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The codimension-one cohomology of SLnZ

THOMAS CHURCH

ANDREW PUTMAN

We prove that H.
n
2/�1.SLn ZIQ/D 0 , where

�
n
2

�
is the cohomological dimension of

SLn Z , and similarly for GLn Z . We also prove analogous vanishing theorems for
cohomology with coefficients in a rational representation of the algebraic group GLn .
These theorems are derived from a presentation of the Steinberg module for SLn Z
whose generators are integral apartment classes, generalizing Manin’s presentation
for the Steinberg module of SL2 Z . This presentation was originally constructed by
Bykovskiı̆. We give a new topological proof of it.
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1 Introduction

The cohomology of SLnZ plays a fundamental role in many areas of mathematics.
The Borel stability theorem [2] determines Hk.SLnZIQ/ when k is sufficiently small
(conjecturally for k < n�1). However, little is known outside this stable range. Recall
that if � is a virtually torsion-free group, the virtual cohomological dimension of � is

vcd.�/´maxfk j Hk.�IV ˝Q/¤ 0 for some � –module V g:

Borel and Serre [3] proved that

vcd.SLnZ/D vcd.GLnZ/D
� n
2

�
:

The cohomology of SLnZ in degrees near
�
n
2

�
is thus the “most unstable” cohomology.

In 1976, Lee and Szczarba [11, Theorem 1.3] proved that H.
n
2/.SLnZIQ/D 0. This

vanishing was recently extended to H.
n
2/.SLnZIV�/D 0 for rational representations

V� of the algebraic group GLn by Church, Farb and Putman [8].

Our main theorem concerns the cohomology in codimension 1. For �D .�1; : : : ; �n/
in Zn with �1 � � � � � �n , let V� be the rational representation of GLnQ with highest
weight �. Define k�k D

Pn
iD1.�i ��n/.
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1000 Thomas Church and Andrew Putman

Theorem A (codimension-one vanishing theorem) For any rational representation V�
of GLnQ, we have

H.
n
2/�1.SLnZIV�/D H.

n
2/�1.GLnZIV�/D 0 for all n� 3Ck�k:

In particular,

H.
n
2/�1.SLnZIQ/D H.

n
2/�1 .GLnZIQ/D 0 for all n� 3:

Remark 1.1 Theorem A proves the k D 1 case of a conjecture of Church, Farb and
Putman [7], which asserts that, for all k � 0, we have H.

n
2/�k.SLnZIQ/ D 0 for

n > kC 1.

Steinberg module To compute H.
n
2/�k.SLnZIQ/ for small k , the crucial object to

understand is the Steinberg module, which we now discuss. The Tits building Tn for
GLnQ is the simplicial complex whose p–simplices are flags of subspaces

0¨ V0 ¨ � � �¨ Vp ¨Qn:

By the Solomon–Tits theorem, Tn is homotopy equivalent to an infinite wedge of
.n�2/–dimensional spheres. The group GLnQ naturally acts on Tn by simplicial
automorphisms, and the Steinberg module for GLnQ is the GLnQ–module

Stn´ zHn�2.TnIZ/:

Borel–Serre duality While SLnZ does not satisfy Poincaré duality, Borel and Serre
[3] proved that it does satisfy virtual Bieri–Eckmann duality with rational dualizing
module Stn . This means that, for any Q SLnZ–module V and any k � 0, we have

(1) H.
n
2/�k.SLnZIV /Š Hk.SLnZIStn˝V /:

A similar result holds for GLnZ (with the same dualizing module Stn ).

Presentation of Stn To prove Theorem A, we compute the right-hand side of (1) using
a presentation of the GLnZ–module Stn . The following theorem was originally proved
by Bykovskiı̆ [6] and generalizes the presentation of St2 given by Manin in 1972 [13,
Theorem 1.9]. The second purpose of this paper is to offer a new proof of it.

Theorem B (presentation of Stn ) For n� 2, the Steinberg module Stn is the abelian
group with generators Œv1; : : : ; vn�, one for each ordered basis fv1; : : : ; vng of Zn ,
subject to the following three families of relations:

(R1) Œv1; v2; v3; : : : ; vn�D Œv1; v1C v2; v3; : : : ; vn�C Œv1C v2; v2; v3; : : : ; vn�.
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The codimension-one cohomology of SLnZ 1001

(R2) Œ˙v1;˙v2; : : : ;˙vn�D Œv1; v2; : : : ; vn� for any choices of signs.

(R3) Œv�.1/; v�.2/; : : : ; v�.n/�D .�1/
� � Œv1; v2; : : : ; vn� for any � 2 Sn .

The GLnZ–action on Stn is defined by M � Œv1; : : : ; vn�D ŒM � v1; : : : ;M � vn�.

The relation (R2) can be replaced by the one relation Œ�v1;v2; : : : ;vn�D Œv1;v2; : : : ;vn�.
Relations (R1) and (R2) then involve only the first two vectors; these relations are the
“stabilization” of Manin’s relations for St2 from GL2Z to GLnZ. In this light, what
Theorem B says is that no additional relations are needed to present Stn , once the
permutations Sn are taken into account.

Apartment classes and Bykovskiı̆’s proof of Theorem B The general theory of
spherical buildings automatically provides a generating set for Stn . Namely, every
rational basis fw1; : : : ; wng for Qn determines a spherical apartment in Tn homeomor-
phic to Sn�2 whose fundamental class determines an apartment class Œw1; : : : ; wn�
in zHn�2.TnIZ/D Stn , and the general theory implies that Stn is generated by these
rational apartment classes. However, the generating set in Theorem B is much smaller:
it consists only of the integral apartment classes Œv1; : : : ; vn�, ie those for which
fv1; : : : ; vng is an integral basis for Zn . That Stn is generated by these integral
apartment classes was proved by Ash and Rudolph in 1979 [1]. To do this, they gave
an algorithm for expressing an arbitrary rational apartment class as a sum of integral
apartment classes.

Bykovskiı̆ proved Theorem B by carefully examining Ash and Rudolph’s algorithm,
which requires making many arbitrary choices and showing that the only ambiguity in
its output comes from the relations in Theorem B. We remark that from this perspective,
Theorem B appears as the integral analogue of Lee and Szczarba’s presentation of Stn
as a GLnQ–module [11].

Our proof of Theorem B Our proof of Theorem B is quite different. It is inspired by
our alternate proof of Ash and Rudolph’s theorem in Church, Farb and Putman [8] and
by Manin’s original proof of Theorem B for St2 . We use topology to show directly that
the homology of Tn is generated by integral apartment classes; nonintegral apartment
classes never show up in our proof. The key is the complex of partial augmented frames
for Zn defined below, which provides an “integral model” for the Tits building Tn . We
begin with the more familiar complex of partial frames.

Definition 1.2 Let V be a finite-rank free abelian group.

� A line in V is a 2–element set fv;�vg of primitive vectors in V ; we denote it
by v˙ .
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1002 Thomas Church and Andrew Putman

� A frame for V is a set fv˙1 ; : : : ; v
˙
n g of lines such that fv1; : : : ; vng is a basis

for V .

� A partial frame for V is a frame for a direct summand of V , or equivalently a
set of lines in V that can be completed to a frame for V .

The complex of partial frames for Zn , denoted Bn , is the simplicial complex whose
p–simplices are partial frames for Zn of cardinality pC 1.

The complex Bn is .n�1/–dimensional, and Maazen [12] proved that Bn is .n�2/–
connected. This connectivity is what we used in [8] to prove Ash and Rudolph’s
theorem on generators for Stn . However, to obtain a presentation for Stn this is not
enough; we need to attach higher-dimensional cells to Bn to improve its connectivity.

Improving connectivity: the complex of partial augmented frames To motivate
the cells we add, we recall how Manin found his presentation for St2 .

The first key step is to show that in an appropriate sense, the first homology H1.B2IZ/
measures exactly the additional relations beyond (R2) and (R3) needed to present St2 .
This requires two observations:

(1) The Tits building T2 can be identified with the 0–skeleton of B2 , giving an iden-
tification of the reduced chains zC0.B2IZ/ with St2 D zH0.T2IZ/D zC0.T2IZ/.

(2) The complex B2 is the graph in Figure 1.

0=1

1=0

1=1�1=1

1=2

2=1

�1=2

�2=1

Figure 1: The complex B2 is isomorphic to the Farey graph under the identi-
fication that takes the line .a; b/˙ 2 Z2 to a

b
2Q[f1g
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� The vertices are lines .a; b/˙ , where .a; b/ 2 Z2 is a primitive vector.
� Vertices .a; b/˙ and .c; d/˙ are joined by an edge exactly when the pair
f.a; b/; .c; d/g is a basis for Z2 , or equivalently when ad � bc D˙1.

If we identify the line .a; b/˙ 2 Z2 with a
b
2 Q[ f1g, the complex B2 is

exactly the classical Farey graph; see Figure 1. This graph is connected, but not
simply connected.

Combining these two observations, we see that

H1.B2IZ/D ker
�
C1.B2IZ/� zC0.B2IZ/Š St2

�
:

The group C1.B2IZ/ is precisely the abelian group given by the presentation with the
same generators as in Theorem B, but where we impose only the relations (R2) and (R3).
Indeed, this is simply the fact that each ordered basis fv1; v2g of Z2 determines an
edge of B2 , and this correspondence is unique up to negating (R2) or exchanging (R3)
the basis vectors. We conclude that H1.B2IZ/ measures whatever additional relations
beyond (R2) and (R3) are needed to present St2 , as claimed.

The second key step is that a visual examination of Figure 1 suggests a natural generating
set for H1.B2IZ/, namely the boundaries of the evident triangles in the Farey graph.
Under our identification of B2 with the Farey graph, these triangles consist of triples of
vertices fv˙1 ; v

˙
2 ; v

˙
3 g such that fv1; v2g is a basis for Z2 and ˙v1˙v2˙v3D 0 for

some choice of signs (so fv2; v3g and fv1; v3g are also bases for Z2 ). By reordering
and negating we can assume that v3 D v1C v2 . The relation in St2 corresponding to
the boundary of the triangle fv˙1 ; v

˙
2 ; .v1C v2/

˙g is

Œv1; v1C v2�� Œv1; v2�C Œv1C v2; v2�D 0;

which is precisely the relation (R1). Manin’s theorem, that the relations (R1) together
with (R2) and (R3) suffice to present St2 , thus follows from the fact that attaching the
above triangles to the Farey graph yields a simply connected simplicial complex. In
fact, it yields a contractible complex.

