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Vanishing of cohomology and parameter rigidity
of actions of solvable Lie groups

HIROKAZU MARUHASHI

We give a sufficient condition for parameter rigidity of actions of solvable Lie groups,
by vanishing of (uncountably many) first cohomologies of the orbit foliations. In
some cases, we can prove that vanishing of finitely many cohomologies is sufficient.
For this purpose we use a rigidity property of quasiisometry.

As an application we prove some actions of 2-step solvable Lie groups on mapping
tori are parameter rigid. Special cases of these actions are considered in a paper of
Matsumoto and Mitsumatsu.

We also remark on the relation between transitive locally free actions of solvable
Lie groups and lattices in solvable Lie groups, and apply results in rigidity theory of
lattices in solvable Lie groups to construct transitive locally free actions with some
properties.

37A20; 37C15, 37C85

1 Introduction

Let �0 be a C1 right action of a connected, simply connected, solvable Lie group S on
a closed C1 manifold M . We always assume �0 is locally free, that is, every isotropy
subgroup is discrete in S . Then we have a foliation F of M by the orbits of �0 , which
is called the orbit foliation of �0 . We say that �0 is parameter rigid if any C1 locally
free action � of S on M whose orbit foliation coincides with F is parameter equivalent
to �0 . Here parameter equivalence means the following: there are an automorphism ˆ

of S and a diffeomorphism F of M such that F.�0.x; s//D �.F.x/;ˆ.s// for all
x 2M and s 2 S , and F preserves each leaf of F and is homotopic to the identity
via C1 maps preserving each leaf.

First we review a criterion for parameter rigidity when S is nilpotent. Instead of
using S , let N denote the acting group. We have the leafwise cohomology H�.F/ of
the foliation F , which is defined in a similar way to the usual de Rham cohomology.
Using the action �0 we can define a canonical injection H�.n/ ,!H�.F/. We will
always use fraktur for the corresponding Lie algebras. The author of this article proved
in [5; 4] the following:
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158 Hirokazu Maruhashi

1.0.1 Theorem �0 is parameter rigid if and only if H 1.F/DH 1.n/.

This theorem reduces proving parameter rigidity — which looks like a nonlinear problem
at first sight — to a linear one, that is, calculation of first cohomology.

However this criterion is no longer true when the acting group is a general solvable
Lie group. In fact there are a solvable Lie group S and a lattice � in S for which the
natural transitive action �nS Ô S is not parameter rigid while H 1.�nS/DH 1.s/.
We will see it in Section 6, together with an example of a locally parameter rigid action
of a contractible group which is not parameter rigid. These are obtained by looking at
the relations between transitive locally free actions and lattices in solvable Lie groups.

Therefore, the formulation should be changed and we will do it by using twisted
leafwise cohomologies. Let us return to the first notations. For the action M �0Ô S and
a representation � of s on a finite-dimensional real vector space V , we will define
the leafwise cohomology H�.F I s �Õ V / of F with coefficient � as follows. Let !0
denote the canonical 1–form of �0 , ie for any x 2M, .!0/x W TxF ! s is the inverse
of the derivative at the identity of the map S!M which sends g to �0.x; g/. This is
a leafwise s–valued 1–form satisfying dF!0C Œ!0; !0�D 0, where dF is the leafwise
exterior derivative of F . By composing with � we get an End.V /–valued leafwise
1–form �!0 satisfying dF�!0C Œ�!0; �!0�D 0. Therefore, the trivial vector bundle
M �V !M carries the flat leafwise connection whose connection form is �!0 . Here,
this connection form is relative to any global frame of the bundle which has constant V
components. The square of the exterior derivative with respect to this connection on
the space of leafwise V–valued forms ��.F IV / is zero by flatness of the connection.
So we obtain the cohomology H�.F I s �Õ V /. On the other hand, the cohomology
H�.sI s

�Õ V / of the Lie algebra s with coefficient � is defined from the complex
Hom.

V�s; V /. Consider the map Hom.
V�s; V / ,! ��.F IV / mapping ' to !�0' ,

where !�0 means pullback by !0 . This is a cochain map, so that it induces a map
between cohomologies.

