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Equidistribution for sequences of line bundles
on normal Kähler spaces

DAN COMAN

XIAONAN MA

GEORGE MARINESCU

We study the asymptotics of Fubini–Study currents and zeros of random holomorphic
sections associated to a sequence of singular Hermitian line bundles on a compact
normal Kähler complex space.

32L10; 32A60, 32C20, 32U40, 81Q50

1 Introduction

In this paper we continue the study of equidistribution of Fubini–Study currents and
zeros of sequences of holomorphic sections of singular Hermitian holomorphic bundles
started by Coman and Marinescu [10; 11; 12]. We generalize our previous results in
two directions. On the one hand, we allow the base space to be singular and work over
Kähler spaces. On the other hand, we consider sequences .Lp; hp/, p � 1, of singular
Hermitian holomorphic line bundles whose Chern curvature satisfy a natural growth
condition, instead of sequences of powers .Lp; hp/ of a fixed line bundle .L; h/.

Recall that, by the results of Tian [57] (see also Ma and Marinescu [40, Section
5.3]), if .X; !/ is a compact Kähler manifold whose Kähler form is integral and
.L; h/ is a prequantum line bundle (ie the Chern curvature form c1.L; h/ equals ! ),
then the normalized Fubini–Study forms 1

p
p associated to H 0.X;Lp/ converge

in the C 2 topology to ! . This result can be applied to describe the asymptotic
distribution of zeros of random sequences of holomorphic sections. Indeed, Shiffman
and Zelditch [55] showed (see also Dinh and Sibony [22], Dinh, Marinescu and Schmidt
[20], Nonnenmacher and Voros [47], Shiffman [54] and Shiffman and Zelditch [56])
that for almost all sequences f�p 2 H 0.X;Lp/gp�1 the normalized zero-currents
1
p
Œ�pD0� converge weakly to ! on X . This means that the Kähler form ! can be

approximated by various algebraic/analytic objects in the semiclassical limit p!1.
Some important technical tools for higher dimensions used in the these works were
introduced by Fornæss and Sibony [27]. We note that the statistics of zeros of sections
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and hypersurfaces have been studied also in the context of real manifolds and real
vector bundles; see eg Gayet and Welschinger [28] and Nicolaescu and Savale [46].

In [10; 11; 12] we relaxed the smoothness condition on ! and assumed that ! is
merely an integral Kähler current. Then there exists a holomorphic line bundle .L; h/
endowed with a singular Hermitian metric such that c1.L; h/ equals ! as currents. We
established the above approximation results in the sense of currents by working with
the spaces of square integrable holomorphic sections H 0

.2/
.X;Lp/. The setting in [10;

11; 12] allows to deal with several singular Kähler metrics, such as singular metrics on
big line bundles, metrics with Poincaré growth, Kähler–Einstein metrics singular along
a divisor (eg good metrics in the sense of Mumford on toroidal compactifications of
arithmetic quotients; see Ash, Mumford, Rapoport and Tai [2]) or metrics on orbifold
line bundles.

We consider in this paper the following setting:

(A) .X; !/ is a compact (reduced) normal Kähler space of pure dimension n, Xreg is
the set of regular points of X and Xsing is the set of singular points of X .

(B) .Lp; hp/, p � 1, is a sequence of holomorphic line bundles on X with singular
Hermitian metrics hp whose curvature currents satisfy

(1) c1.Lp; hp/�ap! on X; where ap>0 and lim
p!1

apD1:

Let Ap D
R
X c1.Lp; hp/^!

n�1 . If Xsing ¤∅ we assume moreover that

(2) 9T0 2 T .X / 8p � 1 c1.Lp; hp/�ApT0:

Here we consider currents on the analytic space X in the sense of Demailly [16], and
T .X / is the set of positive closed currents of bidegree .1; 1/ on X which have a
local plurisubharmonic (PSH) potential in the neighborhood of each point of X (see
Section 2).

We let H 0
.2/
.X;Lp/ be the Bergman space of L2 –holomorphic sections of Lp relative

to the metric hp and the volume form induced by ! on X ,

(3) H 0
.2/.X;Lp/D

�
S 2H 0.X;Lp/

ˇ̌̌
kSk2p WD

Z
Xreg

jS j2hp

!n

n!
<1

�
;

endowed with the obvious inner product. Furthermore, we denote by Pp and p
the Bergman kernel function and Fubini–Study current, respectively, of the space
H 0
.2/
.X;Lp/, which are defined as follows: For p � 1, let S

p
1
; : : : ;Sp

dp
be an or-

thonormal basis of H 0
.2/
.X;Lp/. If x 2X and ep is a local holomorphic frame of Lp
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in a neighborhood Up of x , we write S
p
j D s

p
j ep , where s

p
j 2OX .Up/. Then

(4) Pp.x/D

dpX
jD1

jS
p
j .x/j

2
hp
; pjUp

D
1

2
ddc log

� dpX
jD1

js
p
j j

2

�
;

where dc D
1

2� i
.@�x@/. Note that Pp and p are independent of the choice of basis.

Our main results are the following theorems:

Theorem 1.1 If .X; !/ and .Lp; hp/, p � 1, satisfy assumptions (A)–(B), then:

(i) 1
Ap

log Pp! 0 as p!1 in L1.X; !n/.

(ii) 1
Ap
.p � c1.Lp; hp//! 0 as p!1 in the weak sense of currents on X .

Moreover, if 1
Ap

c1.Lp; hp/ ! T for some positive closed current T of bidegree
.1; 1/ on X, then 1

Ap
p! T as p!1 in the weak sense of currents on X .

When X is smooth we obtain:

Theorem 1.2 Let .X; !/ be a compact Kähler manifold of dimension n and .Lp; hp/

for p � 1 be a sequence of singular Hermitian holomorphic line bundles on X

which satisfy c1.Lp; hp/ � ap! , where ap > 0 and limp!1 ap D 1. If Ap DR
X c1.Lp; hp/^!

n�1 then 1
Ap

log Pp!0 in L1.X; !n/ and 1
Ap
.p�c1.Lp; hp//!0

weakly on X as p!1.

If .Lp; hp/D .L
p; hp/, where .L; h/ is a fixed singular Hermitian holomorphic line

bundle, we obtain analogues of the equidistributions results from [10; 11; 12], Dinh and
Sibony [22] and Shiffman and Zelditch [55] for compact normal Kähler spaces. Note
that in this case hypothesis (2) is automatically satisfied as c1.L

p; hp/D pc1.L; h/,
so we can take Ap D p and T0 D c1.L; h/.

In the case .Lp; hp/ D .Lp; hp/, Theorem 1.1 gives semiclassical approximation
results for integral Kähler currents. In order to deal with the nonintegral case, we
consider those currents T which can be approximated by the curvatures of a sequence
.Lp; hp/, p� 1, of singular Hermitian holomorphic line bundles. Such a sequence can
be thought as a “prequantization” of the nonintegral positive closed .1; 1/ current T .
Theorems 1.1–1.2 and their consequences are a manifestation of the quantum ergodicity
in this context. For details, see Sections 4 and 5, and Theorem 4.7. Another interesting
situation is when Lp equals a product of tensor powers of several holomorphic line
bundles, Lp D F

m1;p

1
˝� � �˝F

mk;p

k
, where fmj ;pgp , 1� j � k , are sequences in N

such that mj ;p D rj pC o.p/ as p!1, where rj > 0 are given. This means that
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.m1;p; : : : ;mk;p/ 2Nk approximate the semiclassical ray R>0 � .r1; : : : ; rk/ 2 Rk
>0

with a remainder o.p/ as p!1. For details see Corollary 5.11.

We consider further the situation when the metrics hp on the bundles Lp are smooth. In
the case of powers .Lp; hp/D .L

p; hp/ of an ample line bundle .L; h/, the first-order
asymptotics of the Bergman kernel function was showed by Tian [57]. A simple proof
for this was given by Berndtsson [5, Section 2]. Adapting his methods to our situation
we prove the following:

Theorem 1.3 Let .X; !/ be a compact Kähler manifold of dimension n. Let .Lp; hp/,
p � 1, be a sequence of holomorphic line bundles on X with Hermitian metrics hp of
class C 3 whose curvature forms satisfy (1) and such that

(5) "p WD khpk
1=3
3

a�1=2
p ! 0 as p!1:

Then there exist C > 0 depending only on .X; !/ and p0 2N such that

(6)
ˇ̌̌̌
Pp.x/

!n
x

c1.Lp; hp/nx
� 1

ˇ̌̌̌
� C "2=3

p

holds for every x 2X and p > p0 .

Here khpk3 is the sup norm of the derivatives of hp of order at most three with respect
to a reference cover of X as defined in Section 2.5. Theorem 1.3 is a generalization
of the first-order asymptotic expansion of the Bergman kernel; see Berndtsson [5],
Catlin [9], Dai, Liu and Ma [13], Ma and Marinescu [40; 41], Ruan [52], Tian [57]
and Zelditch [59] for .Lp; hp/D .L

p; hp/, where .L; h/ is a positive line bundle with
smooth metric h (see Remark 3.3).

The paper is organized as follows. In Section 2 we collect the necessary technical facts
about complex spaces, plurisubharmonic functions, currents and singular Hermitian
metrics on holomorphic line bundles. Section 3 is devoted to the proofs of Theorems
1.1–1.3. In Section 4 we give some applications of these theorems to the equidistribution
of zeros of random sequences of holomorphic sections and to the approximation
of certain positive closed currents on X by currents of integration along zeros of
holomorphic sections. In Section 5 we specialize these results to the cases when
.Lp; hp/ are the powers of a single line bundle, or tensor products of powers of several
line bundles. We also show that some interesting cases, like Satake–Baily–Borel
compactifications, singular Kähler–Einstein metrics on varieties of general type or
Kähler metrics with conical singularities, fit into this framework.
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2 Preliminaries

We recall here a few notions and results that will be needed throughout the paper.

2.1 Plurisubharmonic functions and currents on analytic spaces

Let X be a complex space. A chart .U; �;V / on X is a triple consisting of an open
set U � X , a closed complex space V � G � CN in an open set G of CN and
a biholomorphic map � W U ! V (in the category of complex spaces). The map
� W U !G �CN is called a local embedding of the complex space X . We write

X DXreg[Xsing;

where Xreg and Xsing are the sets of regular and singular points of X , respectively.
Recall that a reduced complex space .X;O/ is called normal if for every x 2X the
local ring Ox is integrally closed in its quotient field Mx . Every normal complex space
is locally irreducible and locally pure-dimensional (see [32, page 125]), and Xsing is a
closed complex subspace of X with codim Xsing � 2. Moreover, Riemann’s second
extension theorem holds on normal complex spaces [32, page 143]. In particular, every
holomorphic function on Xreg extends uniquely to a holomorphic function on X .

Let X be a complex space. A continuous (resp. smooth) function on X is a function
'W X !C such that for every x 2X there exists a local embedding � W U !G �CN

with x 2U and a continuous (resp. smooth) function z'W G!C such that 'jU D z' ı� .

A (strictly) plurisubharmonic (PSH) function on X is a function 'W X ! Œ�1;1/

such that for every x 2X there exists a local embedding � W U !G �CN with x 2U

and a (strictly) PSH function z'W G! Œ�1;1/ such that 'jU D z' ı � . If z' can be
chosen continuous (resp. smooth), then ' is called a continuous (resp. smooth) PSH
function. The definition is independent of the chart, as is seen from [45, Lemma 4]. It
is clear that a continuous PSH function is continuous; by a theorem of Richberg [51]
the converse also holds true, ie a continuous function which is (strictly) PSH is also
continuous (strictly) PSH. The analogue of Riemann’s second extension theorem for
PSH functions holds on normal complex spaces [31, Satz 4]. In particular, every PSH
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function on Xreg extends uniquely to a PSH function on X . We let PSH.X / denote
the set of PSH functions on X , and refer to [31; 45; 26; 16] for the properties of PSH
functions on X . We recall here that PSH functions on X are locally integrable with
respect to the area measure on X given by any local embedding � W U !G �CN [16,
Proposition 1.8].