This motivates the following definition:

Definition 1.3 Let V be a finite-rank free abelian group.
� An augmented frame for V is a collection fv˙0 ; v

˙
1 ; : : : ; v

˙
n g of lines in V such

that fv˙1 ; : : : ; v
˙
n g is a frame for V and ˙v0˙v1˙v2 D 0 for some choice of

signs.
� A partial augmented frame for V is a set of lines in V that is either a frame or

an augmented frame for a direct summand of V ; equivalently, a set of lines is a
partial augmented frame for V if it can be completed to an augmented frame
for V .
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1004 Thomas Church and Andrew Putman

The complex of partial augmented frames for Zn , denoted BAn , is the simplicial
complex whose p–simplices are the partial augmented frames for Zn of cardinality
pC 1.

The final main theorem of this paper is as follows; the definition of a Cohen–Macaulay
complex is recalled in Section 2.1 below. We remark that this theorem plays a fun-
damental role in the second author’s recent work with Day on the second homology
group of the Torelli subgroup of Aut.Fn/; see Day and Putman [9].

Theorem C (BAn is Cohen–Macaulay) For all n� 2, the complex BAn is Cohen–
Macaulay of dimension n. In particular, BAn is .n�1/–connected.

Remark 1.4 Since BAn is n–dimensional, the connectivity in Theorem C cannot be
improved unless BAn is contractible. Since BA2 is the complex obtained by filling in
the triangles in the Farey graph, the complex BA2 is contractible. However, it seems
unlikely that BAn would be contractible for any n� 3.

Outline The logical relation between our three main theorems is that

Theorem C D) Theorem B D) Theorem A:

However, the proof of Theorem C occupies more than half of the paper, so we defer
the proof of Theorem C until Section 4. We prove Theorem B in Section 2 and prove
Theorem A in Section 3, both assuming Theorem C.

Acknowledgments We are very grateful to Benson Farb, who was closely involved
during the development of these results, but declined to be listed as a coauthor. Church
was supported by NSF grants DMS-1103807 and DMS-1350138 and the Alfred P Sloan
Foundation. Putman was supported by NSF grant DMS-1255350 and the Alfred P
Sloan Foundation.

2 Generators and relations for the Steinberg module

In this section, we derive Theorem B from Theorem C, which will be proved in Section 4.
We begin in Section 2.1 with some basic results about posets. We then prove some
results about linear algebra over Z in Section 2.2. Finally, we prove Theorem B in
Section 2.3.
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2.1 The topology of posets

Recall that a d –dimensional complex is d –spherical if it is .d�1/–connected, in
which case it is homotopy equivalent to a wedge of d –spheres. A simplicial complex X
is Cohen–Macaulay (abbreviated CM) of dimension d if the following conditions hold:

� X is d –spherical.

� For every .k�1/–simplex �k�1 of X, the link LinkX .�k�1/ is .d�k/–spherical.

Remark 2.1 This should be compared with the definition of a combinatorial d –
manifold, which is a d –dimensional simplicial complex M such that for every .k�1/–
simplex �k�1 , the link LinkM .�k�1/ is a combinatorial .d�k/–sphere.

Let A be a poset. Recall that the geometric realization of A is the simplicial complex
jAj whose k–simplices are chains a0 Œ a1 Œ � � � Œ ak in A. Whenever we say that
A has some topological property, we mean that jAj has that topological property. In
particular, we define H�.A/ to equal H�.jAj/. The following is a key example:

Example 2.2 Let X be a simplicial complex. Define P.X/ to be the poset of simplices
of X under inclusion. Then jP.X/j is isomorphic to the barycentric subdivision of X .
In particular, there is a canonical isomorphism H�.P.X//Š H�.X/.

For a 2 A, the height of a , denoted by ht.a/, is the maximal k such that there exists
a chain a0 Œ a1 Œ � � �Œ ak D a in A. If B is another poset and F W A! B is a poset
map, for b 2 B we define F�b to be the subposet fa 2 A j F.a/ � bg of A. With
these definitions, we have the following proposition, which slightly generalizes a result
of Quillen:

Proposition 2.3 Fix m � 0 and let F W A! B be a map of posets. Assume that B
is CM of dimension d and that, for all b 2 B , the fiber F�b is .ht.b/Cm/–spherical
(or more generally, that zHq.F�b/ D 0 for q ¤ ht.b/ C m). Then F W A ! B is
.dCm/–acyclic. In particular, F�W zHd .A/! zHd .B/ is an isomorphism if m� 1.

Proof This can be proved exactly like [14, Theorem 9.1]. The necessary conditions
on B are satisfied since it is CM. Quillen’s hypothesis that F�b is ht.b/–spherical is
used only to conclude that zHq.F�b/D 0 for q ¤ ht.b/, so we can replace this with
the hypothesis that zHq.F�b/D 0 for q ¤ ht.b/Cm. We conclude that the spectral
sequence E2pq D)HpCq.A/ of [14, (9.3)] vanishes in the range pCq < dCm, except
for E2

d0
D Hd .B/. Therefore F W A! B is .dCm/–acyclic, as claimed.
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1006 Thomas Church and Andrew Putman

2.2 Linear algebra over Z

We now record some simple facts about linear algebra over Z that are classical and
well-known to experts (but whose proofs we include for completeness).

Lemma 2.4 If V is a subspace of Qn , then V \Zn is a direct summand of Zn .

Proof Write V as V D ker. / for some linear map  W Qn ! Qn , and set W D
 .Zn/�Qn . Since V \Zn D ker. jZn/, we have a short exact sequence

0! V \Zn! Zn!W ! 0

of Z–modules. Since W is a Z–submodule of Qn , it must be torsion-free. From this
and the fact that W is finitely generated, we deduce that W is a free Z–module, and
hence the above short exact sequence splits. The lemma follows.

Corollary 2.5 Let X be the set of subspaces of Qn and let X 0 be the set of direct
summands of Zn . Then the map X ! X 0 taking V 2 X to V \Zn 2 X 0 is a bijection.

Proof Lemma 2.4 implies that the indicated map lands in X 0 ; the inverse is the map
X 0! X taking A 2 X 0 to A˝Z Q 2 X .

Lemma 2.6 Let A and B be direct summands of Zn such that A� B . Then A is a
direct summand of B .

Proof Since A is a direct summand of Zn , the quotient Zn=A is torsion-free. The quo-
tient B=A is torsion-free, being contained in Zn=A. Since B=A is finitely generated,
it is in fact free. Hence the short exact sequence

0! A! B! B=A! 0

splits, as desired.

2.3 The proof of Theorem B

We now prove Theorem B. During our proof of Theorem B, we will use Theorem C in
two different places; the proof of Theorem C is postponed until Section 4.

The subcomplex BA0
n We begin by defining a subcomplex BA0n of BAn . Consider

a simplex � Dfv˙1 ; : : : ; v
˙
k
g of BAn . By definition, the submodule spanZ.v1; : : : ; vk/

of Zn is a direct summand (of rank k if � is a partial frame and of rank k�1 otherwise).
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Let BA0n be the subcomplex of BAn consisting of simplices �Dfv˙1 ; : : : ; v
˙
k
g of BAn

such that spanZ.v1; : : : ; vk/ is a proper direct summand of Zn . The only simplices
that are omitted from BA0n are the frames of Zn (which are .n�1/–simplices) and the
augmented frames of Zn (which are n–simplices).

The proof now has three main steps.

Step 1 The abelian group described by the presentation in Theorem B coincides with
the relative homology Hn�1.BAn;BA0nIZ/.

To prove this, we will compute the relative homology via the relative simplicial chain
complex C�.BAn;BA0n/. Since the .n�2/–skeleton of BAn is contained in BA0n , we
have Ck.BAn;BA0n/D 0 for k � n� 2. It follows that

Hn�1.BAn;BA0nIZ/D coker
�
Cn.BAn;BA0n/

@
�!Cn�1.BAn;BA0n/

�
:

Define I0 D Cn�1.BAn;BA0n/ and I1 D Cn.BAn;BA0n/. Our goal is to describe I0
and I1 and the differential @.

The simplices that contribute to I0 are the .n�1/–simplices of BAn that do not lie
in BA0n , ie those corresponding to frames fv˙1 ; : : : ; v

˙
n g for Zn . To specify such

a frame, it is enough to give the vectors v1; : : : ; vn . The only ambiguity is that
multiplying the vectors vi by ˙1 does not change the frame, nor does permuting the
vectors; however, permuting the vectors does change the orientation of the corresponding
simplex. We deduce that I0 is the abelian group with generators the set of formal
symbols hhv1 : : : ; vnii for bases fv1; : : : ; vng of Zn subject to the following relations:

(S2) hh˙v1;˙v2; : : : ;˙vnii D hhv1; v2; : : : ; vnii for any choices of signs.

(S3) hhv�.1/; v�.2/; : : : ; v�.n/ii D .�1/� � hhv1; v2; : : : ; vnii for any � 2 Sn .

The simplices that contribute to I1 are the n–simplices of BAn that do not lie in BA0n
(a vacuous condition since BA0n does not contain any n–simplices). These correspond
to augmented frames fv˙0 ; : : : ; v

˙
n g for Zn . By definition, fv1; : : : ; vng is a basis

for Zn and ˙v0˙ v1˙ v2 D 0 for some choice of signs. Multiplying v0 , v1 and v2
by appropriate choices of signs, we can arrange that v0 D v1C v2 . For 3 � i � n,
the set fv0; : : : ; yvi ; : : : ; vng spans a proper direct summand of Zn , so this term of the
boundary vanishes in I0 . This implies that under the boundary map @, the generator
of I1 corresponding to the augmented frame f.v1C v2/˙; v˙1 : : : ; v

˙
n g has image in

I0 equal to

hhv1; : : : ; vnii � hhv1C v2; v2; : : : ; vniiC hhv1C v2; v1; v3; : : : ; vnii:
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Applying the relation (S2) and rearranging, we see that Hn�1.BAn;BA0nIZ/Dcoker.@/
is the quotient of I0 by the set of relations

(S1) hhv1; v2; v3; : : : ; vnii D hhv1; v1C v2; v3; : : : ; vniiC hhv1C v2; v2; v3; : : : ; vnii.

The relations (S1), (S2) and (S3) correspond exactly to the relations (R1), (R2) and
(R3) in Theorem B, yielding the identity claimed in Step 1.

