nicely compatible with the internal function objects of sPSh(®;). Then @,,Sp,fib
is the full subcategory of fibrant objects in ®,Spy, ; equivalences in @nszb are just
levelwise weak equivalences of presheaves.
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For n = 0, the category ® is the terminal category, so that sPSh(®,) is the category
of simplicial sets Sp. An (00, 0)—®—space is precisely a Kan complex, and a (k,0)-
®—space is precisely a k—truncated Kan complex, ie, a Kan complex with homotopy
groups vanishing above dimension k.

For n = 1, the category ®; is the category A of finite ordinals, so that sPSh(®;) is
the category of simplicial spaces. An (oo, 1)—®—space is precisely a complete Segal
space, in the sense of our paper [16].

The category ®, which we use was introduced by Joyal [12], as part of an attempt to
define a notion of weak n—category generalizing the notion of quasicategory. Sketches
of these ideas can be found in Leinster [14] and Cheng [7]. The category ®;, has also
been studied by Berger [3; 4], with particular application to the theory of iterated loop
spaces.

1.1 The categories O,

We will give an informal description of Joyal’s categories ®; here, suitable for our
purposes; our description is essentially the same as that given in [4, Section 3]. It is
most useful for us to regard ®,, as a full subcategory of St-n—Cat, the category of
strict n categories. Thus, ®y is the full subcategory of St-0—Cat = Set consisting of
the terminal object. The category ®; is the full subcategory of St—1-Cat consisting
of objects [n] for n > 0, where [n] represents the free strict 1—category on the diagram

0 1 n—1) ——n.

Thus, ®; = A, the usual simplicial indexing category. The category ®, is the full
subcategory of St-2—Cat consisting of objects which are denoted [m]([n1], ..., [rm])
for m,ny,...,ny, > 0. This represents the strict 2—category C which is “freely
generated” by objects {0, 1,...,m} and morphism categories C(i — 1,7) = [n;]. For
instance, the object [4]([2],[3],[0], [1]) in ®, corresponds to the “free 2—category” on

the following picture:
VAN

0@1$2—>3\L4
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In general, the objects of ®,, are of the form [m](6, ..., 6,), where m > 0 and the 6;
are objects of ®,_1; this object corresponds to the strict n—category C “freely gener-
ated” by objects {0, ..., m} and a strict (n—1)—category of morphisms C(i —1,7i)=26;.
The morphisms of ®, are functors between strict n—categories.

We make special note of objects Oy, ..., O, in ®,. These are defined recursively
by Og = [0] and Oy = [1](Of—;) for kK = 1,...,n. Thus, the object O in Oy
corresponds to the “freestanding k —cell” in St-n—Cat.

1.2 Informal description of ® —spaces

We will start by describing @nSpgg, the category of (0o, n)—®—spaces. Let Sp denote
the category of simplicial sets. We will regard objects of Sp as “spaces”; the following
definitions are perfectly sensible if objects of Sp are taken to be actual topological
spaces (compactly generated).

An object of @nSpgg is a simplicial presheaf on ®, (ie, a functor X: ®,’ — Sp),
satisfying three conditions:

(i) an injective fibrancy condition,
(i1) a Segal condition, and

(iii) a completeness condition.

A morphism f: X — Y of ®nSpgg is a morphism of simplicial presheaves; the
morphism f is said to be an equivalence (or weak equivalence) if it is a “levelwise”
weak equivalence of simplicial presheaves, ie, if f(6): X0 — Y0 is a weak equivalence
of simplicial sets for all 8 € ob ®.

The injective fibrancy condition (i) says that X has a right lifting property with respect
to maps in sPSh(®,) which are both monomorphisms and levelwise weak equivalences;
that is, X is fibrant in the injective model structure on sPSh(®,,).

The Segal condition (ii) says that for all objects 6 of ®,, the space X(6) is weakly
equivalent to an inverse limit of a certain diagram of spaces X (Oy); taken together
with the injective fibrancy condition, this inverse limit is in fact the homotopy inverse
limit of the given diagram. For n = 1, the Segal condition amounts to requiring that
the “Segal map”

XmD > XQD o XD~ X(O0) oo x X(O)
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be a weak equivalence for all m > 2. As an example of how the Segal condition works
for n = 2, the space X ([4]([2],[3],[0],[1])) is required to be weakly equivalent to

(X2 x X(09) x (X(02) x X(02) x X(0)

0
XS0 X(01) XS0 X(0,).
The completeness condition (iii) says that the space X (Oy) should behave like the
“moduli space” of k—cells in a (oo, n)—category. That is, if the points of X (Oy)
correspond to individual k —cells, such points should be connected by a path in X (Oy)
if they represent “equivalent” k —cells, there should be a homotopy between paths for
every “‘equivalence between equivalences”, and so on. It turns out that the way to
enforce this is to require that, for k = 1,...,n, the map X(ix): X(Or_1) = X(Oy)
which encodes “send a (k — 1)—cell to its identity &—morphism” should induce a weak
equivalence of spaces
X(O—1) = X(Op)™.

Here X(O)%"Y is the union of those path components of X(Oy) which consist of
k —morphisms which are “k —equivalences”. Thus, the completeness condition asserts
that the moduli space of (kK — 1)—cells is weakly equivalent to the moduli space of
k—equivalences.

The category ®,Sp; of (n + k,n)—®—spaces is obtained by imposing an additional
(iv) k—truncation condition.
To state this, we need the moduli space X(d0;,) of “parallel pairs of (m — 1)—

morphisms” in X . This space is defined inductively as an inverse limit of the spaces
X(Op), so that

X(305m) E1im(X(Op—1) = X(@0m—_1) < X(Op_1)),

with X (00¢) = 1. Then the k —truncation condition asserts that the fibers of X (0,) —
X (00y,) are k—types, ie, have vanishing homotopy groups in all dimensions greater
than k.

The above definition is examined in detail in Section 11.
1.3 Presentations and enriched model categories

Our construction of a cartesian model category structure is a special case of a general
procedure, which associates to certain kinds of model categories M a new model
category M —®Sp; we may regard this as being analogous to the procedure which
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associates to a category V with finite products the category V—Cat of categories
enriched over V.

Specifically, suppose we are given a pair (C,¥) consisting of a small category C
and a set ¥ of morphisms in sPSh(C); this data is called a presentation, following
the treatment of Dugger [8]. (Here, sPSh(C) denotes the category of presheaves
of simplicial sets on C.) Let M = sPSh(C )ig,?j denote the model category structure
on sPSh(C) obtained by Bousfield localization of the injective model structure with
respectto . We define a new presentation (®C, @), and thus obtain a model category
M-0Sp < sPSh(® C)g}lé. The category ®C is a “wreath product” of A with C, as
defined by [4] (see Section 3), while the set ¥g consists of some maps built from
elements of &, together with certain “Segal” and “completeness” maps (this set is

described in Section 8).

Our main result is the following theorem.

1.4 Theorem Let M = sPSh(C )ig,?j for some presentation (C, ). If M is a cartesian
model category, then M —©Sp is also a cartesian model category.

This theorem is a straightforward generalization of the main theorem of [16], which
proves the theorem for the special case (C,¥) = (1, @) (in which case M = Sp, and
thus M —OSp is the category of simplicial spaces with the complete Segal space model
structure.)

The model categories for (n + k, n)—®—spaces are obtained iteratively, so that
def
On+1Spr = (OnSpy)-OSp,

starting with ®¢Sp; = Spy, where Sp; is the Bousfield localization of Sp whose
fibrant objects are Kan complexes which are k—types. Applying the theorem inductively
shows that ©,Sp, are cartesian model categories. The category ®nSp2b is defined to
be the full subcategory of fibrant objects in the model category ®,Spy, .

1.5 The relationship between M -®Sp and M -Cat

If M is a cartesian model category, then we may certainly consider M —Cat, the
category of small categories enriched over M . Given an object X of M —Cat, let h.X
denote the ordinary category whose objects are the same as X', and whose morphism sets
are given by 71X (a, b) ShM (1, X(a, b)), where hM denotes the homotopy category
of M. Let us say that a morphism f: X — Y of objects of M—Cat is a weak

equivalence if
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(1) for each pair of objects a, b of X, the induced map X(a,b) — Y(fa, fb) isa
weak equivalence in M , and

(2) the induced functor /X — hY is an equivalence of 1—categories.
We can make the following conjecture.

1.6 Conjecture Let M = sPSh(C)™ for some presentation (C, &), and suppose that
M is a cartesian model category. Then there is a model category structure on M —Cat
with the above weak equivalences, and a Quillen equivalence

M —Cat ~ M -0OSp.
For the case of M = Sp, the conjecture follows from theorems of Bergner [5; 6].

1.7 Why is this a good notion of weak n—category?

We propose that (n + k,n)—®-spaces are a model for weak (n + k, n)—categories.
Some points in its favor are the following.

(1) Our notion of (oo, 1)—®—spaces is precisely what we called a complete Segal
space in [16]. This is recognized as a suitable model for (co, 1)—categories, due to
work of Bergner [6] and Joyal and Tierney [13].

(2) As noted above in Section 1.5, the definition of (n 4 k,n)—®—spaces is a special
case of a more general construction, which conjecturally models “homotopy theories
enriched over a cartesian model category”. In particular, a consequence of our conjecture
would be a Quillen equivalence

(©nSpy)-Cat ~ (0,Sp; )-OSp = Oy 1Spy.

That is, (n + 1 4+ k,n 4+ 1)—®-spaces are (conjecturally) “the same” as categories
enriched over (n + k, n)—@®—spaces.

(3) Our notion satisfies the “homotopy hypothesis”. There is an evident notion of
groupoid object in ®,Sp;,, and we show (Section 11.25) show that the full subcategory
of such groupoid objects models Sp,, ;. , the homotopy theory of (n + k)—types.

(4) More generally, it is understood that n—tuply monoidal k—groupoids should
correspond to “k—types of E,—spaces”, where E, is a version of the little n—cubes
operad; furthermore, n—tuply groupal k—groupoids should correspond to “k—types
of n—fold loop spaces” (see, for instance, Baez and Dolan [1, Section 3]). In terms
of our models, n—tuply groupal k—groupoids are objects X of ®,Sp, for which (i)
X(0j)~ 1 for j <n,and (ii)) X (0,)%"Y ~ X(0,), and one would conjecture that
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the full subcategory of such objects in ®,Sp; should model k—types of n—fold loop
spaces. That this is in fact the case is apparent from the results of Berger [4].

As noted above, the theory of ®—spaces is consciously a generalization of the theory of
complete Segal spaces, which is one of a family of models for (oo, 1)—categories based
on simplicial objects. A reasonable approach to producing a generalization of these
ideas is to use multisimplicial objects; proposals for this include Tamsamani’s theory
of weak n—categories [17], the Segal n—categories of Hirschowitz and Simpson [10],
and more recent work by Barwick [2] and Lurie [15] on multisimplicial generalizations
of complete Segal spaces. Although all these constructions appear to give good models
for (oo, n)—categories, it is not clear to me that any of them result in a Quillen model
category which satisfies all of the following: (i) it models the homotopy theory of
(00, n)—categories with the correct notion of equivalence, (ii) it is a cartesian model
category, and (iii) it is a simplicial model category. It does appear that the Hirschowitz—
Simpson model satisfies (i) and (ii), but it does not satisfy (iii). The multisimplicial
complete Segal space model of Barwick and Lurie does satisfy (i) and (iii), but does
not appear to satisfy (ii) (when n > 1).

Acknowledgements The author was supported under NSF grant DMS-0505056.

2 Cartesian model categories and cartesian presentations

2.1 Cartesian closed categories

A category V is said to be cartesian closed if it has finite products, and if for all
X,Y €obV there is an internal function object Y , which comes equipped with a
natural isomorphism

V(T,YX)~ V(T x X, Y).
Examples of cartesian categories include the category of sets, and the category of
presheaves of sets on a small category C'.

We will write @ for some chosen initial object in a cartesian closed category V.