Let X be a complex space of pure dimension n. We consider currents on X as
defined in [16]. The sheaf of smooth .p; q/–forms on X is defined at first locally. Let
� W U ! G �CN be a local embedding. We define �p;q.U / to be the image of the
morphism ��W �p;q.G/!�p;q.Ureg/. It can be easily seen that there exists a sheaf
�p;q on X whose space of sections on any domain U of local embedding is �p;q.U /.
Let Dp;q.X /��p;q.X / be the space of forms with compact support, endowed with
the inductive limit topology. The dual D0p;q.X / of Dp;q.X / is the space of currents of
bidimension .p; q/, or bidegree .n�p; n� q/, on X . In particular, if v 2 PSH.X /
then ddcv 2 D0

n�1;n�1
.X / is positive and closed.

Let T .X / be the space of positive closed currents of bidegree .1; 1/ on X which have
local PSH potentials: T 2 T .X / if every x 2X has a neighborhood U (depending
on T ) such that there exists a PSH function v on U with T D ddcv on U \Xreg .
Most of the currents considered here, like the curvature currents c1.Lp; hp/ and the
Fubini–Study currents p from Theorem 1.1, belong to T .X /. Suppose now that Y

is a normal analytic space, f W Y !X is a holomorphic map, and T 2 T .X / is such
that if v is a local PSH potential of T then v ı f is not identically �1 on an open
set of Y . Then the pull-back f �T 2 T .Y / is a well-defined current whose local PSH
potentials are v ı f . Some interesting open questions that we will not pursue here
are the following: Does every positive closed current of bidegree .1; 1/ on X belong
to T .X /? Is T .X / closed in the weak� topology on currents? If Tk , T 2 T .X /

and Tk ! T weakly on X , does ff �Tkg converge to f �T weakly on Y ?

A Kähler form on X is a current ! 2 T .X / whose local potentials extend to smooth
strictly PSH functions in local embeddings of X to Euclidean spaces. We call X a
Kähler space if X admits a Kähler form (see also [30, page 346; 48; 25, Section 5]).
A Kähler form is a particular case of a Hermitian form on a complex space. Recall
that a Hermitian form on a complex manifold is a smooth positive .1; 1/–form and
can be identified to a Hermitian metric. Now, a Hermitian form on a complex space
X is defined as a smooth .1; 1/–form ! on X such that for every point x 2X there
exists a local embedding � W U ! G �CN with x 2 U and a Hermitian form z! on
G with ! D ��z! on U \Xreg . A Hermitian form on a paracompact complex space
X is constructed as usual by a partition of unity argument. A Hermitian form ! on
X clearly induces a Hermitian form in the usual sense (and thus a Hermitian metric)
on Xreg . Note that !n=n! gives locally an area measure on X .
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2.2 Singular Hermitian holomorphic line bundles on analytic spaces

Let L be a holomorphic line bundle on a normal Kähler space .X; !/. The notion
of singular Hermitian metric h on L is defined exactly as in the smooth case (see
[18; 40, page 97]): if e˛ is a holomorphic frame of L over an open set U˛ � X

then je˛j2h D e�2'˛ , where '˛ 2 L1
loc.U˛; !

n/. If g˛ˇ D eˇ=e˛ 2 O�
X
.U˛ \ Uˇ/

are the transition functions of L then '˛ D 'ˇ C log jg˛ˇj. The curvature current
c1.L; h/ 2 D0

n�1;n�1
.X / of h is defined by c1.L; h/ D ddc'˛ on U˛ \Xreg . We

will denote by hp the singular Hermitian metric induced by h on Lp WD L˝p . If
c1.L; h/ � 0 then the weight '˛ is PSH on U˛ \ Xreg and since X is normal it
extends to a PSH function on U˛ [31, Satz 4], hence c1.L; h/ 2 T .X /. Let L be a
holomorphic line bundle on a compact normal Kähler space .X; !/. Then the space
H 0.X;L/ of holomorphic sections of L is finite-dimensional. This is a special case
of the Cartan–Serre finiteness theorem; an elementary proof using the Schwarz lemma
can be found in [1, Théorème 1, page 27]. The space H 0

.2/
.X;L/ defined as in (3) is

therefore also finite-dimensional.

If Pp and p are the Bergman kernel functions and Fubini–Study currents of the spaces
H 0
.2/
.X;Lp/ from Theorem 1.1, it follows from (4) that log Pp 2L1.X; !n/ and

(7) p � c1.Lp; hp/D
1
2
ddc log Pp:

Moreover, as in [10; 12], one has the variational formula

Pp.x/Dmax
˚
jS.x/j2hp

W S 2H 0
.2/.X;Lp/; kSkp D 1

	
:

This is valid for all x 2X such that 'p.x/ > �1, where 'p is a local weight of the
metric hp near x .

2.3 Resolution of singularities

Bierstone and Milman constructed a resolution � W zX!X of singularities of a compact
analytic space X by a finite sequence of blow-ups with smooth center �j W XjC1!Xj ,
X0 DX , with the property that for any local embedding X jU ,!CN this sequence
of blow-ups is induced by the embedded desingularization of X jU [6, Theorem 13.2].
In [29, Section 6] it is shown that the embedded desingularization of X jU ,!CN by
a finite sequence of blow-ups with smooth center is equivalent to a single blow-up
along a coherent sheaf of ideals I whose support is XsingjU . It follows that every point
x 2 X has a neighborhood U � X for which there exists an ideal IU generated by
finitely many holomorphic functions on U such that � W ��1.U /!U is equivalent to
the blow-up of X jU along IU .
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We fix throughout the paper a resolution of singularities � W zX !X of our compact
normal space X as described above, and we denote by †D��1.Xsing/ the exceptional
divisor. Note that � W zX n†! Xreg is a biholomorphism. We will need to consider
the singular Hermitian holomorphic line bundles .��Lp; �

�hp/ obtained by pulling
back .Lp; hp/ to zX by the map � , and their spaces of L2 –holomorphic sections

H 0
.2/.
zX ; ��Lp/D

�
zS 2H 0. zX ; ��Lp/

ˇ̌̌ Z
zX

j zS j2��hp

��!n

n!
<1

�
:

Lemma 2.1 The map

��W H 0
.2/.X;Lp/!H 0

.2/.
zX ; ��Lp/

is an isometry and the Bergman kernel function of H 0
.2/
. zX ; ��Lp/ is zPp D Pp ı� .

Proof Let S
p
1
; : : : ;S

p

dp
be an orthonormal basis of H 0

.2/
.X;Lp/ and let zSp

j D�
�S

p
j

be the induced sections of ��Lp . Then j zSp
j j��hp

D jS
p
j jhp

ı� andZ
zX

j zS
p
j j

2
��hp

��!n

n!
D

Z
zX n†

j zS
p
j j

2
��hp

��!n

n!
D

Z
Xreg

jS
p
j j

2
hp

!n

n!
D 1:

Suppose now that zS 2H 0
.2/
. zX ; ��Lp/ is orthogonal to all zSp

j and let S be the induced
section on Xreg . Then, since X is normal, Riemann’s second extension theorem [32,
page 143] shows that S extends to a section S 2 H 0.X;Lp/. By the preceding
argument, S 2H 0

.2/
.X;Lp/ is orthogonal to all S

p
j , so S D 0 and zS D 0. It follows

that f zSp
j g is an orthonormal basis of H 0

.2/
. zX ; ��Lp/ and

zPp D

dpX
jD1

j zS
p
j j

2
��hp

D

dpX
jD1

jS
p
j j

2
hp
ı� D Pp ı�:

Adapting the proof of [43, Lemma 1] to our situation we obtain the following lemma,
whose proof is included for the convenience of the reader.

Lemma 2.2 Let .X; !/ be a compact (reduced) Hermitian space and � W zX ! X

be a resolution of singularities as described above, with exceptional divisor †. Then
there exists a smooth Hermitian metric � on F D O zX .�†/ and C > 0 such that
�D C��!C c1.F; �/ is a Hermitian form on zX and �� ��! . If ! is Kähler, then
� is Kähler, too.

Proof As in the proof of [43, Lemma 1], we can find an open cover X D
SN

kD1 Uk

with the following properties:
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(i) There exist a local embedding �k W Uk ! Bk into a ball Bk �Clk and a smooth
Hermitian form !k on Bk such that ! D ��

k
!k on Uk \Xreg . Hence we may assume

that Uk � Bk and ! is the restriction of !k to Uk \Xreg . Choose a strictly PSH
function �k on Bk such that !k � ddc�k on Bk . If ! is Kähler, we choose �k such
that !k D ddc�k on Bk , hence ! D ddc�k on Uk \Xreg .

(ii) There exist finitely many holomorphic functions f0k ; : : : ; fNkk 2OX .Uk/ such
that over Uk the map � W ��1.Uk/! Uk and the line bundle O zX .†/j��1.Uk/

are
described as follows: if �k � Uk �PNk is the graph of the meromorphic map

x 7! Œf0k.x/ W � � � W fNkk.x/�

with canonical projections �1k W �k!Uk and �2k W �k!PNk, then � W ��1.Uk/!Uk

coincides with �1k W �k ! Uk and O zX .†/j��1.Uk/
can be identified with the line

bundle ��
2k

OPNk .�1/ on �k .

Let Œy0k W � � � WyNkk � be the homogeneous coordinates on PNk, GikDfyik¤ 0g�PNk

and zGik D �
�1
2k
.Gik/ � �k D �

�1.Uk/. The transition functions of OPNk .�1/ are
yik=yjk and we endow OPNk .�1/ with a smooth Hermitian metric with weights  0

ik

on Gik such that � 0
ik

is strictly PSH. The corresponding transition functions of
O zX .†/j��1.Uk/

are zgij ;k D .fik ı �1k/=.fjk ı �1k/ on zGik \
zGjk , and we denote

by  ik the weights of the induced Hermitian metric. Then � ik is a smooth PSH
function on zGik and  ik D  jk C log jzgij ;k j on zGik \

zGjk .