Step 2 We have Hn�1.BAn;BA0nIZ/Š zHn�2.BA0nIZ/.

This is our first invocation of Theorem C, which states that BAn is CM of dimension n.
In particular,

Hn�1.BAnIZ/D Hn�2.BAnIZ/D 0:

From the long exact sequence for relative homology, we obtain the desired isomorphism.

Step 3 We have zHn�2.BA0nIZ/Š Stn .

Let Tn denote the poset of proper nonzero direct summands of Zn under inclusion. By
Corollary 2.5, the poset Tn is isomorphic to the poset of proper nonzero Q–subspaces
of Zn , so its geometric realization jTnj can be identified with the Tits building Tn
from the introduction, whose homology is the Steinberg module. In other words,

zHn�2.TnIZ/Š zHn�2.TnIZ/D Stn:

Recall that P.BA0n/ is the poset of simplices of BA0n . There is a poset map

F W P.BA0n/! Tn
defined by

F.fv˙1 ; : : : ; v
˙
k g/D spanZ.v

˙
1 ; : : : ; v

˙
k /:

We remark that F can only be defined on BA0n and not on BAn since Tn consists of
proper direct summands. To prove the isomorphism claimed in Step 3, we will use
Proposition 2.3 (with d D n� 2 and mD 1) to prove that F induces an isomorphism
F�W zHn�2.BA0n/

Š
�! zHn�2.TnIZ/.

We need to verify that F satisfies the conditions of Proposition 2.3. The Solomon–Tits
theorem states that Tn is CM of dimension n� 2 (see [4, Remark IV.5.3, page 93]
or [14, Example 8.2], for example). It remains to verify the second condition of
Proposition 2.3 for each direct summand V 2 Tn .

If rank.V /D 1, the fiber F�V is easy to describe: a rank-1 direct summand V contains
only one line, so F�V is a single point. In particular, the hypothesis zHq.F�V /D 0
holds for all q in this case.
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Now consider a direct summand V with rank.V /D l � 2. A partial augmented frame
fv˙1 ; : : : ; v

˙
k
g lies in F�V if and only if spanZ.v

˙
1 ; : : : ; v

˙
k
/ is contained in V ; by

Lemma 2.6, this holds if and only if spanZ.v
˙
1 ; : : : ; v

˙
k
/ is a direct summand of V .

In other words, the poset F�V consists of those collections of lines that form a partial
augmented frame for V . Choosing an isomorphism V Š Zl , we therefore obtain an
identification

F�V Š BAl :

We now invoke Theorem C for the second time: it states that BAl is l –spherical,
so F�V is rank.V /–spherical. Since ht.V / D rank.V /� 1, this verifies the desired
hypothesis for F�V .

3 The vanishing theorem

In this section, we use Theorem B to prove Theorem A. The actual proof is contained in
Section 3.2. This is preceded by Section 3.1, which contains some preliminary lemmas.

3.1 Ingredients of the vanishing theorem

This section contains two ingredients needed for the proof of Theorem A. The first is
as follows:

Lemma 3.1 Let G be a group and let M and N be G–modules. Assume that N is a
vector space over a field of characteristic 0. Also, let

� � � ! F2! F1! F0!M ! 0

be a resolution of M by flat G–modules. Then the homology of the chain complex

� � � ! F2˝G N ! F1˝G N ! F0˝G N ! 0

equals H�.GIM ˝N/, where G acts diagonally on M ˝N .

Proof This combines the statements of [5, Propositions III.2.1 and III.2.2].

To make Lemma 3.1 useful, we need a simple way of recognizing flat G–modules.
Our second lemma is such a criterion:

Lemma 3.2 Let G be a group, let X be a simplicial complex on which G acts
simplicially, and let Y be a subcomplex of X which is preserved by the G–action.
For some n � 0, assume that the setwise stabilizer subgroup G� is finite for every
n–simplex � of X that is not contained in Y . Then the G–module Cn.X; Y IQ/ of
relative simplicial n–chains is flat.
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Proof For an oriented n–simplex � of X that is not contained in Y , let Œ�� be the
associated basis element of Cn.X; Y IQ/. Define M� � Cn.X; Y IQ/ to be the span
of fŒg.�/� j g 2Gg, so M� is a G–submodule of Cn.X; Y IQ/. As in the statement
of the lemma, G� will denote the setwise stabilizer subgroup of � . This subgroup
may reverse the orientation of � . Let Q� be the G� –module whose underlying vector
space is Q but where an element of G� acts by ˙1 depending on whether or not it
reverses the orientation of � . We then have that

M� Š IndGG� Q� :

Since Q� is an irreducible representation of the finite group G� , it is a direct summand
of QŒG� �. It follows that M� is a direct summand of

IndGG� QŒG� �ŠQŒG�:

Since QŒG� is a localization of the free G–module ZŒG�, it is a flat G–module. We
deduce that M� is a flat G–module. Choosing representatives for the G–orbits of
n–simplices of X not lying in Y determines an isomorphism

Cn.X; Y IQ/Š
M

�2.X.n/�Y .n//=G

M� ;

so Cn.X; Y IQ/ is a flat G–module, as desired.

3.2 The proof of Theorem A

We now prove Theorem A. We begin by recalling its statement. Fixing some � 2 Zn

and some n� 3Ck�k, this theorem asserts that

H.
n
2/�1.SLnZIV�/D H.

n
2/�1.GLnZIV�/D 0:

Since V� is a vector space over a field of characteristic 0, the basic properties of the
transfer map (see [5, Chapter III.9]) show that the vector space H.

n
2/�1.GLnZIV�/ is a

subspace of H.
n
2/�1.SLnZIV�/, so it is enough to deal with SLnZ. As we discussed in

the introduction, Borel and Serre [3, Equation (1)] proved that there is an isomorphism

H.
n
2/�k.SLnZIV�/Š Hk.SLnZIStn˝V�/ for k � 0:

Let BA0n be the subcomplex of BAn introduced in Section 2.3. Define IQ
0 D

Cn�1.BAn;BA0nIQ/ and IQ
1 D Cn.BAn;BA

0
nIQ/, and set StQn D Stn˝Q. Since

Stn˝V� D StQn ˝V� , our goal is to show that

(2) H1.SLnZIStQn ˝V�/D 0:
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Since Q is a flat Z–module, it follows from the proof of Theorem B in Section 2.3
that there is an exact sequence

IQ
1 ! IQ

0 ! StQn ! 0:

The .n�1/–simplices of BAn that do not lie in BA0n are the frames fv˙1 ; : : : ; v
˙
n g

for Zn . The GLnZ–stabilizer of such a frame is a finite group isomorphic to S˙n ,
the 2n � nŠ–element group of signed permutation matrices. The SLnZ–stabilizer of
each frame is thus a subgroup of this finite group, so Lemma 3.2 shows that IQ

0 is
a flat SLnZ–module. Similarly, the n–simplices of BAn that do not lie in BA0n are
the augmented frames fv˙0 ; : : : ; v

˙
n g for Zn . The GLnZ–stabilizer of an augmented

frame is isomorphic to D6 � S˙n�2 , where D6 is the dihedral group of order 12, so
the SLnZ–stabilizer of an augmented frame is finite as well. By Lemma 3.2, IQ

1 is a
flat SLnZ–module as well.

We may thus extend this exact sequence to a flat resolution of the SLnZ–module StQn :

(3) � � � ! F3! F2! IQ
1 ! IQ

0 ! StQn ! 0:

Lemma 3.1 says that H�.SLnZIStQn ˝V�/ is computed by the homology of the chain
complex

� � � ! F3˝SLnZ V�! F2˝SLnZ V�! IQ
1 ˝SLnZV�! IQ

0 ˝SLnZV�! 0:

To prove (2), it is therefore enough to show that IQ
1 ˝SLnZV�D0 under our assumption

that n� 3Ck�k. We remark that in our earlier paper [8] with Benson Farb, we used a
similar argument to show that IQ

0 ˝SLnZV�D 0 for n� 2Ck�k (see [8, Theorem C]),
which shows the vanishing of H.

n
2/.SLnZIV�/ and applies also to SLnOK for many

number rings OK .

Define the partition �0 D .�01; : : : ; �
0
n�1; 0/ via the formula �0i D �i � �n ; observe

that k�0k D k�k. As GLnQ–representations, we have V� Š V�0 ˝ det˝�n , so as a
representation of SLnQ or SLnZ, the representation V� is isomorphic to V�0 . Let
V ´ V.1/ denote the standard SLnZ–representation on Qn . Using Schur–Weyl
duality, we can embed V�0 as a direct summand of V ˝k with k D k�0k D k�k. It thus
suffices to show that IQ

1 ˝SLnZV
˝k D 0 when n� 3C k .

Fix an augmented frame � D fv˙0 ; : : : ; v
˙
n g for Zn , and choose representatives so that

fv1; : : : ; vng is a basis for Zn and v0 D v1C v2 . Orienting � using the ordering on
the vi determines a generator Œ�� of IQ

1 ŠCn.BAn;BA
0
nIQ/. Moreover, fix arbitrary

indices i1; : : : ; ik 2 f1; : : : ; ng and consider the element w D vi1 ˝ � � �˝ vik 2 V
˝k .
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We now prove that the image of Œ��˝ w in IQ
1 ˝SLnZV

˝k is 0. We do this by
constructing an element ' in the stabilizer of the augmented frame � that satisfies
'.Œ��/D�Œ�� and '.w/D w .

Since n� 3Ck , we can find some 3� j � n such that j … fi1; : : : ; ikg. We consider
two cases separately.

� First, if we can find a second index 3� j 0�n with j ¤ j 0 and j 0 … fi1; : : : ; ikg,
we define ' 2 SLnZ by

'.vi /D

8<:
�vj 0 if i D j;
vj if i D j 0;
vi otherwise,

.1� i � n/:

Note that '.v0/D '.v1C v2/D v1C v2 D v0 , so the element ' preserves the
augmented frame � . Since ' exchanges the lines v˙j and v˙j 0 , it reverses the
orientation of the corresponding simplex, so '.Œ��/D�Œ��. By construction '
fixes all the vectors vi1 ; : : : ; vik , so '.w/D w .