1.0.2 Proposition The induced map H�.sI s �Õ V /!H�.F I s �Õ V / is injective.

We will prove this in Section 2.1. Hereafter we shall regard H�.sI s �ÕV / as a subspace
of H�.F I s �Õ V /.

Next we will specify which representations are needed for our sufficient condition.
Let n be the nilradical of s, that is, the largest nilpotent ideal of s, which contains
Œs; s� since Œs; s� is a nilpotent ideal. Take any subspace h satisfying Œs; s� � h � n.
Since h is a nilpotent ideal, the descending central series of h terminates at some term:
h� h2 � � � � � hd � 0. The adjoint representation ad of s has the following invariant
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filtration: s adÕ s� h� h2 � � � � � hd � 0. We take the associated graded quotient of
this filtration: s

adÕ Grh.s/D s=h˚
Ld
iD1 h

i=hiC1 . Note that s=h is a direct sum of
trivial representations. On this associated graded quotient h acts trivially, so that we
actually have a representation s=h

adÕ Grh.s/. Let X denote the set of all surjective
homomorphisms 'W s! s=h of Lie algebras. An element ' 2 X is just a surjective
linear map, which vanishes on Œs; s� since s=h is abelian. For any ' 2 X we form a
representation s

adı'Õ Grh.s/.

1.0.3 Theorem (sufficient condition for parameter rigidity) If

H 1.F I s adı'Õ Grh.s//DH 1.sI s
adı'Õ Grh.s//

for some h and any ' 2 X , then �0 is parameter rigid.

In general, Œs; s�¤ n and we choose h between them depending on the situations. For
instance, we take hD n in Theorem 1.0.4 while we take hD Œs; s� in Theorem 1.0.5.

The assumption requires vanishing of the cohomologies for every ' 2 X and this
sometimes causes a difficulty when applying the theorem.1 But it is very likely that,
for most cases, vanishing of the cohomologies for almost all ' 2 X is unnecessary,
that is, vanishing for finitely many ' is sufficient. To prove such results we have two
approaches. First is the method appearing in Matsumoto and Mitsumatsu [6, Section 6],
which uses a volume form of the manifold M . Here we generalize this method to
obtain the next theorem:

1.0.4 Theorem Assume the following four conditions:

� s is nonunimodular.

� dim s=nD 1.

� M is orientable.

� H 1.F I s adÕ Grn.s//DH 1.sI s
adÕ Grn.s//.

Then �0 is parameter rigid.

Recall that s is unimodular if and only if tr adXD0 for every X 2 s. Note that we have
used n for h. In this theorem, only vanishing for the natural projection s� s=n 2 X
is required by assuming the first three conditions.

The next approach is a new one, in which we use large scale geometry of solvable Lie
groups. This can also be applied to unimodular groups. We can obtain several theorems

1We will see such a situation in Maruhashi [5].
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using this method. Here we appeal to a theorem of Ogasawara [8]. For i D 1; : : : ; k ,
let

Ai D

0@˛.i/1 : : :

˛
.i/
n

1A
be a diagonal matrix with positive diagonal entries and put A.t/ D A

t1
1 � � �A

tk
k

for
t D .t1; : : : ; tk/ 2Rk . Here Atii means0@.˛.i/1 /ti : : :

.˛
.i/
n /

ti

1A :
Consider SA DRn ÌA.t/Rk . Let WS denote the image of the natural map Aut.S/!
GL.S=ŒS; S�/. We take hD Œs; s� in the next theorem:

1.0.5 Theorem Assume S D SA satisfies the condition: for any j there exists i such
that ˛.i/j ¤ 1. If

H 1.F I s adı'Õ GrŒs;s�.s//DH
1.sI s

adı'Õ GrŒs;s�.s//

for all ' 2WS , then �0 is parameter rigid.

First ' 2WS is regarded as an element of X in the following way. By pulling back
through expW s=Œs; s�'S=ŒS; S�, 'W S=ŒS; S�!S=ŒS; S� is regarded as 'W s=Œs; s�!
s=Œs; s�. Composing with the natural projection s�s=Œs; s� we get 'W s�s=Œs; s�2X .
The second remark is about the condition that for any j there exists i such that ˛.i/j ¤1.
This is equivalent to ŒS; S�DRn . In this theorem, if we put some genericity condition
on A, the parameter set WS becomes finite.