Consider the open cover f zGik j 1� k �N; 0� i �Nkg of zX . Note that ��1.Uk/DSNk

iD0
zGik and that O zX .†/ is trivial on zGik . We denote the transition functions of

O zX .†/ by gi1k1;i2k2
2O. zGi1k1

\ zGi2k2
/. Hence

 i1k D  i2k C log jgi1k;i2k j; gi1k;i2k D zgi1i2;k :

We now construct a smooth Hermitian metric on O zX .†/ with weights sik on zGik .
Let f�kg1�k�N be a smooth partition of unity on X so that supp �k � Uk . For a
fixed k1 2 f1; : : : ;N g let 'ik

k1
be a function defined on ��1.Uk1

/\ zGik as follows: if
x 2 zGi1k1

then

'ik
k1
.x/D  i1k1

.x/C log jgik;i1k1
.x/j:

Note that 'ik
k1

is well-defined and smooth on ��1.Uk1
/ \ zGik . Indeed, if x is in

zGi1k1
\ zGi0

1
k1
\ zGik then gi0

1
k1;i1k1

�gi1k1;ik �gik;i0
1
k1
D 1 so

 i0
1
k1
.x/C log jgik;i0

1
k1
.x/j D  i1k1

.x/C log jgi0
1
k1;i1k1

.x/jC log jgik;i0
1
k1
.x/j

D  i1k1
.x/C log jgik;i1k1

.x/j:
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Next we define

sik D

NX
k1D1

.�k1
ı�/'ik

k1
on zGik :

We claim that sik D si0k0 C log jgik;i0k0 j on zGik \
zGi0k0 , so fsikg defines a smooth

Hermitian metric on O zX .†/. For this we show that if k1 2 f1; : : : ;N g then

.�k1
ı�/'ik

k1
D .�k1

ı�/.'i0k0

k1
C log jgik;i0k0 j/:

Let x 2 ��1.Uk1
/ and assume x 2 zGi1k1

\ zGik \
zGi0k0 . Since

gi0k0;i1k1
�gi1k1;ik �gik;i0k0 D 1

we obtain

'ik
k1
.x/D  i1k1

.x/C log jgik;i1k1
.x/j

D  i1k1
.x/C log jgi0k0;i1k1

.x/jC log jgik;i0k0.x/j

D 'i0k0

k1
.x/C log jgik;i0k0.x/j;

which proves our claim.

We finally show that the desired metric � on F is the metric defined by the weights
f�sikg. By a standard compactness argument it suffices to prove that for every x 2 zGik

there exists Cx > 0 such that for C > Cx the function C�k ı� � sik is strictly PSH
at x . We write Tx

zX D Ex ˚Fx , where Ex D ker d�.x/. Note that the Levi form
(see eg [36, page 228] for the definition) of the function �k ı� is given by

L.�k ı�/.x/.t; t
0/D L�k.�.x//.d�.x/.t/; d�.x/.t

0//;

so

(8) L.�k ı�/.x/.t; t
0/D 0 for all t 2 Tx

zX; t 0 2Ex :

Moreover, since �k is strictly PSH at �.x/ 2 Bk and d�.x/ is injective on Fx we
deduce that

(9) L.�k ı�/.x/.t; t/ > 0 for all t 2 Fx n f0g:

The formula of sik implies that, for each t 2Ex ,

�Lsik.x/.t; t/D�

NX
k1D1

�k1
.�.x//L i1k1

.x/.t; t/� 0;

since each function � i1k1
is PSH on zGi1k1

. If �k1
.�.x// > 0, we may assume that

x 2 zGi1k1
\ zGik and we will show that �L i1k1

.x/.t; t/ > 0 for all t 2 Ex n f0g.
As ��1.Uk1

/D �k1
� Uk1

�PNk1 � Bk1
�PNk1 , there is a neighborhood zU � zX
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of x such that zU � Bk1
�Gi1k1

. Recall that  i1k1
D  0

i1k1
ı �2k1

and � D �1k1

on zU . We consider �1k1
and �2k1

as restrictions of the canonical projections
�1k1
W Bk1

�Gi1k1
!Bk1

and �2k1
W Bk1

�Gi1k1
!Gi1k1

. Since t 2Ex�ker d�1k1
.x/

and t ¤ 0 it follows that d�2k1
.x/.t/¤ 0. Therefore

�L i1k1
.x/.t; t/D�L 0i1k1

.�2k1
.x//.d�2k1

.x/.t/; d�2k1
.x/.t// > 0;

as � 0
i1k1

is strictly PSH on Gi1k1
. This yields

(10) �Lsik.x/.t; t/ > 0 for all t 2Ex n f0g:

By (8), (9) and (10) we conclude that there exists Cx > 0 such that if C > Cx then
L.C�k ı� � sik/.x/.t; t/ > 0 for all t 2 Tx

zX n f0g. This finishes the proof.

We look now at the nature of the base space X as implied by the hypotheses made on
the curvature of the bundles involved in our results. Recall that a compact irreducible
complex space X of dimension n is called Moishezon if X possesses n algebraically
independent meromorphic functions, ie if the transcendence degree of the field of
meromorphic functions on X equals the complex dimension of X . Let X 0 and
X be compact irreducible spaces and hW X 0 ! X be a proper modification. Then
h induces an isomorphism of the fields of meromorphic functions on X 0 and X ,
respectively [40, Theorem 2.1.18], hence X 0 is Moishezon if and only if X is too.
In [43], Moishezon showed that if X is a Moishezon space, then there exists a proper
modification hW X 0 ! X , obtained by a finite number of blow-ups with smooth
centers, such that X 0 is a projective algebraic manifold (for a proof see also [40,
Theorem 2.2.16]).

Lemma 2.2 yields in particular the following:

Proposition 2.3 If .X; !/ is a compact (reduced) Hermitian space endowed with a
singular Hermitian holomorphic line bundle .L; h/ such that c1.L; h/� "! for some
constant " > 0 then X is Moishezon.

Proof Let � W zX!X be a resolution of singularities as in Lemma 2.2, with exceptional
divisor † and Hermitian form �DC��!Cc1.F; �/, where F DO zX .�†/. Consider
the line bundles Ep D �

�Lp˝F with singular Hermitian metrics �p D ��hp˝ � .
Then

c1.Ep; �p/D p��c1.L; h/C c1.F; �/� p"��!C c1.F; �/��

provided that p" � C . Hence zX carries a singular Hermitian holomorphic line
bundle with strictly positive curvature in the sense of currents. By [38] (see also [40,
Theorem 2.3.8]) it follows that zX is Moishezon and hence X is, too. If .X; !/ is
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Kähler, then zX is already projective. Indeed, . zX ; �/ is Kähler and Moishezon, so by
a theorem of Moishezon is projective (see eg [40, Theorem 2.2.26]).

The paper [42] (see also [40, Theorems 3.4.10 and 3.4.14]) gives an integral criterion for
a complex space with isolated singularities to be Moishezon, generalizing the criterion
of Siu and Demailly from the smooth case.

We recall next the following projectivity criterion:

Proposition 2.4 (Grauert [30]) If .X; !/ is a compact (reduced) Hermitian space
endowed with a C 2 Hermitian holomorphic line bundle .L; h/ such that c1.L; h/� "!

for some constant " > 0, then L is ample and X is projective.

This follows from [30, Satz 2, page 343]; see also [30, Satz 3, page 346]. If X is
normal, Grauert actually shows more: if � is a continuous Kähler metric whose de
Rham cohomology class is integral, then there exists a Hermitian holomorphic line
bundle .L; h/ with C 2 Hermitian metric and c1.L; h/D�; hence L is ample and X

is projective.

2.4 L2–estimates for x@

The following version of Demailly’s estimates for the x@ operator [15, Théorème 5.1]
will be needed in our proofs:

Theorem 2.5 [15] Let Y , with dim Y D n, be a complete Kähler manifold and
let � be a Kähler form on Y (not necessarily complete) such that its Ricci form
Ric� � �2�B� on Y for some constant B > 0. Let .Lp; hp/ be singular Hermitian
holomorphic line bundles on Y such that c1.Lp; hp/ � 2ap�, where ap !1 as
p!1, and fix p0 such that ap�B for all p>p0 . If p>p0 and g2L2

0;1
.Y;Lp; loc/

satisfies x@gD 0 and
R

Y jgj
2
hp
�n <1, then there exists u 2L2

0;0
.Y;Lp; loc/ such that

x@uD g and
R

Y juj
2
hp
�n �

1
ap

R
Y jgj

2
hp
�n .

Proof We write Lp D Fp ˝KY , where Fp D Lp ˝K�1
Y

, and the canonical line
bundle KY is endowed with the metric hKY induced by �. If �p D hp˝hK�1

Y is the
metric induced on Fp then

c1.Fp; �p/D c1.Lp; hp/� c1.KY ; h
KY /

D c1.Lp; hp/C
1

2�
Ric� � .2ap �B/�� ap�

for p > p0 . The theorem follows by using the isometries

L2
0;j .Y;Lp; loc/ŠL2

n;j .Y;Fp; loc/ for j D 0; 1

and applying [15, Théorème 5.1] (see also [10, Corollaries 4.2 and 4.3]).
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2.5 Special weights of Hermitian metrics on reference covers

Let .X; !/ be a compact Kähler manifold of dimension n. Let .U; z/, zD .z1; : : : ; zn/,
be local coordinates centered at a point x 2X . For r > 0 and y 2 U we denote by

�n.y; r/D fz 2 U W jzj �yj j � r; j D 1; : : : ; ng

the (closed) polydisk of polyradius .r; : : : ; r/ centered at y . The coordinates .U; z/
are called Kähler at y 2 U if

(11) !z D
i

2

nX
jD1

dzj ^ dxzj CO.jz�yj2/ on U:

Definition 2.6 A reference cover of X consists of the following data: for j D

1; : : : ;N , a set of points xj 2X and

(1) Stein open simply connected coordinate neighborhoods .Uj ; w
.j// centered at

xj � 0;

(2) Rj > 0 such that �n.xj ; 2Rj /b Uj and for every y 2�n.xj ; 2Rj / there exist
coordinates on Uj which are Kähler at y ;

(3) X D
SN

jD1�
n.xj ;Rj /.

Given the reference cover as above we set RDmin Rj .

We can construct a reference cover as follows: for x 2 X fix a Stein open simply
connected neighborhood U of x � 0 2 Cn and fix R > 0 such that the polydisk
�n.x; 2R/ b U and for every y 2 �n.x; 2R/ there exist coordinates .U; z/ which
are Kähler at y . By compactness there exist x1; : : : ;xN 2 X such that the above
conditions are fulfilled.

On Uj we consider the partial derivatives D˛
w of order j˛j, with ˛ 2N2n , correspond-

ing to the real coordinates associated to w D w.j/ . For a function ' 2 C k.Uj / we set

(12) k'kk D k'kk;w D supfjD˛
w'.w/j W w 2�

n.xj ; 2Rj /; j˛j � kg:

Let .L; h/ be a Hermitian holomorphic line bundle on X , where the metric h is of
class C l . Note that LjUj is trivial. For k � l set

(13)
khkk;Uj D inf

˚
k'jkk W 'j 2 C l.Uj / is a weight of h on Uj

	
;

khkk Dmaxf1; khkk;Uj W 1� j �N g:

Recall that 'j is a weight of h on Uj if there exists a holomorphic frame ej of L

on Uj such that jej jh D e�'j .
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Lemma 2.7 There exists C > 1 (depending on the reference cover) with the following
property: Given any Hermitian line bundle .L; h/ on X , where h is of class C 3 , any
j 2 f1; : : : ;N g and any x 2 �n.xj ;Rj / there exist coordinates z D .z1; : : : ; zn/ on
�n.x;R/ which are centered at x � 0 and Kähler coordinates for x such that:

(i) dm� .1CC r2/ !n=n! and !n=n!� .1CC r2/ dm hold on �n.x; r/ for any
r <R, where dmDdm.z/ is the Euclidean volume relative to the coordinates z .

(ii) .L; h/ has a weight ' on �n.x;R/ with '.z/D
Pn

jD1 �j jzj j
2C z'.z/, where

�j 2R and jz'.z/j � Ckhk3jzj
3 for z 2�n.x;R/.