� The second case is that no such j 0 exists. Neither 1 nor 2 can belong to
fi1; : : : ; ikg since n� 3C k . In this case we define ' 2 SLnZ via the formula

'.vi /D

8̂̂̂<̂
ˆ̂:
v2 if i D 1;
v1 if i D 2;
�vj if i D j;
vi otherwise,

.1� i � n/:

Note that '.v0/D'.v1Cv2/Dv2Cv1Dv0 , so again ' preserves the augmented
frame � . Since ' exchanges the lines v˙1 and v˙2 , we have '.Œ��/ D �Œ��.
Since neither 1 nor 2 nor j belongs to fi1; : : : ; ikg, the vectors vi1 ; : : : ; vik are
all fixed by ' , so '.w/D w .

In both cases, our chosen element satisfies '.Œ��/D�Œ�� and '.w/D w . It follows
that the images of Œ��˝w and �Œ��˝w D '.Œ��˝w/ coincide in IQ

1 ˝SLnZV
˝k ,

and thus must be 0.

Since fv1; : : : ; vkg is a basis for Zn , the tensors vi1 ˝ � � � ˝ vik constitute a basis
for V ˝k . In other words, w was an arbitrary basis element of V ˝k , so the vanishing
of Œ��˝w implies that the image of Œ��˝V ˝k in IQ

1 ˝SLnZV
˝k vanishes. Since

Œ�� was an arbitrary generator of IQ
1 , this implies that IQ

1 ˝SLnZV
˝k D 0, as desired.

This completes the proof of Theorem A.
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4 The complex of partial augmented frames is CM

The remainder of the paper is occupied with the proof of Theorem C, which asserts
that the n–dimensional complex BAn is Cohen–Macaulay (CM) of dimension n.

4.1 Warmup: the complex of partial frames is CM

Recall from the introduction that Bn is the complex of partial frames of Zn . In this
section, we will prove that Bn is CM of dimension n� 1. This theorem is similar to a
result of Maazen [12] and we could deduce it from his work, but we include a proof
since it provides a simpler venue to preview the ideas that we will use in our proof
of Theorem C. Moreover, we will use both this result and the details of its proof in
multiple places during the proof of Theorem C.

During our proof, we will need to understand the links of various simplices of Bn , so
we make the following definition. Throughout this section, fe1; : : : ; epg will denote
the standard basis for Zp ; the context will indicate what value of p we are using at
any particular point.

Definition 4.1 For n, m � 0, let Bmn be the subcomplex LinkBmCn
.fe˙1 ; : : : ; e

˙
mg/

of BmCn .

The main result of this section is the following theorem, which as we said above is
closely related to a theorem of Maazen [12]. Of course, B0n is equal to Bn , so this
theorem proves that Bn is CM of dimension n� 1, as claimed.

Theorem 4.2 For all n, m� 0, the complex Bmn is CM of dimension n� 1.

We preface the proof of Theorem 4.2 with two lemmas. Analogues of these two lemmas
will be at the heart of our proof of the more difficult Theorem C (and the second lemma
here will also be used directly during that proof).

Lemma 4.3 Consider n, m � 0. For some 1 � k � n, let � be a .k�1/–simplex
of Bmn . Then the complex LinkBmn .�/ is isomorphic to BmCk

n�k
.

Proof Write � D fv˙1 ; : : : ; v
˙
k
g, so fe1; : : : ; em; v1; : : : ; vkg is a basis for a direct

summand of ZmCn . Extend this to a basis fe1; : : : ; em; v1; : : : ; vng for ZmCn . Define
' 2 GLmCn.Z/ by the formulas '.ei / D ei for 1 � i � m and '.vj / D emCj
for 1 � j � n. Then ' induces an automorphism of Bmn that takes LinkBmn .�/ to
BmCk
n�k

� Bmn .
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Definition 4.4 Consider n, m � 0. Assume that some linear map F W ZmCn ! Z
has been fixed. Given a subcomplex X of Bmn and N > 0, we define X<N to be the
full subcomplex of X spanned by the set of vertices v˙ of X satisfying jF.v/j<N .
This condition is well-defined since jF.v/j D jF.�v/j.

Lemma 4.5 Consider n, m � 0. Let F W ZmCn ! Z be a fixed linear map and
let N > 0. Let � be a simplex of Bmn such that some vertex w˙ of � satisfies
F.w/DN . Then there exists a simplicial retraction � W LinkBmn .�/� LinkBmn .�/

<N .

Proof Define X D LinkBmn .�/ and write � Dfw˙1 ; : : : ; w
˙
p g with w1Dw . Our goal

is to construct a simplicial retraction X�X<N . Say that v2ZmCn is F –nonnegative
if F.v/ � 0. We begin by defining a map y� W X .0/! .X<N /.0/ on 0–simplices as
follows:

� Consider a vertex v˙ of X . Replacing v with �v if necessary, we can assume
that v is F –nonnegative. Define qv 2N to be the result bF.v/=N c of dividing
F.v/ by N , so 0� F.v/� qvN <N . We then set

(4) y�.v˙/D .v� qvw/
˙:

This is well-defined; the only possible ambiguity occurs when F.v/D 0 and
hence both v and �v are F –nonnegative, but in that case we have qvD q�vD 0
so y�.v˙/D v˙ no matter what choice we make.

By definition, y�.v˙/D v˙ if v˙ is a vertex of X<N , and similarly y�.v˙/ 2X<N

for any vertex v˙ of X . To complete the proof, we must prove that y� extends over
the higher-dimensional simplices of X . Consider a .k�1/–simplex fv˙1 ; : : : ; v

˙
k
g

of X , so fe1; : : : ; em; w1; : : : ; wp; v1; : : : ; vkg is a basis for a rank-.mCpCk/ direct
summand U of Zn . Replace the vi by �vi if necessary to ensure that the vi are
F –nonnegative and set v0i D vi�qviw1 , so y�.v˙i /D .v

0
i /
˙ . Since each v0i is obtained

by adding some multiple of w1 to vi , the set fe1; : : : ; em; w1; : : : ; wp; v01; : : : ; v
0
k
g

is also a basis for U . We conclude that fy�.v˙1 /; : : : ; y�.v
˙
k
/g is a .k�1/–simplex

of X<N , as desired.

Remark 4.6 If a partial frame � of Zl is contained in a summand V of Zl , then
in fact � is a partial frame of V . Although this fact may seem obvious, it need not
hold over other rings and its failure can lead to great difficulty. For example, over the
ring ADRŒx; y; z�=.x2Cy2C z2� 1/, the vector v D xe1Cye2C ze3 is part of a
basis for A4 and has e4–coordinate 0, but v is not part of any basis containing the
vector e4 . Nevertheless, over Z the claim follows from the fact that if a summand U
of Zl is contained in another summand V of Zl , then U is a summand of V ; this
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property holds not only for Z but for any Dedekind domain. For the same reason, a
partial augmented frame of Zl that is contained in a summand V of Zl is in fact a
partial augmented frame of V ; this will be used in the next section in the proof of
Theorem C.

We now come to the proof of Theorem 4.2. This proof could be written in the language
of combinatorial Morse theory without great difficulty, but it would be much more
awkward to express our later proof of Theorem C in this language (as we illustrate
afterwards in Remark 4.18). Since our goal is to motivate the proof of Theorem C, we
follow its structure here.

Proof of Theorem 4.2 We prove the theorem by induction on n. For the base case
n D 0, we must prove for all m � 0 that Bm0 is CM of dimension �1, ie that the
simplicial complex Bm0 is empty. Since fe˙1 ; : : : ; e

˙
mg is already a frame for Zm , it is

a maximal simplex of Bm . Therefore its link Bm0 is empty, as desired.

Now fix n > 0 and m � 0 and assume that Bm0

n0 is CM of dimension n0 � 1 for all
n0 < n and all m0 � 0. Since every frame for ZmCn consists of mC n lines, the
complex Bmn is .n�1/–dimensional. Lemma 4.3 and our induction hypothesis implies
that for all .k�1/–simplices � of Bmn with 1� k � n, the complex LinkBmn .�/ is CM
of dimension n� k . All that remains to show is that Bmn is .n�2/–connected.

Fix 0 � p � n� 2, let Sp be a combinatorial triangulation of a p–sphere, and let
'W Sp! Bmn be a simplicial map. Our goal is to show that ' can be homotoped to a
constant map. Let F W ZmCn� Z be the linear map taking v 2 ZmCn to the emCn–
coordinate of v . For a vertex v˙ of Bmn , define r.v˙/D jF.v/j; this is well-defined
since jF.v/j D jF.�v/j. We then define

R.'/Dmaxfr.'.x// j x a vertex of Spg:

This will be our measure of complexity for ' .

If R.'/ D 0, then every simplex � of '.Sp/ is contained in the summand kerF
of ZmCn . In particular, fe˙1 ; : : : ; e

˙
mg � � is a partial frame contained in kerF ; by

Remark 4.6, it is in fact a partial frame for kerF , so it can be extended to a partial
frame for ZnCm by adding the line e˙mCn . In other words, the entire image '.Sp/ is
contained in the star (indeed, in the link) of e˙mCn . We conclude that when R.'/D 0,
the desired null-homotopy is obtained by homotoping ' to the constant map at the
vertex e˙mCn .

We can therefore assume that R.'/ D R > 0; we want to homotope ' so as to
reduce R.'/. Consider the following condition on a simplex � of Sp :

(5) r.'.x//DR for all vertices x of �:
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Since R.'/DR , there must be some simplex � of Sp satisfying (5). We can therefore
choose a simplex � of Sp satisfying (5) whose dimension k is maximal among those
satisfying (5). This maximality implies that ' takes LinkSp .�/ to LinkBmn .'.�//

<R .

Let l be the dimension of the simplex '.�/; we certainly have l � k , but we might
have l < k if ' restricted to � is not injective. Combining Lemma 4.3 with our
induction hypothesis, we see that LinkBmn .'.�// is CM of dimension n� l � 2, and in
particular is .n�l�3/–connected. This retracts to LinkBmn .'.�//

<R by Lemma 4.5,
so its retract LinkBmn .'.�//

<R is also .n�l�3/–connected.

By the definition of a combinatorial triangulation, the link LinkSp .�/ is a combinatorial
.p�k�1/–sphere. Since p � n � 2 and l � k , we have p � k � 1 � n � l � 3,
so 'jLinkSp .�/ is null-homotopic via a homotopy inside LinkBmn .'.�//

<R . Using
Zeeman’s relative simplicial approximation theorem [15], we conclude that there
exists a combinatorial .p�k/–ball B with @B Š LinkSp .�/ and a simplicial map
 W B! LinkBmn .'.�//

<R such that  j@B D 'jLinkSp .�/ .