2.2 Cartesian model categories

We will say that a Quillen model category M is cartesian if it is cartesian closed as a
category, if the terminal object is cofibrant, and if the following equivalent properties
hold.

(1) If f: A— A" and g: B — B’ are cofibrations in M , then the induced map
h: Ax B'l4xp A’ x B— A’ x B’ is a cofibration; if in addition either f or g
is a weak equivalence then so is /.
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(2) If f: A — A’ is a cofibration and p: X — X' is a fibration in M, then the
induced map ¢: (X")4" — (X")4 xy4 X' is a fibration; if in addition either
f or p is a weak equivalence then so is ¢.

(This notion is a bit stronger than Hovey’s notion of symmetric monoidal model category
as applied to cartesian closed categories [11, 4.2]; he does not require the unit object to
be cofibrant, but rather imposes a weaker condition.)

2.3 Spaces

Let Sp denote the category of simplicial sets, equipped with the standard Quillen model
structure. We call this the model category of spaces. It is standard that Sp is a cartesian
model category.

We will often use topological flavored language when discussing objects of Sp, even
though such are objects are not topological spaces but simplicial sets. Thus, a “point”
in a “space” is really a O—simplex of a simplicial set, a “path” is a 1-simplex, and so
on.

2.4 Simplicial presheaves

Let C be a small category, and let sSPSh(C) denote the category of simplicial presheaves
on C, ie, the category of contravariant functors C°° — Sp.

A simplicial presheaf X is said to be discrete if each X (c) is a discrete simplicial set;
the full subcategory of discrete objects in sPSh(C) is equivalent to the category of
presheaves of sets on C, and we will implicitly identity the two.

Let Fc: C — sPSh(C) denote the Yoneda functor; thus F¢ sends an object ¢ € ob C
to the presheaf Fcc = C(—, ¢). Observe that the presheaf Fcc is discrete. When the
context is understood we may write F for Fc.

Let T'¢: sPSh(C) — Sp denote the global sections functor, which sends a functor
X: C° — Sp to its limit. The functor I' is right adjoint to the functor Sp — sPSh(C)
which sends a simplicial set K to the constant presheaf with value K at each object
of C. Note that if C has a terminal object [0], then 'X ~ X([0]). When the context
is understood we may write I'X for I'c X .

For X,Y in sPSh(C), we write Map-(X,Y) “ (Y X); this is called the mapping
space. Thus, sPSh(C) is enriched over Sp. Note that if ¢ € ob C, then we have

X(¢) ~ T(XF©) ~ Map (F(c), X).

When the context is understood we may write Map(X, Y') for Mapq (X, Y).
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2.5 Model categories for simplicial presheaves

Say that amap f: X — Y € sPSh(C) is a levelwise weak equivalence if each map
f(c): X(c)—Y(c) is aweak equivalence in Sp for all ¢ € ob C'. There are two standard
model category structures we can put on sPSh(C) with these weak equivalences, called
the projective and injective structures; they are Quillen equivalent to each other.

The projective structure is characterized by requiring that f: X — Y € sPSh(C) be
a fibration if and only if f(c): X(c) — Y (c) is one in Sp for all ¢ € ob C. We write
sPSh(C)P™ for the category of presheaves of simplicial sets on C equipped with the
projective model structure.

The injective structure is characterized by requiring that f: X — Y € sPSh(C) is a
cofibration if and only if f(c): X(¢) — Y(c) is one in Sp for all ¢ € ob C. We write
sPSh(C)™ for the category of presheaves of simplicial sets on C equipped with the
injective model structure.

The identity functor provides a Quillen equivalence sPSh(C)P™ = sPSh(C)™.

Both the projective and injective model category structures are cofibrantly generated
and proper, and have functorial factorizations. They are also both simplicial model
categories.

Given object X, Y in sPSh(C), we write AMap (X, Y) for the derived mapping space
of maps from X to Y. This is a homotopy type in Sp, defined so that for any cofibrant
approximation X¢ — X and fibrant approximation ¥ — Y/, the derived mapping
space hiMap (X, Y) is weakly equivalent to the space of maps Map (X€, Y /). Note
that in the above, we may pick either the injective or projective model category structures
in order to make our replacements.

2.6 The injective model structure

The injective model structure has a few additional properties which are of importance
to us. In particular,

(1) every object of sPSh(C)™ is cofibrant, and
(2) every discrete object of sPSh(C)™ is fibrant.

Furthermore, we have the following.
2.7 Proposition The model category sPSh(C)™ is a cartesian model category.

Proof This is immediate from characterization (1) of cartesian model categories. O
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2.8 Presentations

A presentation is a pair (C,¥) consisting of a small category C and a set ¥ =
{s: S — S’} of morphisms in sPSh(C). We say that an object X of sPSh(C) is
F—local if for all morphisms s: S — S’ in &, the induced map

hMap(s, X): hMap(S’, X) — hMap(S, X)

is a weak equivalence of spaces. We say that a morphism f: 4 — B in sPSh(C) is
an S—equivalence if the induced map

hMap( f, X): hMap(B, X) — hMap(4, X)

is a weak equivalence of spaces for all ¥—local objects X. The collection of ¥—
equivalences is denoted ¥; we have that ¥ C &.

Let (C, &) be a presentation, let X be an object of sPSh(C), and let X — X/ denote
a fibrant replacement of X in the injective model structure. Since every object is
cofibrant in the injective model structure, we have that X is ¥-local if and only if
Map(S’, X - Map(S, X7) is a weak equivalence for all s € &.

2.9 Cartesian presentations

Let (C,9) be a presentation. Given an object in X of sPSh(C), we say it is -
cartesian local if for all s: S — S’ in ¥, the induced map

Y vS - yS
is a levelwise weak equivalence, where X — Y is some choice of fibrant replacement

in sPSh(C)™.

2.10 Proposition Let X be an object of sPSh(C), and choose some fibrant replace-
ment X — Y in sPSh(C)™. Then X is ¥ —cartesian local if and only if for all ¢ €ob C,
the function object Y ¥ © js $—local.
Proof Immediate from the isomorphism

Y5 (¢) ~Map(F(c), YS) ~ Map(S, Y F©). O
Observe that every ¥—cartesian local object is necessarily $—local, since Map(S, Y) ~

Map(1, Y5); however, the converse need not hold. We say that a presentation (C, &)
is a cartesian presentation if every ¥—local object is ¥—cartesian local.
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2.11 Proposition Let (C,d) be a presentation. The following are equivalent.
(1) (C,9) is a cartesian presentation.
(2) For all $—fibrant X in sPSh(C) and all ¢ € ob C, the object X F(©) s $—local.
(3) Foralls: S — S’ €% andall c €obC, the map s xid: S X Fc — S" x Fc is
ind.

Proof Immediate from Proposition 2.10. |

2.12 Proposition If (C, &) is a cartesian presentation, then f, g € imply fxge .

2.13 Localization

Given a presentation (C,¥), we write sPSh(C )I;;O] and sPSh(C)® for the model
category structures on sPSh(C) obtained by Bousfield localization of the original
projective and injective model structures on sPSh(C). These model categories are
again Quillen equivalent to each other. We will set out the details in the case of the
injective model structure.

2.14 Proposition Given a presentation (C,¥) there exists a cofibrantly generated,
left proper, simplicial model category structure on sPSh(C) which is characterized by
the following properties.

(1) The cofibrations are exactly the monomorphisms.

(2) The fibrant objects are precisely the injective fibrant objects which are ¥ —local.
(We call these the S—fibrant objects.)

(3) The weak equivalences are precisely the ¥ —equivalences.

Furthermore, we have the following:

(4) A levelwise weak equivalence g: X — Y is an ¥—equivalence, and the converse
holds if both X and Y are ¥—local.

(5) An Y —fibration g: X — Y is an injective fibration, and the converse holds if
both X and Y are ¥—fibrant.

Proof This is an example of [9, Theorem 4.1.1], since sPSh(C)™ is a left proper
cellular model category. O

We will write sPSh(C )}}‘j for the above model structure, which is called the $—local
injective model structure.
Observe that if (C,¥) and (C,¥’) are two presentations on C such that the ¥—local

inj

objects are precisely the same as the ¥’ —local objects, then sPSh(C )ig?j = sPSh(C);.
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2.15 Quillen pairs between localizations

2.16 Proposition Suppose that (C,¥) and (D, J) are presentations, and that we
have a Quillen pair Gy: sPSh(C)™ = sPSh(D)™ (with Gy the left adjoint). Then

Gy: sPSh(C)M = sPSh(D)mJ
is a Quillen pair if and only if either of the two following equivalent statements hold.

(1) Foralls€¥, Gygs €T
(2) For all I —fibrant objects Y in sPSh(D), G*Y is $—fibrant.

Proof This is straightforward from the definitions. m|

2.17 Y-equivalences and homotopy colimits

The following proposition says that the class of ¥—equivalences is closed under homo-
topy colimits. We refer to Hirschhorn [9] for background on homotopy colimits.

2.18 Proposition Let D be a small category, and let (C,¥) be a presentation. Sup-
pose that «: G — H is a natural transformation of functors D — sPSh(C)™, and
consider the induced map

hocolimp «: hocolimp G — hocolimp H
on homotopy colimits, where these homotopy colimits are computed in the injective

model structure on sPSh(C). If a(d) € S forall d € ob D, then hocolimp « € S.

Proof In general, the map AMap. (hocolimp H, X') — hMap(hocolimp G, X) is
weakly equivalent to the map holimp AMap(H, X') — holimp AMap(G, X); the result
follows by considering the case when X is ¥—local. O

We later use (in Section 6), we record the following fact.

2.19 Proposition Let C be a small category, and let X be an object of sPSh(C)™
Suppose P is a finite set of subobjects K € X in sPSh(C). If colimgep K — X is
an isomorphism (regarding P as a finite poset), then

hocolimgep K — X

is a levelwise weak equivalence, where homotopy colimit is computed using the injective
model structure.
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Proof Since (hocolimgep K)(c) A~ hocolimgp(K(c)), we can reduce to the case
when C = 1; that is, we may assume X is an object of Sp.

Suppose X is a set and P is a collection of subsets of X such that colimgep K ~ X .
It is straightforward to show that for all K € P, the map colimp_, K — L is a
monomorphism, where Py C P denotes the poset of proper subobjects of L. The
same therefore holds true for a collection of subobjects of a simplicial sets satisfying the
same properties. Thus the functor P — Sp determined by the collection of subobjects
of X, is cofibrant in the projective model structure on sPSh(P°P), and so the colimit
of this functor is the homotopy colimit. |

Finally, we record the following fact, which we use in Section 5. For a category C and
an object A in C, we write A\C for the slice category of objects under 4 in C.

2.20 Proposition Let C be a small category, and let (D, ¥) be a presentation. Sup-
pose that «: G — H is a natural transformation of functors sPSh(C) — sPSh(D).
Suppose the following hold.

(1) The functors X — (G(@) — G(X)): sPSh(C)"™ — G(2)\sPSh(D)™ and X
(H(@) - H(X)): sPSh(C)™ — H(2)\sPSh(D)™ are left Quillen functors.

(2) The map a(@): G(@) — H(D) is a monomorphism, and is in &.

(3) The maps a(Fc): G(Fc) — H(Fc) arein & forall ¢ € ob C.

Then a(X) € & for all objects X of sPSh(C).

Proof In the special case in which «(92): G(2) — H(Q) is an isomorphism, note
that since (i) every object of sPSh(C) is levelwise weakly equivalent to a homotopy
colimit of some diagram of free objects, and (ii) left Quillen functors preserve homotopy
colimits, the result follows using Proposition 2.18.