Proof By the properties of a reference cover there exist coordinates z on Uj which
are Kähler for x 2�n.xj ;Rj /, so ! D i

2

Pn
lD1 dzl ^dxzl CO.jz�xj2/ and (i) holds

with a constant Cj uniform for x 2�n.xj ;Rj /. Let ej be a frame of L on Uj and '0

be a weight of h on Uj with jej jh D e�'
0

and k'0k3;w � 2khk3 ; see (12)–(13). By
translation we may assume x D 0 and write '0.z/D Ref .z/C'0

2
.z/C'0

3
.z/, where

f .z/ is a holomorphic polynomial of degree � 2 in z , '0
2
.z/ D

Pn
k;lD1 �klzkxzl ,

and Ref .z/ C '0
2
.z/ is the Taylor polynomial of order 2 of '0 at 0. Note that

k'0k3;z � C 0jk'
0k3;w � 2C 0jkhk3 , where k'0k3;z is the sup norm on �n.x;R/ of

the derivatives of order 3 of '0 in the coordinates z and C 0j is a constant uniform
for x 2 �n.xj ;Rj /. This follows from the fact that z and w are coordinates on
Uj c�n.xj ; 2Rj /. We conclude that j'0

3
.z/j � 2C 0jkhk3jzj

3 for z 2�n.x;R/.

Consider the frame zej D ef ej of L on Uj . Then jzej jh D eRef�'0 D e�' , so
'.z/ WD '0

2
.z/C '0

3
.z/ is a weight of h on Uj . By a unitary change of coordinates

we may assume that '.z/D
Pn

lD1 �l jzl j
2C z'.z/. In these new coordinates, !n=n!

and z'.z/ satisfy the desired estimates with a constant Cj uniform for x 2�n.xj ;Rj /.
Finally we let C Dmax1�j�N Cj .

3 Proofs of Theorems 1.1, 1.2 and 1.3

We use here the notations introduced in Section 2 and we start with two lemmas that
will be needed in the proof of Theorem 1.1:

Lemma 3.1 Let D be a divisor in a complex manifold Y and � be a smooth Hermitian
metric on O.�D/ over Y with weight ' over Y nD . Then limy!x;y2Y nD '.y/D

�1 for every x 2D .

Proof Let U˛ be a neighborhood of x where D has defining function f˛ 2O.U˛/
and � has weight '˛ 2 C1.U˛/. The transition function of O.�D/ on U˛ \ .Y nD/

is g D 1=f˛ , so '˛ D 'C log jgj and ' D '˛C log jf˛j.
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Lemma 3.2 Let .X; !/ and .Lp; hp/ satisfy assumptions (A)–(B) and let F D

O zX .�†/, � and �DC��!Cc1.F; �/ be as in Lemma 2.2. Then there exist ˛2 .0; 1/,
bp 2N and singular Hermitian metrics zhp on ��Lpj zX n†

such that ap�Cbp , bp!1

and bp=Ap ! 0 as p !1, zhp � ˛
bp��hp and c1.�

�Lp; zhp/ � bp� on zX n†.
Moreover, for every open relatively compact subset zU of zX n† there exists a constant
ˇ zU > 1 such that zhp � ˇ

bp

zU
��hp on zU .

Proof If h0 and h00 are singular Hermitian metrics on some holomorphic line bundle
G then by h0 � ch00 we mean that jej2

h0
� cjej2

h00
for any e 2 G . Consider the line

bundles Ep D �
�Lp˝Fbp with metrics �p D ��hp˝ �

bp, where bp 2N . Then

c1.Ep; �p/D �
�c1.Lp; hp/C bpc1.F; �/� ap�

�!C bpc1.F; �/� bp�

provided that ap �Cbp . Since F is trivial on zX n†, we have ��Lpj zX n† ŠEpj zX n†
and we can find a smooth weight ' of � on zX n† by setting jf j2

�
D e�2', where f

is a holomorphic frame of F on zX n†. Let zhp be the metric of ��Lpj zX n† defined
by zhp D e�2bp'��hp . Then c1.�

�Lp; zhp/ D c1.Ep; �p/ � bp� on zX n†. Since
' 2 C1. zX n†/ and, by Lemma 3.1, '.y/!�1 as y ! †, it follows that there
exists ˛ 2 .0; 1/ such that e�2' � ˛ on zX n†. Moreover, if zU is an open relatively
compact subset of zX n†, there exists ˇ zU > 1 such that e�2' � ˇ zU on zU . These
imply that zhp � ˛

bp��hp on zX n† and zhp � ˇ
bp

zU
��hp on zU . The lemma follows if

we choose bp 2N such that ap � Cbp , bp!1 and bp=Ap! 0 as p!1.

Proof of Theorem 1.1 Note that (ii) follows at once from (i) by using (7). The proof
of (i) will be done in two steps.

Step 1 We show here that 1
Ap

log Pp! 0 as p!1 in L1
loc.Xreg; !

n/. Fix x 2Xreg ,
W b Xreg a contractible Stein coordinate neighborhood of x and r0 > 0 such that the
(closed) ball V WD B.x; 2r0/ is a subset of W , and set U WD B.x; r0/.

Note that on a Stein manifold M we have H 1.M;O�/ŠH 2.M;Z/ due to Cartan’s
Theorem B (see eg [35, page 201]), thus any holomorphic line bundle L over a Stein
contractible manifold � is holomorphically trivial (this is due to [50], and is of course
a special case of the Oka–Grauert principle). Thus there exist local holomorphic
frames e0pW W ! Lp , for all p . Let  0p be the corresponding PSH weights of hp

on W , je0pj
2
hp
D e�2 0p . The sequence of currents

˚
1

Ap
c1.Lp; hp/

	
has uniformly

bounded mass, so from [23, Proposition A.16] (see also [21]) it follows that there
exist PSH functions  p on int V such that ddc p D c1.Lp; hp/ and the sequence˚

1
Ap
 p

	
is bounded, hence relatively compact [36, Theorem 3.2.12], in L1

loc.int V; !n/.
Since  0p � p is pluriharmonic,  0p � p D Refp for some function fp 2O.int V /.
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Considering the local frames ep D efp e0p of Lpjint V , we obtain

jepj
2
hp
D e2 Refp je0pj

2
hp
D e�2 p ;

ie  p is the PSH weight of hp relative to the frame ep .

Let fbpg be as in Lemma 3.2. We prove that there exist C 0 > 1 and p0 2N such that

(14) �
bp log C 0

Ap
�

log Pp.z/

Ap
�

log.C 0r�2n/

Ap
C

2

Ap

�
max

B.z;r/
 p � p.z/

�
holds for all p>p0 , 0< r < r0 and z 2U with  p.z/>�1. The upper bound in (14)
is proved exactly as the corresponding upper bound from the proof of [12, Theorem 5.1].
For the lower bound, we show that there exist c 2 .0; 1/ and p0 2N such that if p>p0

and z 2U with  p.z/>�1, then there exists a section Sz;p 2H 0
.2/
.X;Lp/ satisfying

Sz;p.z/¤ 0 and

(15) cbpkSz;pk
2
p � jSz;p.z/j

2
hp
:

This implies that

1

Ap
log Pp.z/D

1

Ap
max
kSkpD1

log jS.z/j2hp
�

bp log c

Ap
:

To prove (15) we work on zX n† and recall that � W zX n†!Xreg is a biholomorphism.
Let �� ��! be the Kähler form on zX constructed in Lemma 2.2, and bp and zhp be
as in Lemma 3.2. Then bp!1 and

c1.�
�Lpj zX n†

; zhp/� bp� on zX n†:

Since � is a Kähler form on zX we have Ric� � �2�B� on zX for some constant
B > 0. Moreover, since zX is a compact Kähler manifold, zX n† has a complete
Kähler metric (see [15; 48]). Repeating the argument in the proof of [12, Theorem 5.1]
(see also [10, Theorems 4.2 and 4.3]) one applies the Ohsawa–Takegoshi extension
theorem [49] and then solves a suitable x@–equation using Theorem 2.5, as in [17,
Proposition 3.1; 19, Section 9], to show the following: there exist C 00 > 1 and p0 2N
such that if p > p0 and zz 2 ��1.U / with  p ı�.zz/ >�1, then there exists a section
zS 2H 0. zX n†;��Lp/ satisfying zS.zz/¤ 0 andZ

zX n†

j zS j2
zhp

�n

n!
� C 00j zS.zz/j2

zhp

:

It is important to recall here that the weight of zhp near zz is the sum of  p ı� and a
smooth function. By Lemma 3.2 we have for all p that zhp � ˛

bp��hp on zX n† and
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zhp � ˇ
bp��hp on ��1.U / for some constant ˇ > 1. Since � � ��! , these imply

that
˛bp

Z
zX n†

j zS j2��hp

��!n

n!
� C 00ˇbp j zS.zz/j2��hp

:

Fix a constant c 2 .0; 1/ with C 00cbp � .˛=ˇ/bp for all p and let Sz;p , where zD�.zz/,
be the section of LpjXreg induced by zS . Since X is normal it follows that Sz;p extends
to a holomorphic section of Lp on X . Moreover, Sz;p.z/¤ 0 and (15) holds for Sz;p

and c . The proof of (14) is now complete.

To conclude Step 1, it suffices to show that every subsequence of
˚

1
Ap

log Pp

	
has

a subsequence convergent to 0 in L1.U; !n/. Without loss of generality, we prove
that

˚
1

Ap
log Pp

	
has a subsequence convergent to 0 in L1.U; !n/. Since

˚
1

Ap
 p

	
is

locally uniformly upper bounded in int V and relatively compact in L1
loc.int V; !n/,

there exists a subsequence f pj g such that

1

Apj

 pj !  D

�
lim sup 1

Apj

 pj

��
in L1

loc.int V; !n/ and a.e. on int V , where  2 PSH.int V /. Moreover, by the Hartogs
lemma,

lim sup 1

Apj

max
B.z;r/

 pj � max
B.z;r/

 

for each z 2U and r < r0 (see eg [36, Theorem 3.2.13]). Letting pj !1 in (14) we
get, since bp=Ap! 0, that

0� lim inf
log Ppj .z/

Apj

� lim sup
log Ppj .z/

Apj

� 2
�

max
B.z;r/

 � .z/
�

for a.e. z 2 U and every r < r0 . Letting r & 0 and using the upper semicontinuity
of  we deduce that 1

Apj
log Ppj ! 0 a.e. on U . Since

˚
1

Ap
 p

	
is locally uniformly

upper bounded in int V , it follows by (14) that there exists a constant C 00 > 0 such
that ˇ̌̌

1

Apj

log Ppj

ˇ̌̌
� C 00�

2

Apj

 pj a.e. on U:

Since  pj ,  2 L1.U; !n/, 1
Apj

 pj !  a.e. on U and in L1.U; !n/ and, since
1

Apj

log Ppj ! 0 a.e. on U , the generalized Lebesgue dominated convergence theorem
gives that 1

Apj

log Ppj ! 0 in L1.U; !n/.

Step 2 To complete the proof of (i) we show here that there exists a compact set
K �X such that Xsing � int K and

1

Ap

Z
K

jlog Ppj!
n
! 0 as p!1:
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Let H 0
.2/
. zX ; ��Lp/ be the Bergman spaces from Lemma 2.1. We note that there exists

M > 0 such that

(16)
Z
zX

c1.�
�Lp; �

�hp/^�
n�1
�MAp for all p � 1:

Indeed, since c1.Lp; hp/, T0 2 T .X / and c1.Lp; hp/�ApT0 , we have

c1.�
�Lp; �

�hp/D �
�c1.Lp; hp/�Ap�

�T0:

This yields (16) with M D
R
zX
��T0 ^�

n�1 .

We now fix y 2† and �W an open neighborhood of y in zX biholomorphic to a ball
in Cn . Using (16) and repeating an argument from Step 1, we find holomorphic frames
zep of ��Lpj �W for which the corresponding PSH weights z p of ��hp are such that˚

1
Ap

z p

	
is bounded in L1

loc.
�W ; �n/, hence locally uniformly upper bounded on �W

and relatively compact in L1
loc.