The map  extends to the .pC1/–ball � � B as .'j� / �  W � � B ! Bmn . The
boundary of � � B is the union of the p–ball � � .@B/ D StarSp .�/, on which
'j� � D 'jStarSp .�/ , and the p–ball .@�/�B . We can thus homotope ' across this
.pC1/–ball to replace 'jStarSp .�/ with 'j@� � W .@�/�B! Bmn .

The key property of this modification is that it eliminates the simplex � and does not add
any other simplices satisfying (5). Indeed, every new simplex is the join of a simplex
in @� with a nonempty simplex in B ; since  .B/ is contained in LinkBmn .'.�//

<R ,
such a simplex has at least one vertex with r.'.x// < R , so it will not satisfy (5).
Repeating this process, we can homotope ' to eliminate all simplices satisfying (5); in
other words, we can homotope ' so that R.'/ < R .

By induction, we can homotope ' so that R.'/D 0. At this point, as explained above,
' can be directly contracted to a constant map, so this concludes the proof that Bmn is
.n�2/–connected.

4.2 The complex BAm
n

We now turn to the proof of Theorem C, which asserts that the complex BAn is CM of
dimension n. Just as for Bn , we will need to understand links of simplices in BAn .
However, for technical reasons the heart of our argument will deal not with the entire
link, but rather with the following subcomplex of the link. Recall that fe1; : : : ; epg
denotes the standard basis for Zp , where p � 1 is determined by context.

Definition 4.7 For n�1 and m�0 with mCn�2, define BAmn to be the full subcom-
plex of LinkBAmCn

.fe˙1 ; : : : ;e
˙
mg/ spanned by vertices v˙ of LinkBAmCn

.fe˙1 ; : : : ;e
˙
mg/

such that v … spanZ.e1; : : : ;em/� ZmCn .
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For example, even though fe˙1 ; e
˙
2 ; .e1C e2/

˙g is a simplex of BAnC2 , the vertex
.e1C e2/

˙ is excluded from BA2n . Our main theorem is then as follows. It reduces to
Theorem C when mD 0.

Theorem C 0 For n � 1 and m � 0 with mC n � 2, the complex BAmn is CM of
dimension n.

Remark 4.8 We have intentionally refrained from defining BAmn in the case when
nD 0 or the case when mCn < 2. The reason is that BAmn would be degenerate in
these cases; not only would Theorem C 0 be false in these cases, BAmn would not even
be n–dimensional.

We will prove Theorem C 0 in Section 4.5. This is preceded by Section 4.3, which
describes the links in BAmn (or certain subcomplexes of the links) and establishes the
base case for our induction, and by Section 4.4, which constructs certain retractions on
links in BAmn . Before we start with all of this, we close this section by introducing
some terminology for simplices of BAmn .

Definition 4.9 Fix n � 1 and m � 0 with mC n � 2. We divide the simplices of
BAmn into three mutually exclusive types:

� A standard simplex is a simplex fv˙1 ; : : : ;v
˙
p g such that fe˙1 ; : : : ; e

˙
m ;v

˙
1 ; : : : ;v

˙
p g

is a simplex of Bmn . In other words, fe1; : : : ; em; v1; : : : ; vpg is a basis for a
direct summand of ZmCn .

� An internally additive simplex is a simplex that can be written as fv˙0 ; : : : ; v
˙
p g,

where fv˙1 ; : : : ; v
˙
p g is a standard simplex and ˙v0˙ v1˙ v2 D 0 for some

choice of signs. We will call fv˙0 ; v
˙
1 ; v

˙
2 g the additive core of our simplex;

this subset is well-defined since fv0; v1; v2g is the minimal linearly dependent
subset of fv0; : : : ; vpg.

� An externally additive simplex is a simplex that can be written as fv˙0 ; : : : ; v
˙
p g,

where fv˙1 ; : : : ; v
˙
p g is a standard simplex and ˙v0˙ v1˙ ei D 0 for some

choice of signs and some 1� i �m. We will call fv˙0 ; v
˙
1 g the additive core of

our simplex; it is well-defined just as for internally additive simplices.

An additive simplex is a simplex which is either internally or externally additive.

Remark 4.10 We emphasize that the classification in Definition 4.9 applies to a sim-
plex as a simplex of BAmn . The same collection of lines might be classified differently
as a simplex of BAm0

n0 . For example, a partial frame that forms an externally additive
simplex of BAmn would be a standard simplex when considered as a simplex of BA0nCm .
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4.3 Describing links in BAm
n

In this section, we describe the links of simplices in BAmn , as we did for Bmn in
Lemma 4.3. To handle the link of a standard simplex, we are forced to deal with a
certain subcomplex of the link (just as BAmn is a subcomplex of the full link in BAmCn );
the reason is that the retraction constructed in Proposition 4.17 below cannot be extended
across the entire link.

Definition 4.11 Given a standard simplex �Dfv˙1 ; : : : ; v
˙
p g of BAmn , let bLinkBAmn .�/

be the full subcomplex of LinkBAmn .�/ spanned by vertices v˙ of LinkBAmn .�/ such
that v … spanZ.e1; : : : ; em; v1; : : : ; vp/� ZmCn .

Lemma 4.12 Consider n � 1 and m � 0 with mC n � 2. For some 1 � k � nC 1,
let � be a .k�1/–simplex of BAmn .

(a) If � is an additive simplex, then LinkBAmn .�/ is isomorphic to BmCk�1
n�kC1

.

(b) If � is a standard simplex and k ¤ n, then bLinkBAmn .�/ is isomorphic to
BAmCk

n�k
.

(c) If � is a standard simplex, define X D LinkBAmn .�/ and yX D bLinkBAmn .�/.
Then for all vertices v˙ of X that do not lie in yX , the complex LinkX .v˙/ lies
in yX and is isomorphic to BmCk

n�k
.

Proof Parts (a) and (b) are proved exactly like Lemma 4.3 since, by an appropriate au-
tomorphism of BAmn , we may assume that �Dfe˙mC1; : : : ; e

˙
mCk�1

; .emC1CemC2/
˙g

or � D fe˙mC1; : : : ; e
˙
mCk
g, respectively. Part (c) is a consequence of (a).

In the proof of the next proposition, we make use of the following lemma. It is certainly
standard, but we could not find a proof in the literature.

Lemma 4.13 Let X be obtained from the simplicial complex Y by coning off the
subcomplex Z . If Y is CM of dimension n and Z is CM of dimension n� 1, then X
is CM of dimension n.

Proof Let p be the cone point. Since Z is .n�2/–connected, the pair .X; Y / is
.n�1/–connected, so X is n–spherical. There are four kinds of simplices of X . The
first is fpg, whose link is LinkXfpg DZ , which is CM of dimension n�1 by assump-
tion. The second is � � fpg for some simplex � of Z ; its link is LinkX .� � fpg/D
LinkZ � , which is CM of the appropriate dimension since Z is CM of dimension n�1.
The third is a simplex � of Y that does not lie in Z ; its link is LinkX � D LinkY � ,
which is CM of the appropriate dimension since Y is CM of dimension n. The fourth is
a simplex � of Z ; its link is LinkX � Dfpg�LinkZ � , which is CM of the appropriate
dimension because Z is CM of dimension n� 1.
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Proposition 4.14 Fix n � 1 and m � 0 such that mC n � 2. Assume that BAm0

n0 is
CM of dimension n0 for all 1� n0<n and m0� 0 such that m0Cn0DmCn. Then for
every .k�1/–simplex � of BAmn , the subcomplex LinkBAmn .�/ is CM of dimension
n� k .

Proof If � is an additive simplex, then Lemma 4.12(a) asserts that LinkBAmn .�/ is
isomorphic to BmCk�1

n�kC1
, which Theorem 4.2 says is CM of dimension n� k .

If � is a standard simplex with k D n, then we can write � D fv˙1 ; : : : ; v
˙
n g with

fe˙1 ; : : : ; e
˙
m ; v

˙
1 ; : : : ; v

˙
n g a frame for ZmCn . If m> 0, set v0 D e1C v1 ; otherwise,

since mCn� 2 we must have n� 2 and we can set v0D v1Cv2 . In either case, the set
fe˙1 ; : : : ; e

˙
m ; v

˙
0 ; v

˙
1 ; : : : ; v

˙
n g is an augmented frame for ZmCn , so v˙0 is contained

in LinkBAmn .�/. Therefore LinkBAmn .�/ is nonempty, ie CM of dimension 0.

Finally, if � is a standard simplex with k < n, define X D LinkBAmn .�/ and yX D
bLinkBAmn .�/. Since 1�k<n, Lemma 4.12(b) asserts that yX is isomorphic to BAmCk

n�k
,

which by assumption is CM of dimension n�k . Let v˙ be a vertex of X that does not
lie in yX . Lemma 4.12(c) says that LinkX .v˙/ lies in yX and is isomorphic to BmCkn�k ,
so adding v˙ to yX has the effect of coning off the subcomplex LinkX .v˙/Š BmCk

n�k
.

This subcomplex is CM of dimension n� k� 1 by Theorem 4.2, so Lemma 4.13 tells
us that coning off this subcomplex preserves the property of being CM of dimension
n� k . Carrying this out for each vertex of X not contained in yX , we conclude that
X D LinkBAmn .�/ is CM of dimension n� k , as desired.

4.4 The retraction maps

In this section, we construct two retractions of the links in BAmn (or parts of them),
just as we did for Bmn in Lemma 4.5. We begin with the following definition:

Definition 4.15 Assume that some linear map F W ZmCn! Z has been fixed and let
X be a subcomplex of BAmn . For N >0, we define X<N to be the full subcomplex of
X spanned by the set of vertices v˙ of X satisfying jF.v/j<N . This is well-defined
since jF.v/j D jF.�v/j.

Our first retraction, for the link of an additive simplex, is straightforward.

Lemma 4.16 Consider n� 2 and m� 0. Let F W ZmCn! Z be a fixed linear map.
Let � be an additive simplex of BAmn such that there exists some vertex w˙ of � with
F.w/DN > 0. Then there exists a simplicial retraction

� W LinkBAmn .�/� LinkBAmn .�/
<N :

Geometry & Topology, Volume 21 (2017)



1020 Thomas Church and Andrew Putman

Proof The retraction � is defined on vertices by the same formula (4) as in Lemma 4.5.
The fact that � is an additive simplex ensures that for all simplices � of LinkBAmn .�/,
the additive core of � � � is disjoint from � , which implies that there is no difficulty in
extending � over � .