For the general case, factor «@ into GL K% H where K(X)=G(X)Ug(z)H(D). The
map B(X) is a pushout of the $-local equivalence « (@) along the map G(@) — G(X)
which is an injective cofibration by (i); thus B(X) € &¥. The special case described
above applies to show that y(X) € ¥. Thus, the composite «(X) € ¥, as desired. O

2.21 Cartesian presentations give cartesian model categories

2.22 Proposition The model category sPSh(C)!W is cartesian if and only if (C,¥)
is a cartesian presentation. In particular, sPSh(C )'}}?j is a cartesian model category if for
all $—fibrant Y and all ¢ € ob C, the object Y F(©) is ¥—fibrant.
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Proof It is clear that the terminal object is cofibrant in sPSh(C )%}Z‘j, so it suffices to
show that (C, &) is a cartesian presentation if and only if condition (1) of Section 2.2
holds. Let f: A — A’ and g: B — B’ be cofibrations in sPSh(C). It is clear that
the map

h: AxB Uy yxpA'xB—> A" xB

is a cofibration in any case, so it suffices to show that “W is ¥—fibrant implies W
is $—cartesian fibrant” is equivalent to “g € & implies s € ¥”. Since sPSh(C)™ is
a cartesian model category, for a cofibration g as above and all injective fibrant W
we have that W¢ is a levelwise weak equivalence if and only if Map(4, W) is a weak
equivalence. The result follows by considering the case of ¥—fibrant W'. O

2.23 k-Types

Observe that Sp ~ sPSh(1)™ . For any integer k > —2, let

def inj
Spr = SPS(1) ) ps2_, pxs2y-

This is called the model category of k—types. The fibrant objects are precisely the
fibrant simplicial sets whose homotopy groups vanish in dimensions greater than k.
This is a cartesian model category.

3 The O construction

The ® construction was introduced by Berger in [4], where, with good cause, he calls
it the “categorical wreath product over A”’; what we are calling ®C, he calls A? C.

3.1 The category A

We write A for the standard category of finite ordinals whose objects are [m] =
{0,1,...,m} for m > 0 and morphisms are weakly monotone maps. We will use the
following transparent notation to describe particular maps in A; we write

gkokr=km.. (7] — [n]
for the function defined by i — k;.

We call a morphism §: [m] — [1n] € A an injection or surjection if it is so as a map of
sets. We say that ¢ is sequential if

S —1D+1=68(@) foralli =1,...,m.

Observe that every surjection is sequential.
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3.2 The category @ C

Let C be a category. We define a new category ®C as follows. The objects of ®@C
are tuples of the form ([m], ¢y, ..., cm), where [m] is an object of A and ¢q,...,cm
are objects of C. It will be convenient to write [m](cy, ..., cn) for this object, and to
write [0] for the unique object with m = 0.

Morphisms [m](cy, ...,cm) = [n)(dy, ..., dny) are tuples (8, {f;j}) consisting of

(i) a morphism §: [m] — [n] of A, and

(ii) for each pair i, j of integers suchthat 1 <i <m, 1 <j <m,and §(i — 1) <
Jj =68(i), amorphism f;;: ¢; = dj of C.

In other words,
m 8(1)

OO ([mlcr. - vem). nldr.da) ~ [T [T [ Cladp.

8:[m]—[n] i=1 j=8@G—1)+1
The composite

(CREITH) (e.{gjk})
(e s em) L iy ) 2 e ep)

is the pair (€6, {h;x}), where h;; = gji fij for the unique value of ;j for which f;;
and gjj are both defined.

Pictorially, it is convenient to represent an object of ®C as a sequence of arrows
labelled by objects of C'. For instance, [3](cy, ¢2, c3) would be drawn

C1 c2 c3

0 1 2——3.

An example of a morphism [3](cy, ¢3, c3) — [4](d1, d3, d3, d4) is the picture

C1 (&) 3

0 1 3
7] 7
/fn f}z I /f%s
\! *2 AY
0 a 1 & 2 & 3 @ 4

where the dotted arrows describe the map §°223: [3] — [4], and the squiggly arrows
represent morphisms fj1: ¢; = dy, fi2: ¢c1 = da, f33: ¢c3 > d3 in C.

Observe that (as suggested by our notation) there are functors

[m]: C*™ — OC
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for m > 0, which are defined in the evident way on objects, and which to a morphism
(gi: ¢i = di)i=1,...,m assign the morphism (id, { f;; }) where fi; = g;.

.....

If C is a small category, then so is ®C, and it is apparent that ® describes a 2—functor
Cat — Cat.

3.3 A notation for morphisms in @ C

We use the following notation for certain maps in ®C . Suppose
0, {fij}): [ml(cr,....cm) = [n)(dy, ... dn)
is a morphism in ®C such that for each i =1, ..., m, the sequence of maps
(fij: ¢i = dj)j=8Gi—1)+1,....6()

identifies ¢; as the product of the d;’s in C. Then we simply write § for this morphism.
Note that even if C is a category which does not have all products, this notation is
always sensible if § € A is injective and sequential.

3.4 Remark If C is a category with finite products, morphisms in ®C amount to
pairs (8, {/i}i=1,..,m), where

Jit ¢i > dsii—1)+1 X X ds(iy-
In this case, our special notation is to write & for (8, {id};=1, .. m)-

There is a variant of the ® construction which works when C is a monoidal category.
If C is a monoidal category, we can define a category ®™°"*C with the same objects as
®C, but with morphisms [m](cy,...,cm) = [n](dy, ..., dy) corresponding to tuples
(8.{fi}i=1,..,m) where

Jit €i = dsi—1)+1 ® -~ @ ds(i).

It seems likely that this variant notion should be useful for producing presentations of
categories enriched over general monoidal model categories.

3.5 The categories O,

For n > 0 we define categories ®, by setting ®y = 1 (the terminal category), and
defining ®, = ©®0,_;. One sees immediately that ®; is isomorphic to A.

3.6 Remark The category ®, can be identified as a category of finite planar trees of
level <n [12]. The opposite category ®," is isomorphic to the category of “combina-
torial n—disks” in the sense of Joyal [12]; see Cheng [7, Chapter 7] and Berger [4].
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3.7 O and enriched categories

If V is a cartesian closed category and & is an initial object of V, it is straightforward
to show that

(1) for every object v € ob V', the product & x v is an initial object of V', and

(2) for an object v € ob V', the set homy (v, @) is nonempty if and only if v is
initial.

Suppose that V' is a cartesian closed category with a chosen initial object @. The
tautological functor

7: OV — V--Cat

is defined as follows. For an object [m](vy, ..., vy), we let C = t([m](vy,...,vm))
be the V —category with object set Co = {0, 1,...,m}, and with morphism objects

0] if p >gq,
Clp.q) =41 if p=g,
Vpp1 Xooo Xy if p<gq.

The unique maps 1 — C(p, p) define “identity maps”, and composition C(p, gq) %
C(q,r) — C(p,r) is defined in the evident way. It is clear how to define t on
morphisms.

3.8 Remark The functor 7 is not fully faithful. For instance, there is a ¥V —functor
f:t([11(@)) — t([1](@)) which on objects sends 0 € [1] to 1 € [1] and vice versa;
this map f is not in the image of 7.

For a full subcategory W of V, we will write t: ®©W — V-Cat for the evident
composite OW — OV 5V —Cat.

3.9 Proposition [4, Proposition 3.5] If W is a full subcategory of V' which does
not contain any initial objects of V', then t: ©W — V —Cat is fully faithful.

Proof The fact that only an initial object can map to an initial object in V' implies that
for ¢;,dj € ob W, afunctor F: t([m](cy,...,cm)) = t([n](dy, ..., dy)) is necessarily
given on objects by a weakly monotone function §: {0,...,m} — {0,...,n}. Given 4,
the functor F determines and is determined by morphisms f;j: ¢; — d; for i =
L....om, j=86G—-1)+1,...,8(@). |
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3.10 Corollary For each n > 0, the functor t,: ®, — St-n—Cat defined inductively
as the composite

Oty
O —=1 ©(St—(n-1)-Cat) - St—n—Cat
is fully faithful.

Thus, we can identify ®, with a full subcategory of St-n—Cat.

4 Presheaves of spaces over © C

In the next few sections we will be especially concerned with the category sPSh(®©C)
of simplicial presheaves on ®C'. In this section we describe two essential constructions.
First, we describe an adjoint pair of functors (7%, T*) between simplicial presheaves
on ®C and simplicial presheaves on A = ®1. Next, we describe a functor V', called
the “intertwining functor”, which relates ®(sPSh(C)) and sPSh(®C).

4.1 The functors T* and T

Let T: A — sPSh(®C) be the functor defined by

def

(T ([ml(cr. .- . .cm)) = A(im]. [n]).
Observe that if C has a terminal object ¢, then T'[n] ~ Foc[n](,...,t).

Let 7*: sPSh(®C) — sPSh(A) denote the functor defined by

def
(T X)[m] = Map,pgn(o ¢ (TTm]. X).
The functor 7* preserves limits, and has a left adjoint 7%: sPSh(A) — sPSh(©C).

4.2 Proposition On objects X in sPSh(A), the object T3 X is given by
(TxX)[m(cy, ..., cm) = X[m].

Proof A straightforward calculation. a

4.3 Corollary The functor Ty: sPSh(A)™ — sPSh(®C)™ preserves small limits,
cofibrations and weak equivalences; in particular, it is the left adjoint of a Quillen pair.

We will regard T* X as the “underlying simplicial space” of the object X in sPSh(®C).
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4.4 The intertwining functor V

The intertwining functor
V: ®(sPSh(C)) — sPSh(®C)

is a functor which extends the Yoneda functor Fg¢c: ®C — sPSh(®C); it will play a
crucial role in what follows.

Recall from Remark 3.4 that since sPSh(C) has finite products, a morphism
[Wl](Al, ey Am) — [I’l](B], ey Bn)
in ®(sPSh(C)) amounts to a pair (8,{ fj}j=1,..,n) Where §: [m] — [n] in A, and

8(k)
fir4j—> J] Bx  insPSh(C).
j=8(k—1)+1
On objects [m](A4y,..., Am) in O(sPSh(C)) the functor V is defined by

q 8(0)
(Viml(Ay., ... Aw)(g)er. = ] ] [I Ait.
seA(glim]) i=1 j=8Gi—1)+1
To a morphism (o, { fj}): [m](A41,..., Am) — [n](Bi, ..., By) we associate the map
of presheaves defined by

q 8() q 8(@@)
IT IT I 4@- T 1[I Il Bk
seA(lqllm]) i=1 j=8(i—1)+1 §eA(qln]) i=1 k=6'(i—1)+1

which sends the summand associated to § to the summand associated to 8’ = 0§ by a
map which is a product of maps of the form fj(c;).
Observe that

q 8()

(VIm)(Fdy, ..., Fdn)(g)cr,-...eg)~ [ T] I Cledp

8:[ql—=[m] i=1 j=8(G—1)+1
~ (OC)(ql(c1, ..., cq),Im]dr, ... .dm))
~ Foclm|(dy,....dm)([q](c1, ..., cq)).

Thus we obtain a natural isomorphism v: Fgc — V(OF¢) of functors ©C —
sPSh(®C).

In this paper, we are proposing the category sPSh(®C) as a model for sPSh(C)-
enriched categories. In this light, the object V[m](A44,..., Am) of sPSh(®C) may
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be thought of as a model of the sPSh(C)—enriched category freely generated by the
sPSh(C)—enriched graph

) 25 (1) 2 A 1) 2 ).

The following proposition describes how the intertwining functor interacts with colimits.
Recall that for an object X of a category C', A\ X denotes the slice category of objects
under X in C.

4.5 Proposition The intertwining functor V: ©(sPSh(C)) — sPSh(®C) has the
following properties. Fix m,n > 0 and objects A1, ..., Am, By, ..., By of sSPSh(C).
(1) The map (V§%m y§m+i+l..m+1+ny which sends
Viml(Aq,..., Am)UVn|(By,..., By) = V[m+1+n](Ay, ..., Am, D, Bi,..., By)
is an isomorphism.
(2) The functor
X Vm+1+nl(Ar,...,Am, X, B1,..., By):
sPSh(C) —» Vim+1+nl(Ay,...,Am,. D, By, ..., By)\sPSh(®C)

is a left adjoint.