�W ; �n/. If f zSp
j W 1� j � dpg is an orthonormal basis

of H 0
.2/
. zX ; ��Lp/ we write zSp

j D zs
p
j zep and let

zvp D
1

2
log
� dpX

jD1

jzs
p
j j

2

�
2 PSH. �W /:

By Lemma 2.1, Pp ı� is the Bergman kernel function of H 0
.2/
. zX ; ��Lp/, hence

1

Ap
zvp �

1

Ap

z p D
1

2Ap
log Pp ı�:

We claim that 1
Ap

log Pp ı�! 0 in L1
loc.

�W ; �n/. As in Step 1, it suffices to produce
a subsequence with this property. Since

˚
1

Ap

z p

	
is relatively compact in L1

loc.
�W ; �n/

there is a subsequence
˚

1
Apj

z pj

	
convergent in L1

loc.
�W ; �n/ to a PSH function z 

on �W . By Step 1, we have 1
Ap

log Pp ! 0 as p !1 in L1
loc.Xreg; !

n/ so, since
� W zX n†! Xreg is biholomorphic, 1

Ap
log Pp ı � ! 0 in L1

loc.
�W n†;�n/. Thus

1
Apj
zvpj !

z in L1
loc.

�W n†;�n/. By the proof of [10, Theorem 1.1(i)],
˚

1
Apj
zvpj
	

is
locally uniformly upper bounded in �W and converges to z in L1

loc.
�W ; �n/. Hence

1
Apj

log Ppj ı�! 0 in L1
loc.

�W ; �n/, which proves our claim.

Since y 2 † was arbitrary and † is compact we can find an open set zU � † such
that 1

Ap
log Pp ı�! 0 in L1. zU ; �n/. Then we fix a compact set K �X such that

Xsing� int K and ��1.K/� zU . As � W zX n†!Xreg is biholomorphic and ��!��,
we have

1

Ap

Z
K

jlog Ppj!
n
D

1

Ap

Z
K\Xreg

jlog Ppj!
n
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D
1

Ap

Z
��1.K /n†

jlog Pp ı�j�
�!n

�
1

Ap

Z
��1.K /

jlog Pp ı�j�
n
! 0 as p!1:

This concludes Step 2 and finishes the proof of Theorem 1.1.

Theorem 1.1 holds under the weaker hypotheses obtained if one replaces the domination
assumption (2) by (16), where � W zX ! X is the resolution of singularities fixed in
Section 2. The proof goes through without change. Due to the presence of singularities
of X , it is not clear whether (16) holds true without the domination condition (2), ie if
the mass of the pull-back currents ��c1.Lp; hp/ on zX is dominated by the mass of
the currents c1.Lp; hp/ on X , uniformly in p .

Proof of Theorem 1.2 We repeat the argument in Step 1 from the previous proof,
working directly on .X;Lp; hp/ with the Kähler form ! .

Proof of Theorem 1.3 We use methods from [5, Section 2]. Let us consider a reference
cover of X as in Definition 2.6. We fix x 2 X , so x 2�n.xj ;Rj / for some j , and
we pick coordinates z centered at x as in Lemma 2.7. Let

'p.z/D '
0
p.z/C z'p.z/; '0p.z/D

nX
lD1

�
p

l
jzl j

2;

be a weight of hp on �n.x;R/ such that z'p satisfies Lemma 2.7(ii) and let ep be
a frame of Lp on Uj with jepjhp

D e�'p . Finally, let rp 2
�
0; R

2

�
be an arbitrary

number, which will be specified later.

We begin by estimating the norm of a section S 2H 0.X;Lp/ at x . Writing S D sep ,
where s 2O.�n.x;R//, we obtain, by the subaveraging inequality for PSH functions,

jS.x/j2hp
D js.0/j2 �

R
�n.0;rp/

jsj2e�2'0p dmR
�n.0;rp/

e�2'0p dm
:

If C > 1 is the constant from Lemma 2.7, we haveZ
�n.0;rp/

jsj2e�2'0p dm� .1CC r2
p / exp

�
2 max
�n.0;rp/

z'p

�Z
�n.0;rp/

jsj2e�2'p !
n

n!

� .1CC r2
p / exp.2Ckhpk3r3

p /kSk
2
p:

Set
E.r/ WD

Z
j�j�r

e�2j�j2 dm.�/D
�

2
.1� e�2r2

/;
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where dm is the Lebesgue measure on C . Since �p
j � ap we obtain

E.rp
p

ap /
n

�
p
1
� � ��

p
n

�

Z
�n.0;rp/

e�2'0p dm�

Z
Cn

e�2'0p dmD
.�=2/n

�
p
1
� � ��

p
n

:

Combining these estimates it follows that

(17) jS.x/j2hp
�
.1CC r2

p / exp.2Ckhpk3r3
p /

E.rp
p

ap/n
�

p
1
� � ��p

n kSk
2
p:

By taking the supremum in (17) over all S 2H 0.X;Lp/ with kSkp D 1, we get

(18)
Pp.x/

�
p
1
� � ��

p
n

�
.1CC r2

p / exp.2Ckhpk3r3
p /

E.rp
p

ap/n
for all rp 2

�
0;

R

2

�
:

For the lower estimate on Pp , let 0� �� 1 be a cut-off function on Cn with support
in �n.0; 2/ and �� 1 on �n.0; 1/, and set �p.z/D �.z=rp/. Then F D �pep is a
section of Lp and jF.x/jhp

D jep.x/jhp
D e�'p.0/ D 1. We have

(19) kFk2p �

Z
�n.0;2rp/

e�2'p !
n

n!

� .1C 4C r2
p / exp.16Ckhpk3r3

p /

Z
�n.0;2rp/

e�2'0p dm

�

�
�

2

�n .1C 4C r2
p / exp.16Ckhpk3r3

p /

�
p
1
� � ��

p
n

:

Set ˛ D x@F . Since kx@�pk
2 D kx@�k2=r2

p , where kx@�k is the maximum of jx@�j, we
obtain, as above,

k˛k2p D

Z
�n.0;2rp/

jx@�pj
2e�2'p !

n

n!
�
kx@�k2

r2
p

�
�

2

�n .1C 4C r2
p / exp.16Ckhpk3r3

p /

�
p
1
� � ��

p
n

:

Since ap!1 there exists p0 2N such that for p > p0 we can solve the x@–equation
by Theorem 2.5. We get a smooth section G of Lp with x@G D ˛ D x@F and

(20) kGk2p �
2

ap
k˛k2p �

2kx@�k2

apr2
p

�
�

2

�n .1C 4C r2
p / exp.16Ckhpk3r3

p /

�
p
1
� � ��

p
n

:

Since F D ep is holomorphic on �n.0; rp/, G is holomorphic on �n.0; rp/ as x@G D
x@F D 0 there. So the estimate (17) applies to G on �n.0; rp/ and gives
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jG.x/j2hp
�
.1CC r2

p / exp.2Ckhpk3r3
p /

E.rp
p

ap/n
�

p
1
� � ��p

n kGk
2
p

�
2kx@�k2

apr2
p E.rp

p
ap/n

�
�

2

�n
.1C 4C r2

p /
2 exp.18Ckhpk3r3

p /:

Let S D F �G 2H 0.X;Lp/. Then

jS.x/j2hp
�
�
jF.x/jhp

� jG.x/jhp

�2
D
�
1� jG.x/jhp

�2
�

�
1�

�
�

2

�n=2
p

2kx@�k.1C 4C r2
p /

rp
p

apE.rp
p

ap/n=2
exp.9Ckhpk3r3

p /

�2

DWK1.rp/:

Moreover, by (19) and (20),

kSk2p � .kFkpCkGkp/
2
�

�
�

2

�n K2.rp/

�
p
1
� � ��

p
n

;

where

K2.rp/D .1C 4C r2
p / exp.16Ckhpk3r3

p /

�
1C

p
2kx@�k

rp
p

ap

�2

:

Therefore,

(21) Pp.x/�
jS.x/j2

hp

kSk2p
�
�

p
1
� � ��

p
n

.�=2/n
K1.rp/

K2.rp/
:

Note that at x , we have !x D
i
2

Pn
jD1 dzj ^ dxzj and c1.Lp; hp/x D ddc'p.0/ D

i
�

Pn
jD1 �

p
j dzj ^ dxzj , thus

c1.Lp; hp/
n
x

!n
x

D

�
2

�

�n
�

p
1
� � ��p

n :

By (18) and (21) we conclude that

(22)
K1.rp/

K2.rp/
� Pp.x/

!n
x

c1.Lp; hp/nx
�K3.rp/

holds for every x 2X , rp <
R
2

and p > p0 , where

K3.rp/D

�
�=2

E.rp
p

ap /

�n

.1CC r2
p / exp.2Ckhpk3r3

p /:

By (5) we have that "p D khpk
1=3
3

a
�1=2
p ! 0. We set

rp WD "
1=3
p khpk

�1=3
3
D "�2=3

p a�1=2
p ; so khpk3r3

p D "p; rp
p

ap D "
�2=3
p :
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As khpk3 � 1, we have rp � "
1=3
p , thus rp! 0 as p!1. With this choice for rp

we obtain

K3.rp/�

�
�=2

E."
�2=3
p /

�n

.1CC "2=3
p / exp.2C "p/�1CC 0"2=3

p ;
K1.rp/

K2.rp/
�1�C 0"2=3

p ;

where C 0 > 0 is a constant depending only on the reference cover. Therefore (6)
follows from (22) and the proof is complete.

Remark 3.3 Theorem 1.3 shows that

lim
p!1

Pp.x/
!n

x

c1.Lp; hp/nx
D 1 uniformly on X:

This is a generalization of the asymptotic expansion of the Bergman kernel [9; 13; 37;
40; 41; 52; 57; 59] for .Lp; hp/D .L

p; hp/, where .L; h/ is a positive line bundle with
smooth metric h. Indeed, if .Lp; hp/D .L

p; hp/, we have ap Dp and khpk3 �Chp ,
where Ch is a constant depending only on h and the reference cover. Hence

"p D khpk
1=3
3

a�1=2
p � C

1=3

h
p�1=6;

so condition (5) is fulfilled. Estimate (6) yields

(23)
ˇ̌̌̌
Pp.x/

pn

!n
x

c1.L; h/nx
� 1

ˇ̌̌̌
�

C C
2=9

h

p1=9
;

hence

(24) jPp.x/� b0.x/p
n
j � C 0pn�1=9; where b0.x/ WD

c1.L; h/
n
x

!n
x

:

By the above-mentioned papers there exists C >0 such that jPp.x/�b0.x/p
nj�Cpn�1

on X , which gives a sharper estimate of Pp.x/ than (23)–(24). On the other hand, the
method used here can handle the much more general case of sequences of line bundles
.Lp; hp/ satisfying the minimal hypotheses of Theorem 1.3.

4 Zeros of holomorphic sections and approximation results

We assume as before that .X; !/ and .Lp; hp/! X satisfy conditions (A) and (B).
Consider the unit sphere Sp �H 0

.2/
.X;Lp/, with dp D dim H 0

.2/
.X;Lp/. We identify

the unit sphere Sp to the unit sphere S 2dp�1 in Cdp by

S 2dp�1
! Sp; aD .a1; : : : ; adp

/ 7! Sa D

dpX
jD1

aj S
p
j ;
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and we let �p be the probability measure on Sp induced by the normalized surface
measure on S 2dp�1 , denoted also by �p (ie �p.S

2dp�1/D1). Consider the probability
space S1 D

Q1
pD1 Sp endowed with the probability measure �1 D

Q1
pD1 �p . We

denote by Œ�D0� the current of integration (with multiplicities) over the zero set of a
nontrivial section � 2H 0

.2/
.X;Lp/.