Our second retraction will be more difficult to construct because internally additive
simplices are extremely constrained. Indeed, if two lines v˙1 and v˙2 are specified,
there are only two lines v˙0 for which fv˙0 ; v

˙
1 ; v

˙
2 g is an internally additive simplex.

As a result, if we attempt to define a retraction on the link of a standard simplex by (4)
as in Lemma 4.16, the retraction will not extend across all additive simplices.

For example, consider the vectors v1 D e1C 9e4 , v2 D e2C 9e4 , v0 D v1C v2 D
e1C e2C 18e4 , and w D e3C 10e4 , so fv˙0 ; v

˙
1 ; v

˙
2 g forms an additive simplex of

LinkBA4.w
˙/. However, if we take F W Zn!Z to be the coefficient of e4 and define

y� as in (4), then we have y�.v˙1 /D v
˙
1 and y�.v˙2 /D v

˙
2 , but y�.v˙0 /D .v0�w/

˙ D

.e1Ce2�e3C8e4/
˙ . Thus fy�.v˙0 /; y�.v

˙
1 /; y�.v

˙
2 /g is not a simplex of LinkBAn.w

˙/

at all.

In general this problem seems insuperable. We will solve it only for the link of a single
vertex and only after restricting to the subcomplex bLinkBAmn .w

˙/; even then, to make
the retraction well-defined we are forced to subdivide the complex first. This is the
content of the following proposition:

Proposition 4.17 Consider n�2 and m�0. Let F W ZmCn!Z be a fixed linear map
such that F.ei /D0 for 1� i�m. Let w˙ be a vertex of BAmn such that F.w/DN >0.
Then there exists a topological retraction � W bLinkBAmn .w

˙/� bLinkBAmn .w
˙/<N .

Proof Define X D bLinkBAmn .w
˙/, so our goal is to construct a topological retraction

� W X� X<R . We begin by defining a map y� W X .0/! .X<N /.0/ on 0–simplices
by the same formula (4) as before. To recap, we say that v 2ZmCn is F –nonnegative
if F.v/� 0. For F –nonnegative v we define qv D bF.v/=N c 2N and set y�.v˙/D
.v� qvw/

˙ , so 0� F.y�.v˙// < N .

If v˙ is a vertex of X , then by the definition of bLinkBAmn .w
˙/ we know that

v … spanZ.e1; : : : ; em; w/, so fe˙1 ; : : : ; e
˙
m ; w

˙; v˙g is a partial frame for a rank-
.mC2/ summand of ZmCn . Thus fe˙1 ; : : : ; e

˙
m ; w

˙; y�.v˙/g is a partial frame for the
same summand, so y�.v˙/ is a vertex of X<N ; moreover y�.v˙/ D v˙ if v˙ is a
vertex of X<N . In other words, y� is a retraction of the vertices of X onto the vertices
of X<N .

Unfortunately, the map y� does not extend to a simplicial map on X , as we discussed
above. What we will show instead is that there exists a subdivision Y of X such that
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X<N is still a subcomplex of Y (so no simplices of X<N are subdivided) and an
extension of y� to Y .

The trouble will occur only on the internally additive simplices. Before we deal with
these, we prove that y� extends over the other simplices of X . We distinguish the
standard simplices lying in X into two types:

� A w˙–standard simplex is a simplex � of X such that � � fw˙g is a standard
simplex of BAmn .

� A w˙–additive simplex is a simplex that can be written in the form fv˙0 ; : : : ; v
˙
p g

with fv˙1 ; : : : ; v
˙
p g a standard simplex of BAmn and ˙v0˙v1˙wD 0 for some

choice of signs.

Claim 1 The map y� extends over the w˙–standard simplices � of X .

Proof This is identical to the proof of the corresponding statement in the proof of
Lemma 4.5.

Claim 2 The map y� extends over the externally additive simplices � of X .

Proof Write � D fv˙0 ; : : : ; v
˙
p g, where each vi is F –nonnegative, fv˙1 ; : : : ; v

˙
p g

is a w˙–standard simplex, and ˙v0 ˙ v1 ˙ ei D 0 for some i and some choice
of signs. Since F.ei /D 0 and both F.v0/ and F.v1/ are nonnegative, the relation
˙v0˙ v1˙ ei D 0 implies that F.v0/D F.v1/. Moreover, possibly replacing v1 by
�v1 if F.v1/D 0, we have v0 D v1C "ei for some " 2 f˙1g. Since F.v0/D F.v1/
we have qv0 D qv1 , so

fy�.v˙0 /; : : : ; y�.v
˙
p /g D f.v1� qv1wC "ei /

˙; .v1� qv1w/
˙; : : : ; .vp � qvpw/

˙
g:

This is an externally additive simplex of X<N .

Claim 3 The map y� extends over the w˙–additive simplices � of X .

Proof Write � D fv˙0 ; : : : ; v
˙
p g, where each vi is F –nonnegative, fv˙1 ; : : : ; v

˙
p g is

a w˙–standard simplex, and ˙v0˙v1˙wD 0 for some choice of signs. Exchanging
v0 and v1 if necessary, we can assume that F.v0/� F.v1/.

We first consider the case where F.v0/�N . Since F.w/DN , in this case the relation
˙v0˙v1˙wD 0 implies that v0D v1Cw as long as F.v1/ > 0. When F.v1/D 0,
it implies only that v0 D˙v1Cw , but replacing v1 by �v1 we can still assume that
v0 D v1Cw . The relation v0 D v1Cw implies that qv0 D qv1 C 1, so we have

y�.v˙0 /D .v0� qv0w/
˙
D ..v1Cw/� .qv1 C 1/w/

˙
D .v1� qv1w/

˙
D y�.v˙1 /:
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In other words, the w˙–additive edge fv˙0 ; v
˙
1 g of X is collapsed by y� to a single

vertex of X<N . Similarly, the w˙–additive p–simplex � is collapsed by y� to

fy�.v˙0 /; : : : ; y�.v
˙
p /g D f.v1� qv1w/

˙; : : : ; .vp � qvpw/
˙
g;

a w˙–standard .p � 1/–simplex of X<N . We remark that this is the only case in
which the dimension of a simplex is decreased by y� .

In the remaining case, we have 0�F.v1/�F.v0/<N . Since F.w/DN , the relation
˙v0 ˙ v1 ˙w D 0 implies in this case that w D v0 C v1 . Since F.v0/ < N and
F.v1/ < N , we have qv0 D qv1 D 0, so y�.v˙0 /D v

˙
0 and y�.v˙1 /D v

˙
1 . Therefore,

fy�.v˙0 /; y�.v
˙
1 /; : : : ; y�.v

˙
p /g D fv

˙
0 ; v

˙
1 ; .v2� qv2w/

˙; : : : ; .vp � qvpw/
˙
g

is a w˙–additive p–simplex of X<N .

The last remaining class of simplices are the internally additive simplices. It will turn
out that certain kinds of internally additive simplices will cause trouble. Consider
an internally additive simplex � . Write � D fv˙0 ; : : : ; v

˙
p g, where each vi is F –

nonnegative and ˙v0˙v1˙v2D 0 for some choice of signs. If all three signs are the
same, then we must have F.v0/D F.v1/D F.v2/D 0, so we can negate v0 without
changing the fact that v0 is F –nonnegative. The upshot is that we can assume that the
three signs are not all the same. Reordering the vi if necessary, we can thus assume
that v0 D v1C v2 . We call � a carrying simplex if

(6)
�
F.v0/

N

�
¤

�
F.v1/

N

�
C

�
F.v2/

N

�
:

To check that this is well-defined, observe that for the inequality (6) to hold we must
have F.vi / > 0 for 0� i � 2, in which case v0 is uniquely determined since F.v0/
is the maximum value among fF.v0/; F .v1/; F .v2/g. The following claim shows that
the carrying simplices are the only possible source of trouble:

Claim 4 The map y� extends over the internally additive simplices � of X that are
not carrying simplices.

Proof Write � D fv˙0 ; : : : ; v
˙
p g, where each vi is F –nonnegative and v0 D v1C v2 .

Since � is not a carrying simplex, we have

qv0 D

�
F.v0/

N

�
D

�
F.v1/

N

�
C

�
F.v2/

N

�
D qv1 C qv2 :

This implies that

y�.v˙0 /D .v0�qv0w/
˙
D ..v1Cv2/�.qv1Cqv2/w/

˙
D ..v1�qv1w/C.v2�qv2w//

˙:
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Therefore,

fy�.v˙0 /; y�.v
˙
1 /; y�.v

˙
2 /; : : : ; y�.v

˙
p /g

D
˚
..v1�qv1w/C.v2�qv2w//

˙; .v1�qv1w/
˙; .v2�qv2w/

˙ : : : ; .vp�qvpw/
˙
	

is an internally additive simplex of X<N .

It remains to deal with the carrying simplices. The key to our approach is the observation
that even though the inequality (6) may hold, the two sides never differ by more than 1.
Formally, this is the observation that the function !N on Z2 defined by�

n1Cn2

N

�
D

�
n1

N

�
C

�
n2

N

�
C!N .n1; n2/

takes values only in f0; 1g. We remark that !N descends to a well-defined function
x!N W .Z=N/2! f0; 1g. Regarding its image as lying in f0; 1g � Z=N , the function
x!N is a group cocycle on Z=N whose cohomology class is the Euler class of the
nonsplit central extension

0! Z=N ! Z=N 2
! Z=N ! 0:

It is known as the carrying cocycle because it records when carrying is necessary when
adding modulo N ; see Isaksen [10].

Let C be the set of 2–dimensional carrying simplices. Define the simplicial complex Y
to be the result of subdividing X by adding a vertex �c to the center of each simplex
c 2 C . No carrying simplex can be contained in X<N since !N .0;�/D!N .�; 0/D 0.
Thus the subcomplex X<N is not affected by this subdivision, so we can regard X<N

as a subcomplex of Y . Extend y� W X .0/ ! .X<N /.0/ to y� W Y .0/ ! .X<N /.0/ as
follows:

� Given c 2 C , write c D fv˙0 ; v
˙
1 ; v

˙
2 g, where each vi has F.vi / > 0 and

v0 D v1C v2 . The ordering of the vi is not canonical (as we mentioned above,
v0 is uniquely determined, but there is no way to distinguish v1 and v2 ), so
simply make an arbitrary choice for each c . Define y�.�c/D .v1�qv1w�w/

˙ .