Proof For p=0,...,q+1,let G(p) € A([g], [m + 1 + n]) be defined by

(818(0)>m+1) if p =0,
G(p)={8|8(p—1)<m,8(p)=m~+1} if1<p=<gq,
{818(q) <m} if p=g+1.

Thus the G(p) determine a partition of the set A([g], [#72+ 1+n]). The coproduct which
defines V[m](Ai,..., Am,. X, B1,..., Bp)(0) for 0 =[q](c1, ..., cq) decomposes into
factors according to this partition of A([g],[m 4+ 1 4+ n]). Under this decomposition,
the factor corresponding to p =0 is
q (i)
[T I1 TI B =Vin(Bi,.... B)(®),

8€G(0) i=1 j=8(i—1)+1

the factor corresponding to p = ¢ + 1 is
q 3(7)

[T TT TI A4~ VimA.....4m)®).

§€G(g+1) i=1 j=8(i—1)+1

Geometry & Topology, Volume 14 (2010)



A cartesian presentation of weak n—categories 541

while the factor corresponding to p where 1 < p <gq is

p  min(§(i),m) q 8@)
1 (1‘[ [T 4 (c») X X (cp) ( ] I1 B,-_(m+1>(c,-)).
3eG(p)

i=1j=8(G—-1)+1 i=p j=max(8(i—1),m)+2

From this claim (1) is immediate, as is the observation that the functor described in (2)
preserves colimits, and so has a right adjoint. O

4.6 Proposition For all m,n > 0 and objects Ay, ..., Am, Bi,..., By in sPSh(C),
the functor

X—=Vim+1+n|(Ar,...,Am, X, By, ..., By):
sPSh(C) > Vim+1+n](A1, ..., Am, D, By, ..., By)\sPSh(GC)

preserves cofibrations and weak equivalences, and thus is the left adjoint of a Quillen
pair.

Proof A straightforward calculation, using the decomposition given in the proof of
Proposition 4.5. ad

4.7 Remark It can be shown that V' is the left Kan extension of Fg¢ along © Fc¢.

4.8 A product decomposition

We will need to make use of the following description of the product V[1](A4) x V[1](B)
in sPSh(®C).

4.9 Proposition The map

colim(V[2](4, B) 7 V[1](4 x B) L V[21(B, 4)) — V[1](4) x V[1](B),
induced by
(V8O vy v2](4, B) — V[1](4) x V[1](B)
and (V8% vs§01hy: v21(B, A) — V[1](A) x V[1](B),

is an isomorphism.

Proof This is a straightforward calculation. It may be helpful to contemplate the
diagram

4
o l"

e<— @
=]

-]

to grok the argument. O
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4.10 Subobjects of V[m](c1y...5Cm)

Observe that V[m](1,...,1) ~ Tu F[m]; we write 7: V[m](Ay,..., Am) = TaF[m]
for the map induced by projection to the terminal object in sPSh(C). Given a subobject
f: K C F[m] in sPSh(A), we define Vg (A4y,..., Am) to be the inverse limit of the
diagram
T Ty f
V[m](Al, ey Am) — T#F[m] < T#K.
Explicitly,
Vi (A, ..., Am)(q)(ct, ... .¢cq))
is the subobject of
Viml(Ar,.... Am)(gl(crs . . ¢0))
coming from summands associated to §: [¢] — [m] such that F'§: F[q] — F[m] factors
through K C F[m] in sPSh(A). Note that Vrp,(A1, ..., Am) ~ V[m](A1...., Am).

These subobjects will be used in Section 6.

4.11 Mapping objects

Given an object X in sPSh(®C), an ordered sequence Xy, ..., X, of points in X[0],
and a sequence ¢i,...,cy € 0bC, we define My (xg,...,xm)(c1,...,Cm) to be the
pullback of the diagram

X§9,..,Xx8m
{(x0,....xXm)} — X[0]*"T! B X0 X[ml(ci,. ... cm).
Allowing the objects c¢y,...,c, to vary gives us a presheaf My (xg,...,Xm,) in

sPSh(C*™). We will be especially interested in Mx (x¢, x1), an object of sPSh(C),
which we will refer to as a mapping object for X .

We can use the intertwining functor V to get a fancier version of the mapping objects,
as follows. Again, given X in sPSh(®C) and xg,..., X, € X[0], and also given
objects Ay, ..., Am in sPSh(C), we define My (xo,...,x4)(A41,...,Aq) to be the
pullback of the diagram
{0, - 2m) } = X[OP !

~ Map(V[m](@, ..., 2), X) < Map(V[m](4i, ..., Am). X)

where the right-hand map is induced by the maps X 8% . Allowing the objects A1, ..., Ap
to vary gives us a functor My (xg, ..., Xn): SPSh(C)*™ — sPSh(®C). Observe that

My (xg,....xXm)(C1,....0m) ~ MX(XO, o Xm)(Feq, ..., Fen),
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and that

Mx (X0, -+ s Xmi14n) (A1, .., Am, @, By, ..., By)
A~ My (X0, Xm)(A1s ooy Am) X My (Xmt141s - o Xmt14n) (B1. - .. Bp).
4.12 Lemma There is a natural isomorphism
My (0. x1)(4) ~ Mapc (4, My (xo. x1)).
Proof This follows using the natural isomorphisms
M (xo.x1)(Fe) ~ My (xo.x1)(c) ~ Mapc (Fe, My (xo., X1))

and the fact that V[1]: sPSh(C) — V[1](@)\sPSh(®C) preserves colimits Proposition
4.5, which implies that 4 — My (xg, x1)(A4) takes colimits to limits. ad

5 Segal objects

In this section, we examine the properties of a certain class of objects in sSPSh(®C),
called Segal objects. In the case that C = 1, these are the Segal spaces of [16]. We
work with a fixed small category C.

5.1 Segal maps and Segal objects
Let Sec denote the set of morphisms in sPSh(®C) of the form

se(Ctmem) & (ps0l pgm—Lmy Graler . em) — Flml(cy, . .. cm)

where
def .. F§! F§° F§! F§°
Glm](ci.....cm) = colim(F[1](cy) F[0] F[0] F[1](cm))
for m > 2 and c¢y,...,cn € obC. It is straightforward to check that an injective

fibrant X in sPSh(®C) is Sec —fibrant if and only if each of the induced maps

Xml(ers - em) — lim(X 1) 225 xp01 25 22 w101 &% X(em)

is a weak equivalence. Equivalently, an injective fibrant X is Sec —fibrant if and only
if the evident maps

Mx (xo,....xXm)(C1,....cm) = Mx(x0,x1)(c1) X+ X My (Xm—1, Xm)(Cm)

are weak equivalences.

A Segal object is a Sec—fibrant object in sPSh(®C)™, that is, a fibrant object in
sPSh(OC)& .
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5.2 More maps of Segal type

For an object [m](A41, ..., Am) of ®(sPSh(C)), we obtain a map in sPSh(®C) of
the form

selMAtsdm) oo (AL, Am) = VIm)(Ay, ..., Ap).

induced by se('>=1D: G[m] — F[m] in sPSh(A), where VG[m] is as defined in Section
4.10. Observe that

Vo) (A1, . ... Am) =~ colim(V[1](4;) <§1— V0] éO—) jl— V0] EO—) V[l](Am)).

Note also that if §: [m] — [n] in A is injective and sequential, then F§: F[m]— F|[n]
carries G[m] into G[n], and thus we obtain an induced map

5*2 VG[m](AS(l)’ ey AS(m)) — VG[n](Ala ey Am).

It is straightforward to check that Vg(,,): sSPSh(C)™" — sPSh(®C) satisfies formal
properties similar to V[m]: sPSh(C)*" — sPSh(®C). Namely,

(1) forall Ay,...,Am, B1,..., By objects of sPSh(C), The map

(82,...,m’5*m+1+1,...,m+1+n): VG[m](Als---aAm)H VG[n](Bl,---,Bn)
— VG[m-l—l—}—n](Al»---,Am,Q,BI’---»BH)

is an isomorphism, and

(2) for all m,n >0 and objects Aq,..., Am, By,..., By in sPSh(C), the functor

X Vg[m+1+n](A1,...,Am,X,Bl,...,Bn)I
sPSh(C) = Vgm+14n)(A1s-- -+ Am. D, By, ..., By)\sPSh(OC)

is a left Quillen functor.
We record the following fact.

5.3 Proposition For all objects [m](A1, ..., Am) of ®(sPSh(C)), we have

Se[m](Alﬁ"'aAm) = §C7

where Sec is the class of Sec —local equivalences.

Proof We prove this by induction on m > 0. Let D denote the class of objects
[m](Ay, ..., Am) in O(sPSh(C)) such that sel™(A1-4m) ¢ Se - .
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We observe the following.
(1) All objects of the form [0] and [1](A) are in D, since sel” and sel'l4) are
isomorphisms.

(2) All objects of the form [m](Fcy,..., Fcpy) forall ¢q,...,¢, €0bC arein D,
since SE:[m](Fcl ..... Fep) — Se(cl ..... Ccm) )

For m>1 and 0 < j <m, let &4, ; denote the class of objects of the form
[m](Al,...,Aj,ch+1,...,ch) or [Wl](Al,...,Aj,Q,FCj+2,...,ch),

where Aq,..., A; in sPSh(C) and c¢j;q,...,c;n € obC. We need to prove that
Em,m S D for all m. Observation (1) says that this is so for m = 0 and m = 1, while
observation (2) says that £, ¢ € D for all m. The proof will be completed once we
show that forall m >2 and 1 < j <m, &y j—1 €D implies &y, j CD.

Consider the transformation «: G — H of functors sPSh(C) — sPSh(®C) defined
by the evident inclusion

o VG[m](Al""’Aj—l’_a FCj_H,...,FCm)
— V[m](Al,...,Aj_l,—, FCj+1,...,FCm).

The functors G and H produce left Quillen functors sPSh(C)™ — G(@)\sPSh(®C)™
and sPSh(C)"™ — H(@)\sPSh(®C)™ and it is clear from the explicit description of
V that (@) is a monomorphism. Since &, j_; € D, we have that «(J) € Sec and
a(Fcj) € Sec for all objects ¢j of C. Thus Proposition 2.20 shows that a(A4;) € Sec
for all objects A; of sPSh(C), and thus [m](A1,..., 4, F¢jy1,-++, Fcp) € D that
is, Em,j € D, as desired. O

5.4 Corollary Let X be a Sec —fibrant object of sSPSh(®C), let xq, ..., xm € X][0],
andlet Ay, ..., Am be objects of sPSh(C). Then the map

Mapgc(V[m](Ay. ..., Am), X)
— Mapg c (V[1](A1). X) Xx10] - - - Xx[0] Mapg ¢ (V[1](Am). X)

induced by V§' =1 for 1 <i < m is a weak equivalence, and the map
M (x0. X)) (A1, Am) = Moy (o, x1) (A1) X ==+ X My (om—1. Xm)(Am)

is a weak equivalence.
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6 (OC,Sec) is a cartesian presentation

We now prove the following result.

6.1 Proposition For any small category C, the pair (®C, Sec) is a cartesian presen-
tation, and thus sPSh(C) . 1s a cartesian model category.

Our proof is an adaptation of the proof we gave in [16, Section 10] for the case C = 1;
it follows after Proposition 6.6 below.