Theorem 4.1 Let .X; !/ and .Lp; hp/, p � 1, satisfy assumptions (A)–(B) and
assume that

P1
pD1

1

A2
p

<1. Then for �1–a.e. sequence f�pgp�1 2 S1 we have in
the weak sense of currents on X that

lim
p!1

1

Ap
.Œ�pD0�� c1.Lp; hp//D 0:

Moreover, if limp!1
1

Ap
c1.Lp; hp/ D T for some positive closed current T of bi-

degree .1; 1/ on X , then, for �1–a.e. sequence f�pgp�1 2 S1 ,

lim
p!1

1

Ap
Œ�pD0�D T weakly on X:

Proof The arguments in [55; 56] (see also [10, Section 5.2]; in all these papers
Ap D p ) imply that, for �1–a.e. sequence f�pgp�1 2 S1 ,

lim
p!1

1

Ap
.Œ�pD0�� p/D 0

weakly in the sense of currents on X . Indeed, by working with a countable set of test
forms and sinceZ

X

Œ�pD0�^!n�1
D

Z
X

p ^!
n�1
D

Z
X

c1.Lp; hp/^!
n�1
DAp;

it suffices to show that, for a fixed test form � , one has

(25) lim
p!1

1

Ap
hŒ�pD0�� p; �i D 0

for �1–a.e. � D f�pgp�1 2 S1 . Let

YpW S1!C; Yp.�/D
1

Ap
hŒ�pD0�� p; �i:

The calculations in [55, Sections 3.1–3.3] show thatZ
S1

Yp d�1 D 0;

Z
S1
jYpj

2 d�1 �
AC�

A2
p

;

with

AD
1

�2

Z
C2

.log jz1j/
2e�jz1j

2�jz2j
2

dz;
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where dz is the Lebesgue measure on C2 , and C� is a constant depending only on � .
Then (25) follows sinceZ

S1

� 1X
pD1

jYpj
2

�
d�1 �AC�

1X
pD1

1

A2
p

<C1:

We now conclude by Theorem 1.1.

We show next that equidistribution results hold not only for the zeros of random
sequences of holomorphic sections but also for the logarithms of their pointwise norms.

Theorem 4.2 Let .X; !/ and .Lp; hp/, p � 1, satisfy assumptions (A)–(B) and
assume that

(26) lim inf
p!1

log dp

Ap
D 0:

Then there exists an increasing sequence of natural numbers fpj gj�1 such that for
�1–a.e. sequence f�pgp�1 2 S1 we have

lim
j!1

log j�pj jhpj

Apj

D 0 in L1.X; !n/:

To prove the theorem we need the following elementary lemma, whose proof is included
for the convenience of the reader.

Lemma 4.3 If S 2k�1 is the unit sphere in Ck with surface measure dA and

I.k/ WD �
1

area.S 2k�1/

Z
S 2k�1

log jzk j dA;

where z D .z1; : : : ; zk/ 2Ck , then there exist numbers a, b > 1 such that

I.k/� a log kC b for all k � 1:

Proof We use spherical coordinates .�1; : : : ; �2k�2; '/ 2
�
�
�
2
; �

2

�2k�2
� Œ0; 2�� on

S 2k�1 such that

zk D sin �2k�3 cos �2k�2C i sin �2k�2;

dAD cos �1 cos2�2 � � � cos2k�2�2k�2 d�1 � � � d�2k�2 d':

We obtain

I.k/D
J.k/

2C2k�2C2k�3

; where Ck D

Z �=2

0

cosk t dt;
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and, after performing the change of variables x D sin �2k�2 and y D sin �2k�3 ,

J.k/D�

Z 1

0

Z 1

0

.1�x2/k�3=2.1�y2/k�2 log.x2
Cy2

�x2y2/ dx dy:

Since 2x2y2 � x2Cy2 for 0� x , y � 1, we have

� log.x2
Cy2

�x2y2/� � log
x2Cy2

2
;

.1�x2/k�3=2.1�y2/k�2
� .1�x2

�y2
Cx2y2/k�2

�

�
1�

x2Cy2

2

�k�2

;

provided that k � 2. If D D f.x;y/ 2R2 W x � 0; y � 0; x2Cy2 � 2g it follows that

J.k/� �

“
D

�
1�

x2Cy2

2

�k�2

log
x2Cy2

2
dx dy

D�
�

2

Z p2

0

r

�
1�

r2

2

�k�2

log r2

2
dr D�

�

2

Z 1

0

.1� t/k�2 log t dt:

One shows by induction on k � 2 that

�

Z 1

0

.1� t/k�2 log t dt D
1

k�1

�
1C

1

2
C � � �C

1

k�1

�
�

1C log.k � 1/

k � 1
:

The lemma follows since there exist constants A, B > 0 such that A � Ck

p
k � B

for all k � 1. Indeed, an integration by parts shows that

CkC2 D
kC 1

kC 2
Ck ; so C2k D

�.2k/!

22kC1.k!/2
; C2kC1 D

22k.k!/2

.2kC 1/!
for k � 0:

By Stirling’s formula, k!� .k=e/k
p

k and .2k/!� .2k=e/2k
p

2k , which implies our
claim.

Proof of Theorem 4.2 Using (26) we can find a sequence of integers pj %1 such
that

P1
jD1.log dpj /=Apj <1. We define

YpW S1!R; Yp.�/D
1

Ap

Z
X

log
j�pjhpp

Pp

!n; where � D f�pgp�1:

By Theorem 1.1 we have 1
Ap

log Pp! 0 as p!1, in L1.X; !n/. Since

log
j�pjhpp

Pp

� 0 on X
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for � D f�pgp�1 2 S1 , it suffices to show that Ypj .�/! 0 as j !1 for �1–a.e.
� 2 S1 . By Tonelli’s theorem we haveZ

S1
Yp.�/ d�1 D

1

Ap

Z
Sp

�Z
X

log
j�pjhpp

Pp

!n

�
d�p

D
1

Ap

Z
X

�Z
Sp

log
j�pjhpp

Pp

d�p

�
!n:

For a fixed x 2X , we write S
p

l
D s

p

l
ep for some holomorphic frame ep of Lp near x

and we set

uD .u1; : : : ;udp
/; ul D

s
p

lp
js

p
1
j2C � � �C js

p

dp
j2
:

Then the integralZ
Sp

log
j�p.x/jhpp

Pp.x/
d�p D

Z
S 2dp�1

log ja �u.x/j d�p.a/D�I.dp/

is independent of x , where a � u D a1u1 C � � � C adp
udp

and I.k/ is as defined in
Lemma 4.3. Using Lemma 4.3 it follows thatZ

S1
Yp.�/ d�1 � �

a log dpC b

Ap

Z
X

!n:

The definition of the sequence fpj gj�1 shows that

1X
jD1

Z
S1

Ypj .�/ d�1 > �1:

Since Yp�0, this implies that
P1

jD1 Ypj converges in L1.S1; �1/, hence Ypj .�/!0

as j !1 for �1–a.e. � 2 S1 .

Let us give two general examples in which condition (26) holds true.

Proposition 4.4 Let .X; !/, .Lp; hp/, p � 1, satisfy assumptions (A)–(B) and as-
sume that X is smooth and that each line bundle Lp has a continuous metric h0p with
the following property: every x 2X has a contractible Stein coordinate neighborhood
Wx on which each metric h0p has a weight  0p such that the family f 0p=Apgp�1 is
equicontinuous on Wx . Then

lim
p!1

log dim H 0.X;Lp/

Ap
D 0:
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Proof Let " > 0 and let P 0p be the Bergman kernel function of the space H 0.X;Lp/

with respect to the metrics h0p and ! . For x 2X fix rx > 0 so that the (closed) ball
B.x; 2rx/ is a subset of Wx and let Ux D B.x; rx/. The proof of the upper bound in
(14) works for any metric on Lp (see also [12, (7)]) and shows that

P 0p.z/� Cxr�2n exp
�
2 max

B.z;r/
 0p � 2 0p.z/

�
;

for any p � 1, r < rx and z 2 Ux , where Cx is a constant depending only on x .
The equicontinuity assumption implies that there exists r1 D r1.x; "/ < rx such
that 2 maxB.z;r1/  

0
p � 2 0p.z/ � Ap" for all p � 1 and z 2 Ux , hence P 0p.z/ �

Cxr�2n
1

exp.Ap"/. A standard compactness argument now shows that there exists a
constant C 0 D C 0."/ > 0 such that P 0p � C 0 exp.Ap"/ holds on X for all p � 1. It
follows that

dim H 0.X;Lp/D

Z
X

P 0p
!n

n!
� C 0 exp.Ap"/

Z
X

!n

n!
for all p � 1;

which implies the conclusion of the proposition.

The second general example is provided by the class of semiample line bundles.
Recall that a line bundle L on X is called semiample if Lk is globally generated for
some k > 0, or, equivalently, the space H 0.X;Lk/ has no base locus.

Proposition 4.5 Let .X; !/ and .Lp; hp/, p � 1, satisfy assumptions (A)–(B) and
assume that X is smooth and that each line bundle Lp is semiample. Then there exist
an integer N > 0 and a constant C > 0 depending only on ! such that

dim H 0.X;Lp/� CAN
p for all p � 1:

Proof Since Lp is big, X is Moishezon and hence projective, since it is Kähler. By
the main theorem in [39], there exists a polynomial Q.y; z/ depending only on dim X

such that for any semiample line bundle L on X one has that

dim H 0.X;L/�Q

�Z
X

c1.L/
n;

Z
X

c1.L/
n�1
^ c1.X /

�
:

Lemma 4.6 below implies that there exists a constant C 0> 0 depending only on .X; !/
such that Z

X

c1.Lp/
n
� C 0An

p;

Z
X

c1.Lp/
n�1
^ c1.X /� C 0An�1

p :

The conclusion now follows.

Lemma 4.6 Let .X; !/ be a compact Kähler manifold of dimension n and let ˇ be a
real-valued closed form of type .1; 1/ on X . Then there exists C > 0 depending only
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on ! and ˇ such that for any pseudoeffective class ˛ 2H 1;1.X;R/ we haveZ
X

˛k
^ˇn�k

� Ck˛kk for k D 1; : : : ; n; where k˛k D
Z

X

˛^!n�1:

Proof If k˛k D 0 then ˛ D 0 since ˛ is pseudoeffective, so we can assume k˛k> 0.
Let � 2 ˛ be a smooth form and T D � C ddc' be a positive closed current, where
' is a � –PSH function. The Lelong numbers satisfy �.T;x/ < C1k˛k for all x 2X ,
where C1 is a constant depending only on ! (see eg [8, Lemma 2.5]). Demailly’s
regularization theorem [17] shows that there exists a sequence of smooth functions
'k & ' such � C ddc'k � �C2�k! , where �k are continuous functions on X ,
�k.x/& �.T;x/ as k!1 for every x 2 X , and C2 is a constant depending only
on ! . We fix k such that �k.x/ < C1k˛k for every x 2 X and let RD � C ddc'k

and R0 D RCC3k˛k! , where C3 D C1C2 , so R0 � 0. Next we set ˇ0 D ˇC c ! ,
where c > 0 is chosen so that ˇ0 � 0. Since R0 , ˇ0 � 0 we obtainZ

X

˛k
^ˇn�k

D

Z
X

Rk
^ˇn�k

D

Z
X

.R0�C3k˛k!/
k
^ .ˇ0� c!/n�k

�

Z
X

.R0CC3k˛k!/
k
^ .ˇ0C c!/n�k

� C4

R0CC3k˛k!
k
;

where C4 is a constant depending only on the Kähler form ˇ0 C c! (hence on ˇ
and ! ). The lemma follows sinceR0CC3k˛k!