We first verify that y�.�c/ lies in X<N . By definition, 0 � F.v1 � qv1w/ < N .
However, the fact that !N .N �n1;�/D 0 means that a carrying simplex cannot have
F.v1 � qv1w/ D 0 since this would imply F.v1/ D qv1F.w/ D qv1N . Therefore
0 < F.v1� qv1w/ < N and hence �N < F.v1� qv1w�w/ < 0, as desired.

Claim 5 The map y� extends over the images in Y of carrying simplices � of X .
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Proof Write � D fv˙0 ; : : : ; v
˙
p g, where each vi is F –nonnegative with v0D v1Cv2

and, for c D fv˙0 ; v
˙
1 ; v

˙
2 g, we have y�.�c/D .v1C qv1w�w/

˙ . By the definition of
a carrying simplex, we have

qv0D

�
F.v1/CF.v2/

N

�
D

�
F.v1/

N

�
C

�
F.v2/

N

�
C!N .F.v1/; F .v2//Dqv1Cqv2C1:

To simplify our notation, for 0� i � p we define v0i D vi � qviw , so y�.v˙i /D .v
0
i /
˙ .

Observe that y�.�c/D .v01�w/
˙ and v00 D v

0
1C v

0
2�w .

The image of � in Y consists of the three simplices

˛ D f�c ; v
˙
1 ; v

˙
2 ; v

˙
3 ; : : : ; v

˙
p g;

ˇ D fv˙0 ; �c ; v
˙
2 ; v

˙
3 ; : : : ; v

˙
p g;


 D fv˙0 ; v
˙
1 ; �c ; v

˙
3 ; : : : ; v

˙
p g:

We verify that y� extends over each of these in turn. For the first simplex ˛ and the
third simplex 
 , we use y�.�c/D .v01�w/

˙ to write

�.˛/D fy�.�c/; y�.v
˙
1 /; y�.v

˙
2 /; y�.v

˙
3 /; : : : ; y�.v

˙
p /g

D fy�.�c/; .v
0
1/
˙; .v02/

˙; : : : ; .v0p/
˙
g

D f.v01�w/
˙; .v01/

˙; .v02/
˙; : : : ; .v0p/

˙
g;

�.
/D fy�.v˙0 /; y�.v
˙
1 /; y�.�c/; y�.v

˙
3 /; : : : ; y�.v

˙
p /g

D f.v00/
˙; .v01/

˙; y�.�c/; .v
0
3/
˙; : : : ; .v0p/

˙
g

D f.v00/
˙; .v01/

˙; .v01�w/
˙; .v03/

˙; : : : ; .v0p/
˙
g:

These are both w˙–additive simplices of X<N . For the second simplex ˇ , from
v00 D v

0
1Cv

0
2�w we deduce the alternate identity y�.�c/D .v00�v

0
2/
˙ , which we use

to write
�.ˇ/D fy�.v˙0 /; y�.�c/; y�.v

˙
2 /; y�.v

˙
3 /; : : : ; y�.v

˙
p /g

D f.v00/
˙; y�.�c/; .v

0
2/
˙; : : : ; .v0p/

˙
g

D f.v00/
˙; .v00� v

0
2/
˙; .v02/

˙; : : : ; .v0p/
˙
g:

This is an internally additive simplex of X<N .

Claims 1–5 demonstrate that y� W Y .0/! .X<N /.0/ extends over every simplex of Y ,
so it defines a simplicial retraction � W Y�X<N . Since Y is a subdivision of X , their
realizations are homeomorphic, so this defines a topological retraction � W X�X<N .
This completes the proof of Proposition 4.17.
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4.5 The proof of Theorem C 0

We finally prove Theorem C 0 , which asserts that BAmn is CM of dimension n for n� 1
and m� 0 with mCn� 2. The proof will be by induction on n.

Base case We begin with the base case nD 1. Our goal is to prove for m � 1 that
BAm1 is CM of dimension 1, ie is a connected nonempty graph. The vertices of the
1–dimensional complex BAm1 are the vertices of Bm1 , namely the lines spanned by
vectors w 2 ZmC1 such that fe1; : : : ; em; wg is a basis for ZmC1 . We can write such
a vector as

w D a1e1C � � �C amem˙ emC1

for some ai 2 Z and some sign. Replacing w with �w changes the final sign, so we
deduce that the vertices of Bm1 are in bijection with elements a 2 Zm via the bijection
that takes aD .a1; : : : ; am/ to the line v˙a with

va D a1e1C � � � amemC emC1:

Every 1–simplex of BAm1 is externally additive since an internally additive simplex has
dimension at least 2. Two lines v˙a and v˙a0 determine an externally additive 1–simplex
precisely when "va0C "0vaC "

00ei D 0 for some 1� i �m and some ", "0 , "00 D˙1.
Examining the coefficient of emC1 in this expression, we see that "D "0 . This implies
that v˙a and v˙a0 determine an externally additive 1–simplex exactly when a 2Zm and
a0 2 Zm differ by a standard basis vector.

We conclude that BAm1 is isomorphic to the Cayley graph of Zm with respect to the
generating set fe1; : : : ; emg, and is thus connected. We remark that this is one point in
the argument where working with lines and frames is essential; if we worked instead
with primitive vectors and bases, we would obtain a disconnected graph consisting of
two copies of this Cayley graph, one consisting of all vectors with emC1 coordinate 1
and the other consisting of those with coordinate �1. This concludes the proof of the
base case.

Inductive step We now assume that n > 1 and that BAm0

n0 is CM of dimension n0 for
all 1� n0<n and m0� 0 with m0Cn0� 2. Under these assumptions, Proposition 4.14
states that all links in BAmn are CM of the appropriate dimension, so it is enough to
prove that BAmn is .n�1/–connected.

Fix 0 � p � n� 1, let Sp be a combinatorial triangulation of a p–sphere, and let
'W Sp ! BAmn be a simplicial map. Our goal is to show that ' can be homotoped
to a constant map. Let F W ZmCn� Z be the linear map taking v 2 ZmCn to the
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emCn–coordinate of v . For a vertex v˙ of BAmn , define r.v˙/ D jF.v/j; this is
well-defined since jF.v/j D jF.�v/j. We then define

R.'/Dmaxfr.'.x// j x a vertex of Spg:

This will be our measure of complexity for ' .

If R.'/ D 0, then every simplex � of '.Sp/ is contained in the summand kerF
of ZmCn . In particular, fe˙1 ; : : : ; e

˙
mg � � is a partial augmented frame contained in

kerF ; by Remark 4.6, it is in fact a partial augmented frame for kerF , so it can be
extended to a partial augmented frame for ZnCm by adding the line e˙mCn . In other
words, the entire image '.Sp/ is contained in the star of e˙mCn within BAmn , so we
can directly contract ' to the constant map whose image is the vertex e˙mCn .

We can therefore assume that R.'/DR > 0. The proof now is divided into four steps.
The end product of these four steps is that we can homotope ' so as to decrease R.'/.
Repeating these steps over and over, we can eventually homotope ' so that R.'/D 0,
at which point we can contract ' directly to a constant map as above.

Step 1 Given 'W Sp! BAmn with R.'/�R , we can homotope ' so that it satisfies
the following two conditions:

(C1) We still have R.'/�R .

(C2) If � is a simplex of Sp such that '.�/ is an additive simplex, then for all vertices
x of � we have r.'.x// < R .

Consider the following condition on a simplex � of Sp :

(7)

8̂<̂
:
'.�/ is an additive simplex,
some vertex v˙ of '.�/ has r.v˙/DR, and
each vertex w˙ of '.�/ has r.w˙/DR or lies in the additive core of '.�/.

If ' does not satisfy conditions (C1) and (C2), then there must be some simplex � of
Sp satisfying (7). We can therefore choose a simplex � of Sp satisfying (7) whose
dimension k is maximal among those satisfying (7). This maximality implies that '
takes LinkSp .�/ to LinkBAmn .'.�//

<R .

Let l be the dimension of '.�/; we certainly have l � k , but we might have l < k if
the restriction of ' to � is not injective. Lemma 4.12(a) states that LinkBAmn .'.�//

is isomorphic to BmCl
n�l

, which by Theorem 4.2 is CM of dimension n� l � 1, and
in particular is .n�l�2/–connected. Using Lemma 4.16, we deduce that its retract
LinkBAmn .'.�//

<R is .n�l�2/–connected.
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By the definition of a combinatorial triangulation, LinkSp .�/ is a combinatorial
.p�k�1/–sphere. Since p � n � 1 and l � k , we have p � k � 1 � n � l � 2,
so 'jLinkSp .�/ is null-homotopic within LinkBAmn .'.�//

<R . Using Zeeman’s relative
simplicial approximation theorem [15], we deduce that there exists a combinatorial
.p�k/–ball B with @BŠLinkSp .�/ and a simplicial map  W B!LinkBAmn .'.�//

<R

such that  j@B D 'jLinkSp .�/ .

The map  extends to the .pC1/–ball � � B as .'j� / �  W � � B ! Bmn . The
boundary of � � B is the union of the p–ball � � .@B/ D StarSp .�/, on which
'j� � D 'jStarSp .�/ , and the p–ball .@�/�B . We can thus homotope ' across this
.pC1/–ball to replace 'jStarSp .�/ with 'j@� � W .@�/�B! Bmn .

The key property of this modification is that it eliminates the simplex � and does
not add any other simplices satisfying (7) or any vertices mapping to vertices with
r.v˙/ � R . Indeed, every new vertex lies in B , which maps to LinkBAmn .'.�//

<R

by construction; this verifies the second claim. Moreover, every new simplex � is the
join of a simplex in @� with a nonempty simplex � in B . Its image '.�/ is contained
in '.� � �/D '.�/�'.�/. Thus '.�/ is only additive if it contains the additive core
of '.�/, in which case this is also the additive core of '.�/. Since '.�/ is disjoint
from '.�/ and every vertex has r.v˙/ <R by construction, the new simplex � cannot
satisfy (7).

Repeating this modification, we can homotope ' so that no simplex of Sp satisfies (7),
so ' satisfies conditions (C1) and (C2), as desired.