Here we have used a theorem of Ogasawara, but we can also use other theorems treating
rigidity of quasiisometry. We will give other applications in a forthcoming paper.

Finally we give an application of this method to get parameter rigid actions. We
describe a somewhat generalized version of the usual construction of suspensions of
actions. Let M0

�0Ô H be a smooth, locally free action of a connected Lie group H on
a closed C1–manifold M0 , let G ˆÕ H be a smooth action of a connected Lie group
G on H by automorphisms and let � �ÕM0 be a smooth action of a cocompact lattice
� of G on M0 . Assume these three actions satisfy the compatibility condition

�.; �0.x; h//D �0.�.; x/;ˆ .h//

for any  2 � , x 2M0 and h 2 H . Let H Ìˆ G be the semidirect product whose
multiplication is defined by .h1; g1/.h2; g2/ D .h1ˆg1.h2/; g1g2/ for h1 , h2 2 H
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and g1 , g2 2 G . We define two actions � Õ M0 �G Ô H Ìˆ G . The action of
� is defined diagonally: .x; g/ D .�.; x/; g/ for  2 � , x 2 M0 and g 2 G .
The action of H ÌˆG is defined like the multiplication rule of a semidirect product:
.x; g/.h; g0/D

�
�0.x;ˆg.h//; gg

0
�

for x 2M0 , g , g0 2 G and h 2H . Then these
two actions commute by the compatibility condition. So we get an action

�n.M0 �G/
�Ô H ÌˆG:

This is locally free and the fiber bundle �n.M0 �G/! �nG with a typical fiber M0

is .H ÌˆG!G/–equivariant. The case in which H is trivial is the usual construction
of suspensions.

We deal with a special case of the above construction. Consider A 2 GL.n;Z/ and
an A–invariant subspace V of Rn . Take a one-parameter subgroup ˆW R! GL.V /
satisfying ˆ1 D AjV . With respect to the above notation, we let M0 D Tn DZnnRn ,
H DV , GDR and �DZ, and the given three actions are ZnnRnÔV by translations,
ZÕ Tn by 1 2Z acting as A, and R

ˆÕ V , which are compatible in the above sense.
The acting group S D V Ìˆ R is solvable and two actions ZÕ Tn �RÔ S are
defined by 1.x; t/D .Ax; t C 1/ and .x; t/.v; s/D .xCˆt .v/; t C s/. The resulting
action is M D Zn.Tn �R/Ô S , where M is the mapping torus of A. Note that the
images ˆZ and ˆR of Z and R by ˆ lie in a real algebraic group GL.V /.

1.0.6 Theorem We assume the following four conditions:

� V is Diophantine in Rn .

� ˆZ is Zariski dense in ˆR , meaning ˆZ DˆR .

� 1 is not an eigenvalue of AjV .

� AjV has an eigenvalue whose absolute value is not 1.

Then M Ô S is parameter rigid.

The Diophantus condition means that there are a basis v1; : : : ; vp of V and positive
constants C and ˛ satisfying maxi jm � vi j � C=kmk˛ for all m 2 Zn n f0g.

This theorem2 is a generalization of a theorem of Matsumoto and Mitsumatsu [6]. They
deal with the case when A is hyperbolic with its characteristic polynomial irreducible
over Q and without eigenvalues on the interval .�1; 0/, V is the intersection with Rn

of the direct sum of all eigenspaces of AW Cn!Cn with eigenvalues of modulus less
than 1, and ˆ is the most naturally defined one. In this case A is diagonalizable, since
its characteristic polynomial has no multiple roots. So they consider the suspension

2In a future work, I plan to generalize this and prove it with a simpler, different calculation.
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Anosov flow of the Anosov diffeomorphism A on Tn and its weak stable foliation,
which will be the orbit foliation of the action of V Ìˆ R. In this setting the group
V ÌˆR is always nonunimodular and Theorem 1.0.4 can be applied.