6.2 Covers

Let [m] be an object of A, and let K € F[m] be a subobject in sPSh(A). We say that
K is a cover of F[m] if

(i) for all sequential §: [1] — [m], the map F§: F[1] — F[m] factors through K,
and

(ii) there exists a (necessarily unique) dotted arrow making the diagram commute in
every diagram of the form:

F[l]—;K

Fln] —— Flm]

It is immediate that

(0) the identity map id: F[m]— F[m] is a cover,

(1) the subobject G[m] < F[m] generated by the images of the maps F§'~1: F[1]—
F[m] is a cover (called the minimal cover),

(2) if §: [p] — [m] is sequential, and K < F[m] is a cover, then the pullback
§~1K C F[p] of K along F§ is a cover of F[p], and

(3) if 8: [p]—[m] and &§’: [p] — [n] are sequential, and M C F[m] and N C F|[n] are
covers, then the pullback (8,8") ™! (M xN) of M xN along (F§, F§'): F[p]—
F[m] x F[n] is a cover of F[p].
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6.3 Covers produce Sec —equivalences

Recall that given a subobject K € F[m] in sPSh(A), and a sequence Aq,..., Am
of sPSh(C), we have defined (in Section 4.10) a subobject Vg (4y,...,Am) of
VIm]|(Ay,..., Apm) in sPSh(GC).

6.4 Proposition If K C F[m] is a cover in sPSh(A), then Vg (A1,..., Am) —
VIim)(Ay, ..., Ay) isin Sec forall Ay, ..., Ap objects of sPSh(C).

Proof Since V(A1 ..., Am) = V[m](Ay,..., Ap) isin Sec by Proposition 5.3,
it suffices to show that Vg)(41, ..., Am) = Vk (41, ..., Am) isin Sec for covers
K C F[m] which are proper inclusions. We will prove this using induction on m.

Given a subobject K € F[m] in sPSh(A), let Px denote the category whose objects
are injective sequential maps 6: [p] — [m] such that F'§ factors through K, and whose
morphisms ([p] — [m]) — ([p'] = [m]) are arrows [p] — [p’] in A making the evident
triangle commute. The category Pk is a poset. For each §: [p] — [m] € Px we have
a natural square:

Vs—ig (A1 ..., Am) — Vam)(A1..... Am)

| l

Vep(Ars oo Am) —— Vi (A1, ...  Am)
Observe that since § is a monomorphism, the map F[p] — F[m] is a monomorphism;
we have abused notation and written F[p] for this subobject.
We have that the maps
hocolimpy Vs—1 g (A1,.... Am) = Voim(Ar. ..., Am)
and hocolimp Vrip1(A1..... Am) = Vi (A1,.... Am)

are levelwise weak equivalences in sPSh(®C) by Proposition 2.19, since the cor-
responding maps from colimits over Pk are isomorphisms. Since the inclusion

K C F[m] is proper, p <m for all objects of Pk, and so each V-1 g (Ay,..., Am) —
VEp1(A1, ..., Am) € Sec by the induction hypothesis, the result follows using Propo-
sition 2.18. |

6.5 Proof that (O C, Sec) is cartesian
6.6 Proposition If M C F[m]| and N C F[n] are covers in sPSh(A), then
Vim(Ar, ..., Am) X VN(B1, ..., By) = V[ml(A4y,...,Am) x V[nl(By,..., Bm)

is an Sec —equivalence.
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Proof Let Q,, , denote the category whose objects are pairs of maps (§: [p] — [m],
8: [p] — [n]) in A such that § and 8’ are surjective (and thus sequential), and
(F$, F§'): F[p]— F[m]x F[n] is a monomorphism. The category Qy, , is a poset,
and we have colimg,, , F[p]— F[m]x F[n] is an isomorphism in sPSh(A). For each
object (8,8") of Qp , there is a natural square

V(S,S’)—IMXN(CI’ ce ,Cp) 4 VM(AI’ ces ’Am) X VN(BI, ey Bn)

l l

VIpl(Ci.....Cp) —— V[ml(Ay. ..., Am) x V[n](B1..... B

where C; = Aj(;) or By ;) according to whether §(i) > §(i —1) or §'(i) > 8'(i —1).
We have that hocolimg,, , V(s sh-1mxny — Vm X VN and hocolimg,, , VFip) —
VF[m] X VF[n are levelwise weak equivalences in sPSh(®C) by Proposition 2.19. By
Proposition 6.4, each of the maps Vs sn—1a7xn —> VF[p] isin Sec, and thus the result
follows using Proposition 2.18. |

Now we can give the proof of the proposition stated at the beginning of the section.

Proof of Proposition 6.1 To prove that (®C, Sec) is cartesian, it suffices to show that
selCltm) 5 FO: G[m(cy, ..., cm)x FO — F[m](cy, . ..,cm)x F6 isin Sec for all
m=>2,cq,...,c;m€0bC and 0 € ob O C'. This is a special case of Proposition 6.6. O

6.7 Presentations of the form (O C, Sec UU)

Let AU be a set of morphisms in sPSh(®C).

6.8 Proposition The presentation (®C, Sec UA) is cartesian if and only if for all X
in sPSh(®C) which are (Sec UU)—fibrant, and for all ¢ € ob C, the function object
X FII© s —Jocal.

Proof By Proposition 2.11 and Proposition 6.1, it is enough to show that if X is
(Sec Ua)—fibrant, then X F? is AU-local for all § € ob@OC. Since X is Sec —local,
every X F 9 is weakly equivalent to a homotopy fiber product of the form

XF[I](cl) Xy o Xx XF[I](Cm),

and thus the result follows. O
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7 Complete Segal objects

In this section, we examine the properties of a certain class of Segal objects in
sPSh(®C), called complete Segal objects. In the case that C = 1, these are precisely
the complete Segal spaces of [16]. We show below that complete Segal objects are the
fibrant objects of a cartesian model category, generalizing a result of [16, Section 12].

7.1 The underlying Segal space of a Segal object

Recall the Quillen pair T%: sPSh(A) 2 sPSh(®C) :T* of Section 4.1. Given an
object X of sPSh(®C), we will call T*X in sPSh(A) its underlying simplicial space;
according to the following proposition, it is reasonable to call 7*X the underlying
Segal space of X if X is itself a Segal object.

7.2 Proposition If X is an Sec —fibrant object in sPSh(®C), then T* X is an Seq —
fibrant object in sSPSh(®C) = sPSh(A). That is, T* X is a Segal space in the sense
of [16].
Proof The map

sel™ D colim(V[1](1) < V[0] = - - < V[0] = V[1](1)) = V[m](1,..., 1)

is isomorphic to Tyse'' D TyG[m] — Ty F[m]. ad

7.3 The homotopy category of a Segal object

Recall that if X in sPSh(A) is a Segal space, then we define its homotopy category 7 X
as follows. The objects of 41X are points of X[0], and morphisms are given by

def
hX(xo,x1) = oMy (x0,X1).

It is shown in [16] that 42X is indeed a category; composition is defined and its
properties are verified using the isomorphisms g Mx (xg, ..., Xm) &~ h X (xg, X1) X
-+ X h X (Xp;—1, Xm) which hold for a Segal space.

For an Sec—fibrant object X in sPSh(®C), we define its homotopy category hX to
be the homotopy category of 7* X . Explicitly, objects of 42X are points in X[0], and
morphisms are

def
hX(xo,x1) = molc My (xg, X1).
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7.4 The enriched homotopy category of a Segal object

The homotopy category 2 X described above can be refined to a homotopy category
enriched over the homotopy category 2sPSh(C) of presheaves of spaces on C. This
hsPSh(C)—enriched homotopy category is denoted A X , and is defined as follows.

We take ob X = obhX . Given objects xg, x; of #.X, recall that the function object
of maps xg — x; is the object My (xg,x1) of sPSh(C). For objects x¢,x; in
hX, we set hX (xg,x1) M ¥ (x0,x1) viewed as an object in the homotopy category
hsPSh(C). To make this a category, let A,,: C — C*™ denote the “diagonal” functor,
and let A} : sPSh(C*") — sPSh(C) denote the functor which sends F +— FA,,. The
functor Aj, preserves weak equivalences and products. Observe that since X is a
Segal object, there are evident weak equivalences

Ay Mx (xg, ..., xXm) = Mx(x0,x1) X+ X My (Xm—1, Xm)
in sPSh(C). Thus we obtain “identity” and “composition” maps
1~ A§ My (xo) = My (x0, Xo),
My (x0, X1) X My (x1,x3) < A% My (x0, X1, X2) — My (xg, X2)

in AsPSh(C), and it is straightforward to check that these make 2.X into an #sPSh(C)-
enriched category. Furthermore, we see that AsPSh(C)(1, AX (xg, x1)) ~ h X (X9, X1).

7.5 Equivalences in a Segal object

Recall that if X in sPSh(A) is a Segal space, then we say that a point in XT1] is
an equivalence if it projects to an isomorphism in the homotopy category 71X . We
write My, (X0, x1) for the subspace of My (xg,x;) consisting of path components
which project to isomorphisms in 42X, and we let X" denote the subspace of X[1]
consisting of path components which contain points from M "V(x0,x1) for some
X0, X1 €obhX . Thus Mequlv(xo, x1) is the fiber of (X §°, X81) Xeauv s X [0]x X[0]
over (xg, x1); observe that the map X 6°°: X[0] — XT1] factors through X"V € XT1].

These definitions transfer to Segal objects. Thus, if X is a Segal object in sPSh(®C),
we say that a pointin I'c My (x1, x2) is an equivalence if it projects to an isomorphism
in the homotopy category #X. We define M equw(xo,xl) to be the subspace of
I'c Mx (xg, x1) consisting of path components which project to isomorphisms in /2.X .
The space of equivalences X"V is defined to be the subspace of I'c X[1] consisting
of path components which contain points from M "(xg,x1) for some xg, x; € X[0];
thus Meq " (x0, x1) is the fiber of X"V — X[0 ] x X[0] over (xg, x1). Observe that
the map X5°0 X[0] = I'c X[1] factors through X" C T'c X[1].
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7.6 The set Cpt,

Let E be the object in sPSh(A) which is the “discrete nerve of the free-standing
isomorphism”, as in [16, Section 6]. Let p: E — F[0] be the evident projection map,
and let i: F[1] - E be the inclusion of one of the nonidentity arrows. We recall the
following result.

7.7 Proposition [16, Theorem 6.2] If X in sPSh(A) is a Segal space, then the map
Map(i, X): Map(E, X) — Map(F[1], X) ~ X[1]

factors through X%V C X[1] and induces a weak equivalence Map(E, X) — X eduiv,

We define Cpt. to be the set consisting of the single map
T#pZ T#E — T#F[O]

We say that X in sPSh(C) is a complete Segal object if it is (Sec U Cpt)—fibrant.
As a consequence of Proposition 7.7, we have the following.

7.8 Proposition Let X be a Segal object of sPSh(®C). The map
Map(T+E, X) — Map(Tu F[1], X) ~ T* X[1]

factors through X" C T* X[1], and induces a weak equivalence Map(T+E, X) —
XY of spaces. Thus, a Segal object X is a complete Segal object if and only if
X[0] = XV js a weak equivalence of spaces.

7.9 Remark In Section 10 we give another formulation of the completeness condition,
in which the simplicial space E is replaced by a smaller one Z, so that variants of
Proposition 7.7 and Proposition 7.8 hold with E replaced by Z. Either formulation
works just as well for our purposes.

7.10 Fully faithful maps

If X and Y are Segal objects in sSPSh(®C), we say thatamap f: X — Y is fully
faithful if for all ¢ € ob C the square

X[1])(¢c) ——— Y1)

J |

X[0] x X[0] —— Y[0] x Y[0]

is a homotopy pullback square.
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7.11 Proposition Let f: X — Y be a map between Segal objects in sPSh(®C).
The following are equivalent.
(1) f is fully faithful.

(2) For all ¢c € obC and all xy,x; points of X[0], the map Mx (xg,x1)(c) —
Mx (fxg, fx1)(c) induced by f is a weak equivalence of spaces.

(3) The induced map hX — hY of enriched homotopy categories is fully faithful,
ie, hX (xg,x1) = hY (x¢,x1) is an isomorphism in hsPSh(C) for all points
xg,x1 of X[0].

7.12 Proposition Suppose X is a Segal object in sPSh(C). Then the map X =~
XTFI0] 5 xTeFU jnduced by Ty F§° is fully faithful.