Step 2 Given 'W Sp! BAmn satisfying conditions (C1) and (C2), we can homotope
' so that it still satisfies the same conditions (C1) and (C2), and additionally satisfies
the following condition:

(C3 0 ) If x1 and x2 are distinct vertices of Sp such that r.'.x1// D r.'.x2// D R
and '.x1/D '.x2/, then x1 and x2 are not joined by an edge in Sp .

Consider the following condition on a simplex � of Sp :

(8) 'j� is not injective, and every vertex v˙ of '.�/ has r.v˙/DR:

If ' satisfies conditions (C1) and (C2) but not (C3 0 ), then there must be some simplex �
of Sp satisfying (8). We can therefore choose a simplex � of Sp satisfying (8) whose
dimension k is maximal among those satisfying (8). This maximality implies that '
takes LinkSp .�/ to LinkBAmn .'.�//

<R .

In fact, even more is true. Namely, (C2) implies that if � is a simplex of LinkSp .�/,
then the simplex '.�/�'.�/ of BAmn must be a standard simplex. This implies that '
actually takes LinkSp .�/ to the subcomplex LinkBmn .'.�//

<R of LinkBAmn .'.�//
<R .
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Let l be the dimension of '.�/; since 'j� is not injective, we have l � k � 1.
Theorem 4.2 says that Bmn is CM of dimension n � 1, and hence LinkBmn .'.�//

is .n�l�3/–connected. By Lemma 4.5, its retract LinkBmn .'.�//
<R is .n�l�3/–

connected.

The complex LinkSp .�/ is a combinatorial .p�k�1/–sphere. Since p � n� 1 and
l � k � 1, we have p � k � 1 � n� l � 3, so 'jLinkSp .�/ is null-homotopic within
the subcomplex LinkBmn .'.�//

<R of BAmn . Therefore there exists a combinatorial
.p�k/–ball B with @BŠLinkSp .�/ and a simplicial map  W B!LinkBmn .'.�//

<R

such that  j@B D 'jLinkSp .�/ .

As in the previous step, we can use this ball to homotope ' so as to replace 'jStarSp .�/
with 'j@� �  W .@�/ � B ! BAmn . The key property of this modification is that it
eliminates the simplex � and does not add any other simplices satisfying (8), while
preserving (C1) and (C2). Indeed, every new vertex has r.v˙/<R , so (C1) is preserved.
Every new simplex contains a new vertex, so it cannot satisfy (8). Finally, none of the
simplices involved are additive since the modifications in this step take place within the
subcomplex Bmn , so (C2) is preserved. Repeating this, we can ensure that no simplices
satisfy (8) while preserving conditions (C1) and (C2), as desired.

Step 3 Given 'W Sp! BAmn satisfying (C1), (C2) and (C3 0 ), we can homotope ' so
that it satisfies the following condition (C3), as well as (C1) and (C2):

(C3) If x1 and x2 are distinct vertices of Sp with r.'.x1//D r.'.x2//D R , then
x1 and x2 are not joined by an edge in Sp .

If ' does not satisfy (C3), then there exists an edge eDfx1; x2g of Sp with r.'.x1//D
r.'.x2// D R . Choose such an edge e . We will homotope ' so as to eliminate e
without disturbing (C1), (C2) or (C3 0 ).

Choose v1 , v2 2 ZmCn with F.v1/ D F.v2/ D R such that '.x1/ D v˙1 and
'.x2/ D v˙2 . Set v0 D v1 � v2 , so F.v0/ D 0. Condition (C3 0 ) guarantees that
v˙1 ¤ v

˙
2 , so v0 ¤ 0. Thus fv˙0 ; v

˙
1 ; v

˙
2 g is an internally additive simplex and v˙0

lies in LinkBAmn .fv
˙
1 ; v

˙
2 g/.

Moreover, we claim that '.LinkSp .e// is contained in the star of v˙0 inside the
subcomplex LinkBAmn .fv

˙
1 ; v

˙
2 g/. To see this, consider an arbitrary simplex � D

fw˙1 ; : : : ; w
˙
k
g in '.LinkSp .e//. Condition (C3 0 ) implies that � is disjoint from

fv˙1 ; v
˙
2 g, so � lies in LinkBAmn .fv

˙
1 ; v

˙
2 g/. By (C2), all simplices in '.StarSp .e//

are standard, so in fact � is a simplex of LinkBmn .fv
˙
1 ; v

˙
2 g/. This means that �

is contained is some frame fe˙1 ; : : : ; e
˙
m ; v

˙
1 ; v

˙
2 ; w

˙
1 ; : : : ; w

˙
n�2g for ZmCn . Then
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fe˙1 ; : : : ; e
˙
m ; v

˙
0 ; v

˙
1 ; v

˙
2 ; w

˙
1 ; : : : ; w

˙
n�2g is an augmented frame, so � is contained

in the star of v˙0 , as desired.

Let B be the cone on the combinatorial .p�2/–sphere LinkSp .e/. Since '.LinkSp .e//
is contained in the star of v˙0 , we can extend 'jLinkSp .e/ to  W B! LinkBmn .v

˙/ by
sending the cone point to v˙0 . As before, this lets us homotope ' to replace 'jStarSp .e/
with 'j@e � W .@e/ �B ! BAmn . This eliminates the edge e . The only new vertex
is v˙0 , so (C1) and (C3 0 ) are preserved since F.v0/D 0. Moreover, every new simplex
in .@e/�B contains v˙0 but at most one of the lines v˙1 and v˙2 . Accordingly the new
simplices are all standard, so (C2) is preserved by this modification. Repeating this
process lets us eliminate all edges violating (C3), as desired.

Step 4 Given 'W Sp! BAmn satisfying (C1), (C2) and (C3), we can homotope ' so
that R.'/ < R .

We remark that (C2) is not used in this step, though it is essential during Steps 2 and 3.

If R.'/ D R , then we can choose a vertex x of Sp such that r.'.x// D R . Write
'.x/D v˙ with F.v/DR . Conditions (C1) and (C3) imply that ' takes LinkSp .x/
to LinkBAmn .v

˙/<R . We would like to apply Lemma 4.12(b) and Proposition 4.17 to
conclude that this subcomplex is highly connected. However, these results apply not to
LinkBAmn .v

˙/, but to its proper subcomplex bLinkBAmn .v
˙/ defined in Definition 4.11.

Nevertheless, the vertices of the former that are excluded from the latter subcomplex
are the 2m vertices of the form .v C ei /

˙ and .v � ei /˙ for i D 1; : : : ; m. Since
F.vC ei /D F.v� ei /D F.v/DR , these complexes do coincide when we restrict to
vertices with r.w˙/ < R ; in other words, bLinkBAmn .v

˙/<R D LinkBAmn .v
˙/<R .

Lemma 4.12(b) states that bLinkBAmn .v
˙/ is isomorphic to BAmC1n�1 . Since n > 1, our

induction hypothesis states that this is CM of dimension n� 1, and in particular is
.n�2/–connected. Proposition 4.17 states that bLinkBAmn .v

˙/ admits a topological
retraction onto bLinkBAmn .v

˙/<R , so bLinkBAmn .v
˙/<R is .n�2/–connected as well.

The complex LinkSp .x/ is a combinatorial .p�1/–sphere. Since p � n� 1, we have
p�1� n�2, so 'jLinkSp .fxg/ is null-homotopic within bLinkBAmn .f'.x/g/

<R . Just as
in previous steps, this allows us to homotope ' so as to eliminate x without introducing
any new vertices mapping to vertices with r.w˙/DR . This guarantees that (C1) and
(C3) are preserved by this modification. Repeating this process lets us eliminate all
vertices mapping to vertices with r.v˙/D R , at which point R.'/ < R , as desired.
This completes Step 4.

Repeating the modifications of Steps 1–4, we can homotope ' so as to reduce R.'/
to 0, at which point ' can be contracted to the constant map at the vertex e˙mCn
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as discussed before Step 1. We conclude that an arbitrary map 'W Sp ! BAmn for
0� p � n� 1 is null-homotopic, demonstrating that BAmn is .n�1/–connected. This
completes the proof of Theorem C 0 .

Remark 4.18 The hardest part of Theorem C 0 was showing that BAmn is .n�1/–
connected. We proved this connectivity by defining an N –valued function r on the
vertices of BAmn , for which the subcomplex where r.x/D0 is contractible inside BAmn ,
and showed that any sphere in BAmn of the appropriate dimension could be homotoped
to lie in this subcomplex. From this outline the argument seems similar to “PL Morse
theory” arguments, a common technique when proving such connectivity results. How-
ever, the structure of our proof is rather nonstandard and departs greatly from the PL
Morse theory framework. Still, given the obvious similarities it is natural to wonder if
our proof can be phrased in this language.

Briefly, PL Morse theory tells us that if we can find a function F W X .0/!N on the
vertices of a simplicial complex X such that
� there are no “horizontal edges”, ie edges fx; yg with F.x/D F.y/, and
� the “descending link” of each vertex x with F.x/ > 0, ie the full subcomplex

of the link spanned by vertices y with F.y/ < F.x/, is .m�1/–connected,

then the inclusion into X of the subcomplex where F.x/D 0 is m–connected.

However, our function r is definitely not a PL Morse function; its descending links are
not highly connected and it has many horizontal edges. In fact, we do not believe that
any such PL Morse function can be defined on the vertices of BAmn .

It turns out that it is possible to capture the argument in Section 4.5 via a PL Morse
function F , but only after passing to the barycentric subdivision of BAmn . Unfor-
tunately, this function is rather unwieldy (see below). Moreover, to verify that the
descending links have the appropriate connectivity requires recapitulating every step in
Sections 4.1 4.2, 4.3 and 4.4, so ultimately this perspective would provide no benefit.

For the interested reader: after defining the function r on vertices of BAmn as in our
proof, for a simplex � 2 BAmn one should define F.�/ 2N �N �Z��N by

F.�/D
�

max
x vertex of �

r.x/; v.�/;‚.�/;� dim.�/
�
;

where v.�/ is the number of vertices of � realizing the maximum maxx2� r.x/ and

‚.�/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�2 if � is additive and maxx2� r.x/ is realized by a unique vertex,
�1 if � is internally additive and two of the three vertices

in its additive core realize the maximum maxx2� r.x/,
0 if � is standard,
1 otherwise.
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If N�N�Z��N is given the lexicographic order, then F W P.BAmn /!N�N�Z��N
is a PL Morse function with well-ordered image whose descending links are .n�2/–
connected.
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