D Z
X

.RC 2C3k˛k!/^!
n�1
D

�
1C 2C3

Z
X

!n

�
k˛k:

We conclude this section by discussing an application of the above results to the problem
of approximation of positive closed currents of bidegree .1; 1/ on X by currents of
integration along analytic hypersurfaces of X . Let A .X / be the space of positive
closed currents T 2 D0

n�1;n�1
.X / with the property that there exist a sequence of

singular Hermitian holomorphic line bundles f.Fp; h
Fp /gp�1 with c1.Fp; h

Fp / � 0

and a sequence of natural numbers Np!1 such that

lim
p!1

1

Np
c1.Fp; h

Fp /D T:

If Xsing ¤∅ we require in addition that there exists a current T0 2 T .X / (depending
on T ) such that for all p � 1 we have 1

Np
c1.Fp; h

Fp /� T0 .

When X is smooth the space A .X / is the closure in D0
n�1;n�1

.X / of the convex
cone generated by positive closed integral currents. Recall that a real closed current
T 2 D0n�1;n�1.X / is called integral if its de Rham cohomology class ŒT � belongs
to H 1;1.X;R/ \H 2.X;Z/. A current T is integral if and only if there exists a
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singular Hermitian holomorphic line bundle .L; h/ on X with c1.L; h/D T (see eg
[40, Lemma 2.3.5]).

Theorem 4.7 Let .X; !/ be a compact normal Kähler space and .L; h/ be a singular
Hermitian holomorphic line bundle on X such that c1.L; h/� "! for some " > 0. If
T 2A .X / then there exist a sequence of singular Hermitian holomorphic line bundles
f.Lp; hp/gp�1 with c1.Lp; hp/� 0 and a sequence of natural numbers Np!1 such
that, for �1–a.e. sequence f�pgp�1 2 S1 ,

lim
p!1

1

Np
Œ�pD0�D T weakly on X:

Here the probability space .S1; �1/ is associated to the sequence f.Lp; hp/gp�1 , as
above.

Proof Since T 2A .X / there exist line bundles f.Fp; h
Fp /gp�1 with c1.Fp; h

Fp /�0

and a sequence of natural numbers Np!1 such that limp!1
1

Np
c1.Fp; h

Fp /D T .
Moreover, if Xsing¤∅ there exists a current T02T .X / such that c1.Fp; h

Fp /�NpT0

for all p� 1. We can assume without loss of generality that Np �p ; otherwise replace
.Fp; h

Fp / by .Fmp

p ; .hFp /mp / and Np by mpNp , with a convenient mp 2N . We fix
a sequence bp 2N such that bp � Np for all p � 1, and bp!1 and bp=Np! 0

as p!1. Let
Lp D Fp˝Lbp ; hp D hFp ˝ hbp :

The conclusion follows from Theorem 4.1 since c1.Lp; hp/� bpc1.L; h/� bp"! and

c1.Lp; hp/�NpT0C bpc1.L; h/�Np.T0C c1.L; h//;

c1.Lp; hp/

Np
! T;

kc1.Lp; hp/k

Np
!kT k as p!1:

For related approximation results on compact Kähler manifolds we refer to [19; 14;
33; 11]. We note that Dinh and Sibony [22] developed a general method to obtain the
asymptotic distribution with speed of convergence of zeros of random sequences of
holomorphic sections.

5 Applications

5.1 Powers of a line bundle

Theorems 1.1, 4.1 and 4.2 apply to the sequence .Lp; hp/D .L
p; hp/, where .L; h/

is a singular Hermitian holomorphic line bundle on X with strictly positive curvature
current.

Geometry & Topology, Volume 21 (2017)



952 Dan Coman, Xiaonan Ma and George Marinescu

Corollary 5.1 Let .X; !/ be a compact normal Kähler space and .L; h/ be a singular
Hermitian holomorphic line bundle on X such that c1.L; h/ � "! for some " > 0.
Then, as p!1:

(i) 1
p

log Pp! 0 in L1.X; !n/.

(ii) 1
p
p! c1.L; h/ weakly on X .

(iii) 1
p
Œ�pD0�! c1.L; h/ weakly on X , for �1–a.e. sequence f�pgp�1 2 S1 .

Indeed, assumptions (A)–(B) are satisfied with apDp" and T0D c1.L; h/=kc1.L; h/k,
where kc1.L; h/k WD

R
X c1.L; h/^!

n�1 . Moreover, Ap D pkc1.L; h/k.

We consider now the case when the curvature current of the singular metric is not
necessarily Kähler.

Corollary 5.2 Let .L; h/ be a singular Hermitian holomorphic line bundle on the
compact normal Kähler space .X; !/ such that c1.L; h/� 0 and assume that L has a
singular metric h0 with c1.L; h0/� "! for some " > 0. Let fnpgp�1 be a sequence
of natural numbers such that

(27) np!1 and
np

p
! 0 as p!1:

Let

(28) hp D hp�np ˝ h
np

0

and let Pp , p and Sp be the Bergman kernel function, Fubini–Study current and unit
sphere associated to the spaces H 0

.2/
.X;Lp/ D H 0

.2/
.X;Lp; hp/. Then, as p!1,

we have 1
p

log Pp! 0 in L1.X; !n/, 1
p
p! c1.L; h/ and 1

p
Œ�pD0�! c1.L; h/ in

the sense of currents on X for �1–a.e. sequence f�pgp�1 2 S1 .

Proof Note that

c1.L
p; hp/D .p� np/c1.L; h/C npc1.L; h0/� "np!;

Ap

p
D kc1.L; h/k D kc1.L; h0/k> 0:

Hence
c1.L

p; hp/� p.c1.L; h/C c1.L; h0//DApT0;

with

T0 D
1

kc1.L; h/k
.c1.L; h/C c1.L; h0//;

and Theorems 1.1 and 4.1 apply in this setting and conclude the proof.
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Corollary 5.1 applies to the case of the Satake–Baily–Borel compactifications of
arithmetic quotients. Let D be a bounded symmetric domain in Cn and let � be a
torsion-free arithmetic lattice. Then U WDD=� is a smooth quasiprojective variety,
called an arithmetic variety. The Satake–Baily–Borel compactification of U is a normal
compact analytic space X containing U as a Zariski open dense set and which is
minimal with this property, that is, given any normal compactification U � X 0 , the
identity map on U extends to a holomorphic map X 0!X (see Satake [53] and Baily
and Borel [3]). Moreover, codim.X nU /� 2.

The Bergman metric ˇD on D descends to a complete Kähler metric ˇU on U , which
is Kähler–Einstein with RicˇU

D �ˇU . We denote by hKU the Hermitian metric
induced by ˇ on KU . Then c1.KU ; h

KU /D�RicˇU
D ˇU .

Lemma 5.3 Assume that � is neat. There exists an ample line bundle F !X such
that F jU D KU and a singular metric hF on F such that hF jU D hKU , such that
c1.F; h

F / is a Kähler current on X and c1.F; h
F /jU D ˇU . Hence the Bergman

Kähler metric ˇU extends to a Kähler current ˇX on X .

Proof The existence of an ample line bundle F !X such that F jU DKU is shown
in [44, Proposition 3.4(b)]; the bundle F is the bundle used in [3, Theorem 10.11]
to embed X into a projective space. Since c1.KU ; h

KU /D ˇU , the local weights of
hKU are PSH, so they extend to X . Thus, the metric hKU extends to a metric hF on
F !X and c1.KU ; h

KU / extends to a positive closed current c1.F; h
F / on X .

To see that c1.F; h
F / is a Kähler current, one can describe F in the following way.

By [2], U admits a smooth toroidal compactification zX . In particular, † WD zX nU is a
divisor with normal crossings. Let L WDK zX ˝O zX .†/. Then the metric hKU defines a
singular metric hL on L such that c1.L; h

L/ is a closed positive current on zX which
extends ˇU =.2�/; see [12, Lemma 6.8]. It follows from [44, Proposition 3.4] (see also
[12, Section 6.4]) that hKU is a good metric in the sense of Mumford, so that ˇU has
Poincaré growth near †. Therefore, c1.L; h

L/ is a Kähler current on zX . If � W zX!X

is the unique holomorphic map extending the identity on U , we have LD ��F . Hence
c1.F; h

F /D ��c1.L; h
L/, so c1.F; h

F / is a Kähler current on X .

Corollary 5.4 Let X be the Satake–Baily–Borel compactification of a smooth arith-
metic variety U DD=� , where � is neat. Let .F; hF / be the extension of .KU ; hKU /

given by Lemma 5.3, where hKU is induced by the Bergman metric ˇU . Then the
conclusions of Corollary 5.1 hold for c1.F; h

F /D ˇX .

Note that

H 0
.2/.X;F

p/DH 0
.2/.U;K

p
U
/DH 0. zX ;K

p

zX
˝O zX .†/

p�1/DH 0. zX ;Lp
˝O zX .†/

�1/
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is the space of cusp forms of weight p ; see [12, Lemma 6.11]. Hence Corollary 5.4
says that the Bergman kernel Pp of the space of cusps forms satisfies 1

p
log Pp! 0 in

L1.X; !n/, where ! is any smooth Kähler form on X . Moreover, the normalized zero-
currents of random cusp forms distribute on X to the extension ˇX of the Bergman
metric ˇU on U .

We consider next a more general situation as above. Let X be a projective variety of
general type with only canonical singularities such that the canonical divisor KX is
an ample Q–divisor. There exists an integer l > 0 such that Kl

X
is integral and the

holomorphic line bundle LD OX .Kl
X
/! X admits a smooth Hermitian metric hL

such that c1.L; h
L/D ! is a smooth Kähler form on X . By [25, Theorem 7.8] there

exists a unique ' 2 PSH.X; !/\L1.X / such that

(29) c1.L; e
�2'hL/D !C ddc' D !'

is a singular Kähler–Einstein metric in the sense of [25, Definition 7.3]. In particular,
!' is a closed positive current on X and its restriction to Xreg is a smooth Kähler–
Einstein metric of negative curvature. Corollary 5.2 yields the following:

Corollary 5.5 Let X be a projective variety of general type with only canonical
singularities and let !' be the singular Kähler–Einstein metric (29). Let hp be the
metric on Lp constructed as in (28) using a sequence fnpgp�1 as in (27) and the
metrics h0 D hL and hD e�2'hL on L. Let p and Sp be the Fubini–Study current
and the unit sphere associated to the space H 0

.2/
.X;Lp; hp/. Then 1

p
p ! !' and

1
p
Œ�pD0�! !' as p!1 weakly on X for �1–a.e. sequence f�pgp�1 2 S1 .

A similar discussion applies to canonically polarized KLT compact Kähler pairs .X; �/
considered in [25, Theorem 7.12] or to Q–Fano Kähler spaces (that is, KLT compact
Kähler spaces with �KX ample Q–divisor).