Proof Observe that T3 F[1] & V[1](1), and that the statement will be proved if we
can show that for all ¢ € ob C, the square obtained by applying Mapg (-, X) to the
square

V[(Fe) <2 v11(Fe) x V[1)(1)
V[l](incl)T TV[I](incl)xid
VI@) ——— VIII@) x VI

is a homotopy pullback of spaces. Using the product decomposition Proposition 4.9,
we obtain a diagram

VII(Fe, 1) 22 vinyre < 1) 222 via, Feoy

T | T

(7.13) Vi1, 1) L v x 1) 2 v, o)

V&Olll J{ lelIZ

V(@) «——— V[1}(&) —— V[1](2)

in which taking colimits of rows provides the diagram

V[1](incl) xid '
VII(Fe) x V(1) L8O g gy s vy 22 vine).
The horizontal morphisms of (7.13) are monomorphisms, therefore the colimits of
the rows are in fact homotopy colimits in sPSh(®C)™. Thus, it suffices to show
that Mapg (V[1](Fc), X) maps by a weak equivalence to the homotopy limit of
Mapg (-, X) applied to the above diagram. We claim that in fact that the evident
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projection maps induce weak equivalences from Mapg (V[1](Fc), X) to the inverse
limits of each of the columns of Mapg (-, X)) applied to the diagram.

This is clear for the middle column: the map V[1](@x 1) — V[1](@) is an isomorphism,
so the colimit of the middle column is isomorphic to V[1](Fc). We will show the
proof for the left-hand column, leaving the right-hand column for the reader. Consider
the diagram:

V[(Fe) L2 viyre, 1) P2 viyFe)

T T

V! V2j(@. 1) —— V[1](2)

o] T

V0] T V1](1) —— V[0]

We want to show that Mapg(—, X)) carries the upper-right square to a homotopy
pullback. The lower-right square is a pushout square (use the isomorphism V[2](&, 1) &~
V{0] I V[1](1)), as is the outer square; thus they are homotopy pushouts (of spaces)
since the vertical maps are monomorphisms. Applying Mapg - (—, X) to the diagram
takes these two squares to homotopy pullbacks of spaces; this operation also takes
the left-hand rectangle to a homotopy pullback of spaces, since X is a Segal object.
Thus we can conclude that Mapg ¢ (—, X') carries the upper-right square to a homotopy
pullback of spaces, as desired. |

Say that amap f: X — Y of spaces is a homotopy monomorphism if it is injective
on 1y, and induces a weak equivalence between each path component of X and the
corresponding path component of Y. Say amap f: X — Y of objects of sPSh(C) isa
homotopy monomorphism if each f(c): X(c¢) — Y(c) is a homotopy monomorphism
of spaces.

7.14 Lemma If X is a Segal object in sPSh(®C), then X Ti: xT+E 5 x TvFII] jg
a homotopy monomorphism in sSPSh(®C).

Proof For 6 € ob@®C, the map X #E (9) — X T+FI11(9) is isomorphic to
Map(T+E, X %) — Map(T, F[1], X F?),

which since X¥? is a Segal object, is weakly equivalent to the map (X ¥ 0)equiv _,
T*(X F9)[1], which is a homotopy monomorphism. O
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7.15 Proposition If X is a Segal object in sPSh(®C), then the map XT#4: X ~
XTFI0) 5 X TE g fully faithful.

Proof It is straightforward to check that if X Ly=5 7 are maps of Segal objects in
sPSh(C) such that g/ is fully faithful and g is a homotopy monomorphism, then f
is fully faithful. Apply this observation to X — X T+E — xT¥Flll ysing Proposition
7.12 and Lemma 7.14. O

7.16 Essentially surjective maps

If X and Y are Segal objects in sPSh(®C), we say thatamap f: X — Y is essentially
surjective if the induced functor i f: hX — hY on homotopy categories (Section 7.3)
is essentially surjective, ie, if every object of 4Y is isomorphic to an object in the
image of if .

7.17 Proposition Suppose X is a Segal object in sPSh(®C). Then the map
xTa; x ~ xTFl0 _, yTE
is essentially surjective.

Proof Observe that since 73 preserves products Corollary 4.3, the map
is isomorphic to the map
(T*X)?: T*X ~ (T*X)FI 5 (T*x)E.

Thus we are reduced to the case when C =1, and X is a Segal space, in which case
the result follows from [16, Lemma 13.9] O

7.18 Lemma If X X>Y % Z are maps of Segal objects in sSPSh(®C) such that (i) g f
is fully faithful and (ii) f is fully faithful and essentially surjective, then g is fully
faithful.

Proof We need to show for all yg, y; points of Y[0] that 2Y (yo, y1) > hZ (g0, gV1)
is an isomorphism in AsPSh(C). Since f is essentially surjective, we may choose
points xg, xq in X[0] so that f'x; ~ y;, i =0, 1, as objects of 1Y . O

7.19 Proposition If X is a Segal object in sPSh(C), then the map X T#i: XT+E
X TFO js fully faithful.

Proof Apply Lemma7.18to X — XT+E — xT+F (1, using Proposition 7.12, Propo-
sition 7.15, and Proposition 7.17. O
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7.20 (OC,Sec UCpt,) is a cartesian presentation

7.21 Proposition (®©C,Sec UCptc) is a cartesian presentation.

Proof By Proposition 6.8, it suffices to show that if X is a complete Segal ob-
ject, then XF (1) g Cptc—local for all ¢ € obC. That is, we must show that
X FIIE) » Mapg (T4 F0], X Py Mapg c (THE, XFI©)y s a weak equiva-
lence of spaces, or equivalently that

X TFON1)(e) — (X T*E)[1](c)

is a weak equivalence of spaces. This is immediate from the fact that X T#F 0] yT+E
is fully faithful Proposition 7.15 and the fact that X[0] ~ X T#F0)[0] - X T+E[0] ~
XU s a weak equivalence, since X is a complete Segal object. a

8 The presentation (@ C, ¥g)

In this section, we consider what happens when we start with a presentation (C, ¥). In
this case, we define a new presentation (®C, ¥g) which depends on (C, &), by

Yo ¥ Sec UCpte U V),

def

where V[1|(¥)={V[1](f)| f € ¥}, and where Sec, and Cpt, are as defined in
Section 5.1 and Section 7.6.

Say that two model categories My and M, are equivalent if there is an equivalence
E: My — M, of categories which preserves and reflects cofibrations, fibrations, and
weak equivalences (this is much stronger than Quillen equivalence). If M is a model
category equivalent to one of the form sPSh(C)¢ for some presentation (C, &), then

we write

M-0Sp L sPSh(®C)y, .

We call M-BOSp the model category of ®—spaces over M .
In the rest of this section, we prove the following result, which is the precise form of

Theorem 1.4.

8.1 Theorem If (C,¥) is a cartesian presentation, then (BC,¥g) is a cartesian
presentation, so that sSPSh(®C)g, is a cartesian model category.
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8.2 V[1](¥)-fibrant objects

The V[1](¥)-fibrant objects are precisely the injective fibrant objects whose mapping
spaces are ¥—fibrant. Explicitly, we have the following.

8.3 Proposition An injectively fibrant object X in sPSh(®C) is V[1]¥—fibrant if
and only if for each x1, x, € X|[0], the object Mx (x1, x,) is an ¥—fibrant object of
sPSh(C).

8.4 Proof of Theorem 8.1

It is clear that Theorem 8.1 follows from Proposition 6.8, Proposition 7.21, and the
following.

8.5 Proposition If (C,9) is a cartesian presentation, then (®C, Sec U V[1](¥)) is a
cartesian presentation.

In the remainder of the section we prove this proposition Proposition 8.5.

In light of Proposition 8.3 and Proposition 6.8, it is enough to show that if (C,¥) is a
cartesian presentation and X is Sec U V[1](¥)—fibrant, and if ¥ = X FI@ for some
d € obC, then My (go, g1) is an F—fibrant object of sPSh(C), for all points g¢, g1
in X Fl@yq).

Let ¢ and d be objects in C, and consider the following diagram in sPSh(®C).

V2l(Fe, Fd) <22 vii)(Fe x Fdy Y225 vipl(Fd, Fe)

O

VI2)(2, Fd) <V(ST V{1](2) W VI2|(Fd, @)

By Proposition 4.9, taking colimits along the rows gives the map
fVI(Fd) U V[I(Fd) ~ V[1](@) x V[1(Fd) — V[1](Fc) x V[1](Fd)
induced by @ — Fc. (Recall that V[1](@) ~ 11 1.)
Now Mapg(f, X) is isomorphic to the map
(Y8°,Y8"): Y[1](c) — Y[0] x Y[0]

whose fiber over (gg, g1) is My (go, g1).
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Applying Mappg,@c)(—, X) to the diagram (8.6) gives:

X[2)(c,d) —— Map(V[1](Fe x Fd), X) +—— X[2](d, ¢)

o | |

X[0] x X[1](d) —— X[0] x X[0] +——— XT1](d) x X[0]

The space My (go,g1) is the pullback of the diagram obtained by taking fibers of
each of the vertical maps of (8.7), over points (xg9,g1), (X00,X11), and (go, X11)
respectively, where x;; = (X §7)(gi). The vertical maps of (8.7) are fibrations of
spaces, and thus the pullback of fibers is a homotopy pullback. Thus, it suffices to show
that the fiber of each of the vertical maps, viewed as a functor of ¢, is an ¥—fibrant
object of sPSh(C).

We claim that these fibers, as presheaves on C, are weakly equivalent to the presheaves
My (x90,X10), (Mx(x00, xll))Fd, and My (xo1,x11) respectively. The objects
My (x00,X10), Mx(x90,X11), and My (xo1,x11) are S—fibrant by the hypothesis
that X is V[1](¥)-fibrant, Since (C, ) is a cartesian presentation, it follows that
(My (x00.x11))F? is ¥—fibrant. Thus, we complete the proof of the proposition by
proving this claim.

The left-hand vertical arrow of (8.7) factors

x2)e d) LD 1116 oo X1 T,y o)< x(1(d).

The first map is a weak equivalence since X is Sec—local, so it suffices to examine
the fibers of the second map over (xg, g1). It is straightforward to check that this fiber
is isomorphic to My (xgg, X10)(c).

The right-hand vertical arrow of (8.7) is analysed similarly, so that its fibers are weakly
equivalent to My (xg1,x11)(c).

For the middle vertical arrow of (8.7), Lemma 4.12 allows us to identify the fiber over
(X00, X11) with

Map,psy(cy(Fe x Fd, My (xo0. x11)) & (Mx (x00. 11)) 79 (¢).

9 Groupoid objects

Let Gpd¢ be the set consisting of the morphism

T#q: T#F[l] — T4+E.
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We say that a Segal object is a Segal groupoid if it is Gpd—local; likewise, a complete
Segal object is called a complete Segal groupoid if it is Gpd—local.

9.1 Lemma If X is a Segal object in sSPSh(®C), then X is Gpd —local if and only
it XTi: XTvE _ xToFU jg 4 Jevelwise weak equivalence in sPSh(®C).

Proof The “if” part is immediate. To prove the “only if” part, note that for any Segal
object Y, the map Y T#E — yTeFUI jg fully faithful by Proposition 7.19. If X is
Sec U Gpd—fibrant, then X L0 X T+E[0] — x T+FI1[0] is a weak equivalence of
spaces, and thus X 7¥ must be a levelwise weak equivalence in sPSh(®C). O

9.2 Proposition The presentations
(®C,Sec UGpds) and (©C,Sec UCpte UGpde)
are cartesian presentations. If (C,¥) is a cartesian presentation, then
(®C,Sec UGpdo U V[1]¥) and (OC,Sec UCpte UGpdes U V[1]F)
are cartesian presentations.
Proof We only need to show that (©C, Sec U Gpd() is a cartesian presentation; the
other results follow using Proposition 7.21 and Theorem 8.1.

To show that (®C, Sec U Gpd) is a cartesian presentation, we need to show Propo-
sition 6.8 that if X is Sec U Gpd—fibrant, then ¥ = X FIU(©) js Gpd—local for
all ¢ € obC. The map Mapg(74i,Y): Mapgc(T4E,Y) — Mapg (T4 F[1],Y) is
isomorphic to (X T¥)[1](c): (X #E)[1](c) — (X T#FI1)[1](¢), which is a weak equiv-
alence by Lemma 9.1. O

Given a presentation (C,¥) with M = sPSh(C )ig,?j, let
Ocpa(C. ¥) = (0C,Fo UGpdc)

and M-©Gpd £ sPSh(©C ) oUCpc-

10 Alternate characterization of complete Segal objects

In the section we consider a characterization of the “completeness” property in the
definition of a complete Segal space, which is a bit more elementary than the one given
in [16]. The results of this section are not needed elsewhere in this paper.
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Let £ in sPSh(A) be the “discrete nerve” of the groupoid with two uniquely isomorphic
objects x and y, let p: E — F[0] denote the projection, and let i: F[1]— E denote the
map which picks out the morphism from x to y. In [16, Proposition 6.2] it is shown
that if X is a Segal space, then Map(i, X): Map(E, X) — Map(FJ[1], X) ~ X[1]
factors through a weak equivalence Map(E, X) — X"V, From this, we see that
a Segal space X is complete if and only if Map(p, X)) is a weak equivalence [16,
Proposition 6.4].

The proof of [16, Proposition 6.2] is long and technical. Also, the result is not entirely
satisfying, because E is an “infinite dimensional” object, in the sense that as a simplicial
space it is constructed from infinitely many cells, which appear in all dimensions (see
[16, Section 11]). It is possible to replace E with the finite subobject E®) for k > 3
(see [16, Proposition 11.1]), but this is also not very satisfying.

Here we prove a variant of [16, Proposition 6.2] where E is replaced by an object Z,
which is a finite cell object. The idea is based on the following observation: in a
category enriched over spaces, the homotopy equivalences g: X — Y are precisely
those morphisms for which there exist morphisms f,/4: ¥ — X and homotopies
a: gf ~ ly and B: hg ~ 1y, and that for a given homotopy equivalence g the
“moduli space” of such data (f, &, «, B) is weakly contractible.

Define an object Z in sPSh(A) to be the colimit of the diagram

(502,313) 300 00

I
F[3]«—— F[1] U F[1] —— F[0] L FI0].
Let p: Z — F[0] be the evident projection map, and let i: F[1] — Z be the composite
of 8§12: F[1] — FI[3] with the quotient map F[3] = Z.

10.1 Proposition Let X be a Segal space (ie, an Se| —fibrant object of sPSh(A)).
The map Map(Z, X) — Map(F[1], X) factors through X%V C X[1], and induces a
weak equivalence Map(Z, X) — XV of spaces.

Thus, a Segal space X is a complete Segal space if and only if the square

0000
X[0] X5 X[3]

(XSO,XSO)l l(XBOZ,XBIZ’)
X[0] x X[0] ————— X[1]x X[1]
X 8§00 x §00

is a homotopy pullback.
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Proof Consider the following commutative diagram:

P d T ¢ Xequiv
| | [
0 “ X[3] X0 X1]

l (X(SOZ,X(S”)l l(xsl,xso)

X[0] x X[0] ———— X[1] x X[1]] ———— X[0] x X0]
X800 x §00 X58lxXx8°
Here, the objects O, T, and P are defined to be the pullbacks of the lower left,
upper right, and upper left squares respectively; each of these squares is a homotopy
pullback of spaces, since (X§°2, X§13) and j are fibrations. (The lower right square
is in general not a pullback or a homotopy pullback.) The maps b, ¢, and j are
homotopy monomorphisms. Observe that 0 ~ Map(Z, X), and so we want to prove
that (X §'2)a factors through a weak equivalence k: Q — X°auiv,

The result will follow by showing (i) that the horizontal map (X§'?)a: 0 — X
factors through the inclusion j: XV — X by a map k: QO — X4V (and thus
b: P — Q is a weak equivalence), and (ii) that the right hand rectangle is a homotopy
pullback, ie, that 7" ~ holim(X}, — Xy X Xy < X; X X1). Condition (ii) implies that
ed: P — XUV is a weak equivalence, since it is a homotopy pullback of the identity
map of Xy x Xy. Since fb = ed, it follows that k is a weak equivalence, as desired.

def

The proof of (i) is straightforward. If H is a pointin Q, let g = ((X§'?)a)(H) in
X[1]. Then by construction the class [g] in the homotopy category 4 X admits both
a left and a right inverse, and thus g is a point of XV (See the discussion in [16,
Section 5.5].)

To prove (ii), let

(X8, X895 X81xXx 80
7' = tim(xee X o vio) £ vy x xp).

Since X'§' and X §° are fibrations, this is a homotopy pullback. We need to show that
t: T — T’ is a weak equivalence. Let 7": X[1] x X[1] - X[0] x X[0] x X[0] x X]0],
be the map defined by

7, v) = (X8%u, (X%, (X8V)u, (X)v).
Let 7: T' — (X[0])* be the composite of 7" with the tautological map 7’ — X[1] x

X[1]. Note that both 7 and n¢ are fibrations of spaces.
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Let x = (xg, X1, X2, X3) be a tuple of points in X[0]. The fiber of 7 over x is the
space

Ty & My (xo, x2) x My™ (x1,x2) x My (x1.x3).
The fiber of ¢ over x is the limit

Ty o lim(My (xo, X1, X2, X3) = Mx (x1, Xx3) << M;(quw(xl,xz))-
To prove the proposition, we need to show that for all x, the map #x: Tx — Té induced
by ¢ is a weak equivalence.

Given a point f in My (xo,x1), we write Mx (x¢, x1)s for the path component of
My (x9, x1) containing f. Given sequence of points f; in My (x;—1, X;), we write
Mx (xo.....Xn)f,,....f, for the path component of My (xo,...,x,) which projects
to My (xo,Xx1)f, X+ X My (Xp—1,Xn)s, under the Segal map. We claim that if [ €
My (x9,x1), g € M;qmv(xl,xz), and h € Mx (x,, x3), then the maps

§: My (x0,X1,X2,X3)f,g.0 —> Mx (X0, X1,X2)f,6 X Mx (X1,X3)pog

and  n: My (xo,X1,X2)f,g X Mx (X1,X3)hog
—> M)((X(), Xz)gof X MX(x1 s Xz)g X MX(Xl , X3)hog
are weak equivalences. This is a straightforward calculation, using the ideas of [16,

Proposition 11.6]. The map # is the disjoint union of maps n¢ over the appropriate
path components, and thus the proposition is proved. m|

11 (n+ k, n)—®—spaces

In this section, we do three things. First, we make precise the “informal description” of
(n+k,n)—®—spaces given in Section 1.2. Next, we identify the “discrete” (oo, n)-0-
spaces Proposition 11.24. Finally, we show that “groupoids” in (n + k, n)—®-spaces
are essentially the same as (n + k)—truncated spaces Proposition 11.27, thus proving
the “homotopy hypothesis” for these models.

11.1 Functor associated to a presheaf on ®,

For an object X of sPSh(®,), let X: sPSh(0,)° — Sp denote the functor defined by

def

X(K) = Mapg, (K, X).

The construction X — X is the Yoneda embedding of sPSh(®,) into the category
of Sp—enriched functors sPSh(®,)°® — Sp. The object X is recovered from the
functor X by the formula X (0) ~ X (F9).
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11.2 The discrete nerve

Given a strict n—category C, we define the discrete nerve of C to be the presheaf of
sets dnerve C on ®, defined by

(dnerve C)(0) = St-n—Cat(z,0, C).

Since we can regard presheaves of sets as a full subcategory of discrete presheaves
of simplicial sets, we will regard dnerve as a functor dnerve: St-n—Cat — sPSh(®,).
This functor is fully faithful. Finally, note that there is a natural isomorphism F =
dnerve t, where 7,: ®, — St-n—Cat is the inclusion functor of Corollary 3.10, and
F: ®, — sPSh(®,) is the Yoneda embedding of ®,,.

11.3 The suspension and inclusion functors
For all n > 1 there is a suspension functor
0.0, 1—> 0,

defined on objects by o (8) £ 1](6). Composing suspension functors gives functors

ok: ©,_x —> 0O, for 0 <k <n.

For all n > 1 there is an inclusion functor
T: @1 — B,

which is the restriction of the standard inclusion St-n — 1-Cat — St-n—Cat to ®,_.
Composing inclusion functors gives functors % O,k —> O, for 0 <k <n.

11.4 The category ©,Sp,
For 0 <n < o0, let 7, « be the set of morphisms in sPSh(®,) defined by
JT0,00 =D,
Tn,co =Seq,_; UCptg, |, UV[1|(Ty-1,00) forn > 0.
If also given —2 < k < oo, let 7, x be the set of morphisms in sPSh(®,) defined by

gOk — {aAk-i-Z — Ak+2},

s

Tnk =See,_, UCptg, , UV[1](Ty—1x) forn>0.
In the notation of Section 8, 7, x = (T -1 k)e for n>0.

11.5 Proposition Forall 0 <n < oo and —2 < k =< oo, the presentation (On, T, i)
is cartesian.

Proof Immediate from Theorem 8.1. O
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Let @nSpk = sPSh(@n)J o we call this the (n + k, n)—®—space model category.
We show that the fibrant objects of ®,Sp, are precisely the (n + k,n)—©—spaces
described in Section 1.2.

11.6 The structure of the sets 7,

For n >0 and —2 < k < oo, we have

Cpt
gn ’

TeUT,
and Tk = Tnoo U{(V[1])"(@AKT2 > AKT2)y
where

g = { (V1)K (e 0y |0<k <n r=>2,06;,....0, €0bO,_ys}
and G‘C‘“ ={(VID*(Typ) |0 <k <n}.

11.7 Proposition For 0y, ..., 6, € ob®,_g, the map (V[1])* (se?1=0r) is isomor-
phic to the map

colim(Fa*[1](8;) < Fo*[0] — --- < Fa*[0] - Fo*[1](6,)) — Fo*[r](6:.....6,).

induced by applying Fo* to the maps §'=': [1)(6;) — [r](61.....6,).
Proof Immediate using Lemma 11.10 and Proposition 4.5. |

11.8 The objects Oy and 30,

Fix n > 0. We write Oy for the discrete nerve of the free-standing k —cell in St-n—Cat.
It follows that O ~ Fo*[0] ~ F[1]([1](---[1]([0]))), where o%: ©,_; — ©,. Note
that our usage of O here is slightly different than that described in the introduction,
where Oy was used to mean the object of ®,,, rather than the object of sPSh(®,).

If k > 0, then the free-standing k —cell in St-n—Cat is a k—morphism between two
parallel (k —1)—cells. Let s¢, tx: Or_1 — Oy denote the map between discrete nerves
induced by the inclusion of the two parallel (k — 1)—cells. Equivalently, s and #; are
the maps obtained by applying o%~! to the maps §°,8': [0] — [1] of ©,_.

Let 00y denote the maximal proper subobject of Oy ; that is, 00, C Oy is the
largest sub—®,—presheaf of O; which does not contain the “tautological section”
L € O (c¥[0]). Let eg: 0y — Oy denote the inclusion.
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11.9 Proposition For 1 < k <n, the map
. €k—1 €k—1
colim(Og—y «—— 00g_y — O_1) — 30k
defined by sy, ty: O_1 — Oy is an isomorphism in sPSh(®,,).
By abuse of notation, we write sg, ;: Or_1 — 0O for the inclusion of the two copies
of Ok_1 .

It is clear that dOy is isomorphic to the discrete nerve of the “free-standing pair of
parallel (k — 1)—cells”. Observe that 00y = &.

11.10 Lemma For 6 € ob®,_1, the object V[1|(F60) ~ F([1](0)) ~ Fo(0) as
objects of sPSh(®,).

Proof A straightforward calculation. a

11.11 Proposition For 1 < k < n, the functor V[1]: sPSh(®,_;) — sPSh(®,)
carries the diagram

Sier ks Op—1 = O < 00y, e
up to isomorphism to the diagram

Sk+1-k+1° Ok = Og41 < 0041 t€f41.