5.2 Powers of ample line bundles

We specialize in the sequel the results of the previous corollary to the case when .X; !/
is a projective manifold with a polarization .L; h0/, where L is a positive line bundle
on X endowed with a smooth Hermitian metric h0 such that c1.L; h0/D! . The set of
singular Hermitian metrics h on L with c1.L; h/� 0 is in one-to-one correspondence
to the set PSH.X; !/ of !–plurisubharmonic (!–PSH) functions on X , by associating
to ' 2 PSH.X; !/ the metric h' D e�2'h0 (see eg [18; 34]). Note that

c1.L; h'/D !C ddc' DW !' :
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Corollary 5.6 Let .X; !/ be a compact Kähler manifold and .L; h0/ be a positive
line bundle on X with c1.L; h0/ D ! . Let ' 2 PSH.X; !/ and hp be a metric on
Lp constructed as in (28) using a sequence fnpgp�1 as in (27) and the metrics h0

and h D h' on L. Let p and Sp be the Fubini–Study current and the unit sphere
associated to the space H 0

.2/
.X;Lp; hp/. Then 1

p
p ! !' and 1

p
Œ�pD0�! !' as

p ! 1 weakly on X for �1–a.e. sequence f�pgp�1 2 S1 . Moreover, if ' is
continuous then

1

pk
 k

p ! !k
' D .!C ddc'/k weakly on X for k � n:

Proof The first conclusion follows directly from Corollary 5.2. If ' is continuous
and Pp is the Bergman kernel function of the space H 0

.2/
.X;Lp; hp/ one can proceed

as in the proof of [12, Theorem 5.3] to show that 1
p

log Pp! 0 uniformly on X . This
implies the second conclusion of the corollary, as in [12, Theorem 5.4].

Note that since h0 is smooth we have that H 0
.2/
.X;Lp; hp/ � H 0

.2/
.X;Lp; hp/.

Moreover, if the metric h D h' is bounded (ie ' is bounded) then equality holds,
H 0
.2/
.X;Lp; hp/DH 0

.2/
.X;Lp; hp/DH 0.X;Lp/.

We remark now that, instead of working with random sections of spheres, one can
identify H 0

.2/
.X;Lp/ to Cdp by

Cdp !H 0
.2/.X;Lp/; aD .a1; : : : ; adp

/ 7! Sa D

dpX
jD1

aj S
p
j ;

and one can consider aj , 1 � j � dp , as independent identically distributed Gauss-
ian random variables on C . Thus the probability space .Sp; �p/ is replaced by
.H 0

.2/
.X;Lp/; �p/, where

d�p.z/D �
�dp e�.jz1j

2C���Cjzdp j
2/dm.z/

and dm.z/ is the Lebesgue measure on Cdp . Let �1 D
Q1

pD1 �p be the product
measure on the space H D

Q1
pD1 H 0

.2/
.X;Lp/. Since the measure �p is unitary

invariant, Theorems 4.1 and 4.2 hold in this context with similar proofs. More precisely,
we have the following:

Theorem 5.7 Let .X; !/, .Lp; hp/, p � 1, satisfy assumptions (A)–(B).

(i) If
P1

pD1
1

A2
p

<1 then for �1–a.e. sequence f�pgp�1 2H we have that

lim
p!1

1

Ap
.Œ�pD0�� c1.Lp; hp//D 0 in the weak sense of currents on X:
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(ii) If condition (26) holds then there exists an increasing sequence of natural numbers
fpj gj�1 such that for �1–a.e. sequence f�pgp�1 2H we have

lim
j!1

log j�pj jhpj

Apj

D 0 in L1.X; !n/:

Hence Corollary 5.6 can be seen as a generalization of [7, Theorem 5.2], which deals
with the special case when ' D V�

K ;q
is the weighted !–PSH global extremal function

of a compact K � X . Using different methods and a different inner product on
H 0.X;Lp/ (note that V�

K ;q
is bounded) it is shown in [7, Theorem 5.2] that

1

p
Œ�pD0�! !C ddcV�K ;q for �1–a.e. sequences f�pgp�1 2

1Y
pD1

H 0.X;Lp/:

On the other hand [7, Theorem 5.2] holds for more general probability measures
than �1 (see [7, (2.1)–(2.2)]).

Remark 5.8 A particularly interesting case is when X DPn , LDO.1/ and !D!FS

is the Fubini–Study metric in Corollary 5.6. In this case the class PSH.Pn; !FS/

is in one-to-one correspondence with the Lelong class of PSH functions on Cn of
logarithmic growth, and the sections in H 0.Pn;O.p// can be identified to polynomials
of degree � p on Cn (see eg [7, Section 5]). Therefore Corollary 5.6 yields a general
equidistribution result for the zeros of a random sequence of polynomials on Cn . For
related results see [4; 7] and references therein.

We consider now approximation of metrics with conic singularities [24; 58]. Let X be
a Fano manifold, that is, the anticanonical line bundle K�1

X
is ample. Fix a Hermitian

metric h0 on K�1
X

, such that ! WD c1.K
�1
X
; h0/ is a Kähler metric. Recall that

Hermitian metrics on K�1
X

can be identified to volume forms on X . Let D be a smooth
divisor in the linear system defined by K�l

X
, so there exists a section s 2H 0.X;K�l

X
/

with D D Div.s/. We fix a smooth metric h on the bundle OX .D/. Let ˇ 2 Œ0; 1/.

A Kähler metric y! on X with cone angle 2�.1�ˇ/ along D is a current y! 2 c1.X /

such that
y! D !' D !C ddc';

where 'D Cjsj2�2ˇ

h
2PSH.X; !/ and  2C1.X /\PSH.X; !/. In a neighborhood

of a point of D where D is given by z1 D 0 the metric y! is equivalent to the cone
metric i

2

�
jz1j
�2ˇdz1 ^ dxz1C

Pn
jD2 dzj ^ dxzj

�
. The Riemannian metric determined

by y! has conic singularity along D of conic angle 2�.1�ˇ/.

The metric y! defines a singular metric hy! on K�1
X

with curvature current Ricy! WD
c1.K

�1
X
; hy!/. The metric y! is called Kähler–Einstein with conic singularities of cone
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angle 2�.1� ˇ/ along D if Ricy! D .1� lˇ/y!C ˇŒD�, where ŒD� is the current of
integration on D .

Corollary 5.9 Let X be a Fano manifold and let y! be a Kähler metric with cone
angle ˇ . Let hp be the metric on K

�p
X

constructed as in Corollary 5.2 using the metric
h D hy! on K�1

X
. Let p and Sp be the Fubini–Study current and the unit sphere

associated to the space H 0
.2/
.X;K

�p
X
; hp/. Then 1

p
p! Ricy! and 1

p
Œ�pD0�! Ricy!

as p !1 weakly on X , for �1–a.e. sequence f�pgp�1 2 S1 . If y! is a Kähler
current, then we can take hp D h

p

y!
above.

Remark 5.10 If y! is a Kähler current, [37, Theorem 1.8] shows that the Bergman
kernel of H 0

.2/
.X;K

�p
X
; h

p

y!
/ has a full asymptotic expansion in powers pn�j for

j D 0, 1; : : : and the Fubini–Study forms converge to Ricy! in the C1–topology on
compact sets of X nD .

5.3 Tensor products of powers of several line bundles

Another typical application of Theorem 1.1 is the following:

Corollary 5.11 Let .X; !/ be a compact normal Kähler space. Assume that .Fj ; h
Fj /,

1� j � k , are singular Hermitian holomorphic line bundles with c1.Fj ; h
Fj /� 0 and

c1.F1; h
F1/ � "! for some " > 0. Let T D

Pk
jD1 rj c1.Fj ; h

Fj /, where rj � 0, and
let fmj ;pgp , 1� j � k , be sequences of natural numbers such that

m1;p!1;
mj ;p

p
! rj ; 1� j � k; as p!1:

Let Pp , p and Sp be the Bergman kernel function, Fubini–Study current and unit
sphere associated to H 0

.2/
.X;Lp/, where

Lp D F
m1;p

1
˝ � � �˝F

mk;p

k
; hp D .h

F1/m1;p ˝ � � �˝ .hFk /mk;p :

Then, as p!1, we have 1
p

log Pp! 0 in L1.X; !n/, 1
p
p!T and 1

p
Œ�pD0�!T

in the weak sense of currents on X for �1–a.e. sequence f�pgp�1 2 S1 .

Proof We may assume that mj ;p=p < rj C 1 for all 1� j � k and p � 1, so

c1.Lp; hp/D

kX
jD1

mj ;pc1.Fj ; h
Fj /� "m1;p!;

c1.Lp; hp/� pT0; where T0 D

kX
jD1

.rj C 1/c1.Fj ; h
Fj /:

Moreover, c1.Lp; hp/=p! T as p!1. Note that
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Ap

p
D

1

p

kX
jD1

mj ;pkc1.Fj ; h
Fj /k!

kX
jD1

rjkc1.Fj ; h
Fj /k:

The conclusion follows from Theorems 1.1 and 4.1, since
p

p
D

Ap

p

1

Ap
.p � c1.Lp; hp//C

1

p
c1.Lp; hp/:

The fact that 1
p
Œ�pD0�! T weakly on X , for �1–a.e. sequence f�pgp�1 2 S1 ,

follows as in the proof of Theorem 4.1, where we normalize all currents dividing by p ,
by using that Ap . p and

P1
pD1 p�2 is finite.

Let us remark that Theorem 4.2 holds in the context of Corollaries 5.1, 5.2, 5.6 and 5.11,
since the condition (26) holds in all of these situations.

5.4 Covering manifolds

Let .X; !/ be a compact Kähler manifold of dimension n and .Lp; hp/, p � 1, be a
sequence of singular Hermitian holomorphic line bundles on X satisfying condition (1).
Recall that Ap D

R
X c1.Lp; hp/^!

n�1 . Let qW zX ! X be a (paracompact) Galois
covering of X , where q is the canonical projection. Let z! D q�! and zLp D q�.Lp/,
and let zhp be the metric on zLp which is the pull-back of the metric hp . We let
H 0
.2/
. zX; zLp/ be the Bergman space of L2 –holomorphic sections of zLp relative to the

metric zhp and the volume form z!n=n! on zX , defined as in (3), endowed with the
obvious inner product. We define the Bergman kernel function zPp and Fubini–Study
currents zp associated to H 0

.2/
. zX ; zLp/ as in (4). In this context, dp 2N [f1g, and

these objects are well-defined even for dp D1; see [12, Lemmas 3.1–3.2].

Note that z! is a complete Kähler metric on zX and c1. zLp; zhp/D q�c1.Lp; hp/� ap z! .
Since Ric! � �B! holds on X for some constant B > 0 and q is a local biholomor-
phism, we have Ricz! � �B z! on zX . Moreover, if K b zX , there exists a constant
CK > 0 such that Z

K

c1. zLp; zhp/^ z!
n�1
� CK Ap:

A straightforward adaptation of the proofs given above yields

(30)

1

Ap
log zPp! 0 in L1

loc.
zX ; z!n/;

1

Ap
.zp � c1. zLp; zhp//! 0 weakly on zX :

Assume moreover that the metrics hp are of class C 3 and condition (5) is fulfilled,
that is, "p WD khpk

1=3
3

a
�1=2
p ! 0 as p!1. Then there exists p0 2N such that, for
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all p > p0 ,

(31)
ˇ̌̌̌
zPp

z!n

c1. zLp; zhp/n
� 1

ˇ̌̌̌
� C "2=3

p on zX ;

where C > 0 is a constant depending only on .X; !/. Estimates (6) and (31) show
that the asymptotics of the Bergman kernels zPp.zx/ and Pp.x/, where x D q.zx/, are
the same. For .Lp; hp/D .L

p; hp/ with a smooth metric h satisfying c1.L; h/� a! ,
this follows from [40, Theorem 6.1.4].
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