Furthermore, V[1](@) = V[1](00y) = 00 .
Proof Again, a straightforward calculation using Lemma 11.10 and Proposition 4.5. O

11.12 Mapping objects between pairs of parallel (k — 1)—cells

Let X bea J5¢—fibrant object in sPSh(6,). We call the space X(Op) = Mapg, (O, X)
the moduli space of k—cells of X . We call the space X (00y) = Mapg, (30, X) the
moduli space of pairs of parallel (k — 1)—cells. (These are the spaces denoted X (Oy)
and X (dOy) in the introduction.)

Observe that the maps sy, #x: Or_1 — 00) determine an isomorphism
X (00r) = X (Ok—1) X330,y X (Ok—1)-
In particular, X (00;) — X (Og_1) x X (Oj_;) is a monomorphism, so that a point

of X (d0y) can be named by a suitable pair of points in X (Ox_1).
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Suppose 1 <k < n, and suppose given ( fo, f1) € X (00)). We write mapy (fo, /1)
for the object of sPSh(®,,_;) defined by

mapx (fo. /1)(0) = lim(X (V[1F(F))) - X (VIIIF(2)) ~ X (30%) < {(fo. /1)})-

Observe that these objects can be obtained by iterating the mapping object con-
struction of Section 4.11. In particular, if (xg, x;) € X[0] x X[0] &~ X (d0;), then
mapy (xo, X1) &~ My (xg,x1) as objects of sSPSh(®,_1).

11.13 Lemma If X is a T3¢ —fibrant object of sPSh(®j), then mapy (fo. f1) is a
gfle—k —fibrant object of sSPSh(®,,_).

Proof Immediate from the fact that J5¢ D V1 (gie_ 0 O

11.14 The moduli space X(Oy)*"" of k—-equivalences

Let X bea I f,e—ﬁbrant_ object of sPSh(®,,), and suppose 1 < k <n. Given a k—cell
in X, ie, a point g in X (Oy), let
bo = (Xs)(g) and by = (X1)(g)
be the “source” and “target” (k — 1)—cells of g, and let
ao = (Xsp—1)bo = (Xsp—1)by and ay = (Xtx_1)bo = (X1x_1)b,

be the “source” and “target” (k —2)—cells of by and b;. Let Y = mapy (ag,a;) as
an object of sPSh(®,_x1); the presheaf Y is Q‘fl‘ikﬁ—ﬁbrani bﬁemma 11.13.
Then by and b; are “objects” of Y, (that is, points in Y[0] = Y (Op)), and g is a
“l—cell” of Y, (that is, a point of ¥ (Oy)). Recall (Section 7.3) that g thus represents
an element [g] of the homotopy category AY of Y.

Say that a k—cell g of X is a k—equivalence if it represents an isomorphism in the
homotopy category /Y of ¥ = mapy (ao,a1). Let X (Or)?™Y C X (0Oy) denote the
union of path components of X (Oy) which contain k—equivalences.

11.15 Characterization of 75¢ U TP _fibrant objects
Recall the map i: F[1] - E of Section 7.6.

11.16 Proposition For all 1 <k <n, the map
X (v (@) XV E)) — X (VN (TR F1) ~ X (Oy)

factors through the subspace X (04)%"Y C X (0Oy) and induces a weak equivalence
X(VIIF~H(THE)) — X (Op)*™.
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Proof Let (ag,a;) be a pointin X (d0k_;) and let ¥ = mapy (o, a1). Since Y is
T ,Sle_ k —fibrant, it is in particular Seg,_, _, —fibrant, and thus the map

Mapg, (T4, Y): Mapg _, (T4E,Y) — Mapg _, (T¢F[1].Y) ~ T*Y[1]

factors through YV C 7*Y[1], and induces a weak equivalence Map(T4E,Y) —
Y edu¥ of spaces Proposition 7.8.

Now consider the diagram:

X (V11 (T)

X (V1IN (14E)) X (v (1 QD))

\/

X (V1))

Over (ag.a;) € X(00;_1) ~ X (V[1]¥~1(2)), the map induced by X (V[1]¥~1(T4i))
on fibers is isomorphic to the map Mapg _, (T4i,Y), and the result follows. O

11.17 Corollary Let X be a g,sf—ﬁ_brant object of sPSh(®;). Then X is 951”—
fibrant if and only if the maps X (ix): X (Ox—1) — X (Ox)®9"" are weak equivalences
for1 <k <n.

Proof Immediate from the structure of 95‘” Section 11.6. a

Thus, the T3¢ U ﬁgpt—ﬁbrant objects of sPSh(®,,) are precisely the (oo, n)—®—spaces.

We record the following.

11.18 Proposition If X is a (0o, n)—O—space, and (fy. f1) in X (d0y) is a pair of
parallel (k — 1)—cells of X', then mapx ( fo, f1) is an (0o, n — k)-® —space.

11.19 Characterization of &k —truncated objects

Let X be an (00, n)—O-space (ie, a Ty 0o = To° U OJSpt—ﬁbrant object in sPSh(®,)).
Let (fo, f1) be apointin X (d0,). Then mapy ( fo. f1) is an object of sPSh(©) ~ Sp.
Furthermore, if K is a space, then the fiber of X (V[1]"(K)) — X (V[1](®)) ~
X (30,) over (fo, f1) is naturally isomorphic to Map(K, mapx (fo. f1)).

11.20 Proposition A 7, o, —fibrant object X of sPSh(®,) is T, y —fibrant if and
only if for all (fo, f1) in X (3Op), the space mapy (fo, f1) is k —truncated.
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Proof On fibers over ( fy, f1), the map
XV 2) — X @a*+?))
induces the map

Map(A¥*2 mapy ( fo. £1)) — Map(dA* 2 mapx (fo. £1))

of spaces. |

11.21 Rigid n—categories

The following proposition characterizes the discrete J5¢—fibrant objects of sPSh(®,).

11.22 Proposition The functor dnerve induces an equivalence between St-n—Cat
and the full subcategory of discrete T5¢—fibrant objects of sPSh(©,).

Proof A discrete presheaf X is $—fibrant if and only if Map(s, X): Map(S’, X) —
Map(S, X) is an isomorphism for all s: S — S’ in &. It is clear that if ¥ = 3¢, then
this condition amounts to requiring that X be in the essential image of dnerve. O

Let C be a strict n—category. We define the following notions for cells in C, by
downwards induction.

(1) Let g: x— y bea k-morphismin C. If | <k <n,wesay g is a k—equivalence
if there exist k—cells f,h: y — x in C such that gf ~ 1, and hg ~ 1. If
k =n, we say g is a k—equivalence if it is a k—isomorphism.

(2) Let f,g: x — y be two parallel k—cells in C. If 0 < k < n, we say that f
and g are equivalent, and write f ~ g, if there exists a (k + 1)—equivalence
h: f— g.If k =n, we say that f and g are equivalent if there are equal.
11.23 Proposition Let C be a strict n—category. The following are equivalent.
(1) Forall 1 <k <n, every k—equivalence is an identity k —morphism.

(2) Forall 1 <k <n, every k—isomorphism is an identity k —morphism.

Proof It is clear that (1) implies (2). To show that (2) implies (1), use downward
induction on k. ad

By a rigid n—category, we mean a strict n—category C satisfying either of the equivalent
conditions of Proposition 11.23.
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11.24 Proposition Let C be a strict n—category. The discrete nerve dnerve C is an

(00, n)—O—space (ie, is T5¢ U (TCpt —fibrant) if and only if C is a rigid n—category.

Proof Let C be a strict n—category. By Proposition 11.23 dnerve C is J Se —fibrant.
It will also be I, CP'_fibrant if and only if X (Of)%" — X (O) is an 1som0rphlsm for
all 1 <k <n, and the result follows from the observation that X (O )" corresponds
precisely to the set of k—isomorphisms in C. O

11.25 Groupoids and the homotopy hypothesis

For n > 0, let

Gpd def
o —

O~Gpd def def 5 d@ [ ] (ngd

T

using the definition of Gpd of Section 9. Explicitly, we have
TP ~ (VI (Tug) |0 <k <n},

where Tyq: TuF[1] - T4 E is as in Section 9.

Let ©,Gpd;, & sPSh(@,,)‘“J ot

KUT,

We call this the (n+k, n)—©—groupoid model category. The fibrant objects of ®,Gpd;
are called (n + k, n)—®—groupoids; they form a full subcategory of the category of
(n + k, n)—O-spaces.

11.26 Proposition Let n > 0. Let X be a (oo, n)—®—space. The following are
equivalent.

(1) The object X is I P _fibrant.
(2) Forall 0 <k <n, the maps X (iy): X (Ox) — X (Oy41) are weak equivalences
of spaces.

(3) Forall 8 € ob®,,, the map Xp: X[0] - X6 induced by p: 8 — [0] is a weak
equivalence of spaces.

Proof It is clear from the definition of I Gpd that (1) and (2) are equivalent. It is imme-

diate that (3) implies (2); it remains to show that (1) implies (3), which we will show by

induction on n. Note that there is nothing to prove if n = 0. Since J Sp d 2 Gpdg,_,»

we see that the object T*X is a (oo, 1)-®—groupoid, which is to say, a groupoid-

like complete Segal space, and thus all maps (7*X)§%: (T*X)[0] — (T*X)[m] are
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weak equivalences of spaces [16, Corollary 6.6]. Therefore, X[0] — X6 is a weak
equivalence for all 6 = [m]([0],...,[0]), m > 0. Now consider the diagram

X[0] —— X[m]([0], ..., [0]) —— X[11([0]) x x[o] - - - X x70] X [m]([0])
\J l l”
X[m](6y,....0m) —— X[11(01) X x10] - - X x70] X [1](Om)

where 6q,...,0,; € 0b®,_;. To show that ¢ is a weak equivalence, it suffices to
show that b is, so it suffices to show that X[1](p): X[1]([0]) — X[1](0) is a weak
equivalence of spaces for all 6 € ®,_;. Consider the diagram:

ooy — Y F ey
X(V1(©)

The map X (V[1](Fp)) is isomorphic to X[1](p): X[1]([0]) = X[1](6). Let (xo,x1)
be a point in X (d0;) ~ X (V[1](@)); the map induced on fibers over (xgo,x;) by
X (V[1](Fp)) is isomorphic to

mapy (xo, x1)(p): mapy (xo, x1)([0]) - mapy (xg, x1)(6).

It is clear that mapy (xo, x1) is a (00, n—1)-®—groupoid, and thus mapy (xo, X1)(p)
is a weak equivalence of spaces by the inductive hypothesis. O

Let c4: Sp 2 sPSh(®,) denote the adjoint pair where the left adjoint cx sends a space
X to the constant presheaf with value X .

11.27 Proposition (1) The adjoint pair

cx: stsPSh((a,,);‘j ot 1C*

ﬂ,OOU"OIﬂ
is a Quillen equivalence.
(2) For all =2 < k < oo the adjoint pair

inj
c#: Sppak 2 sPSh(@n)gi U :c*
. n

is a Quillen equivalence.

Proof We first consider (1). Observe that cx preserves cofibrations, and that caries all
spaces to Ty 00 U ggpd—ﬁbrant objects by Proposition 11.27, and thus c4 preserves

Geometry & Topology, Volume 14 (2010)



570 Charles Rezk

weak equivalences. Therefore the pair is a Quillen pair, and it is a straightforward
consequence of Proposition 11.27 that the natural map X — c¢*c X is always weak
equivalence, the natural map cyc*Y — Y is a weak equivalence for all 7, oo U ggpd—

local objects Y, and thus the pair is a Quillen equivalence.

The proof that we get a Quillen equivalence in (2) proceeds in the same way, once we
observe that ¢y carries n + k—truncated spaces to J, 5 U g,c,}pd—local objects. O
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