In our situation A may have nontrivial Jordan blocks, may have a reducible characteristic
polynomial such as AD

�
A1

A2

�
for some A1 2 GL.k;Z/ and A2 2 GL.n� k;Z/,

or V may be some smaller part of stable directions or a mixture of some stable and
unstable directions; in particular V ÌˆR can be unimodular. The method we use to
prove Theorem 1.0.6 is that using large scale geometry instead of that by Matsumoto
and Mitsumatsu.

Acknowledgements This is a part of the PhD Thesis of the author. Most of the
paper was written when the author was a Research Fellow of the Japan Society for the
Promotion of Science. I would like to thank my advisor, Masayuki Asaoka, and an
anonymous referee, who pointed out the surjectivity in Proposition 6.1.2.

2 General sufficient condition for parameter rigidity

2.1 Proof of Proposition 1.0.2

As in Section 1, let M �0Ô S be an action and s
�Õ V a representation. Let S …Õ V

denote the representation whose derivative is � . We define an action M �V Ô S by
.x; v/sD .�0.x; s/;….s

�1/v/ for .x; v/2M�V and s2S and this turns M�V !M

into an S –equivariant vector bundle. We equip V with a norm which comes from
an inner product. Then the space �cont.V / of all continuous sections of the trivial
vector bundle M �V !M is a Banach space with the supremum norm, and on it we
have a natural representation SÕ�cont.V /, defined by .s�/.x/D….s/�.�0.x; s// for
s 2 S , � 2 �cont.V / and x 2M . We regard V as a subspace of �cont.V / consisting
of constant sections.

2.1.1 Lemma There is an S –equivariant continuous linear map �W �cont.V /! V

which is the identity on V .

Proof Since S is amenable and M is compact, there exists a �0–invariant Borel
probability measure � on M . We define �W �cont.V /! V by � 7!

R
M � d�. Then it

is easy to show
R
M � d�

� dimV k�k1 and �.s�/D….s/�.�/ for all � 2�cont.V /

and s 2 S .

Using the map �, we define a map r W ��.F IV / ! Hom.
V�s; V / which, on the

pth degree, takes � to r.�/ defined by r.�/.X1; : : : ; Xp/ D �.�.X1; : : : ; Xp// for
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X1; : : : ; Xp 2 s. Here X1; : : : ; Xp are regarded as vector fields on M using �0 .
Namely, Xi is regarded as a vector field x 7! .!0/

�1
x .Xi / tangent to the foliation F ,

where !0 is the canonical 1–form of �0 . We will always make this identification
during the paper.

Before proving that r is a cochain map, let us look at our connection more closely
Denote by r the covariant derivative with respect to the flat leafwise connection of the
trivial bundle M�V !M , defined in Section 1. Since the connection form is �!0 , we
have r�DdF�C�!0� for a section �2�0.F IV /. Let DW �p.F IV /!�pC1.F IV /
denote the covariant exterior derivative arising from r . Then it is easy to check that
D�D dF�C�!0 ^ � for � 2�p.F IV /.

Next let us see which sections are parallel, that is, sections � 2�0.F IV / satisfying
r� D 0. Fix a point x0 2M and a vector v 2 V . Define �0 locally along the leaf
passing through x0 by �0.�0.x0; s//D….s�1/v for s 2 S close to the identity. Then,
for any y D �0.x0; s0/ with small s0 2 S and any Y 2 s, we have

r
d�0.y;etY /=dtjtD0

�0 D dF�0

�
d

dt
�0.y; e

tY /
ˇ̌̌
tD0

�
C�.Y /�0.y/

D
d

dt
….e�tY s�10 /v

ˇ̌̌
tD0
C�.Y /….s�10 /v

D 0:

Therefore, r�0 D 0 and this means the directions of orbits of the action M �V Ô S

is horizontal for the leafwise connection. So we have

.rX�/.x/D lim
t!0

….etX /�.�0.x; e
tX //� �.x/

t
D lim
t!0

.etX�/.x/� �.x/

t

for any � 2�0.F IV /, X 2 s and x 2M .

2.1.2 Lemma .etX� � �/=t converges uniformly to rX� as t ! 0.

Proof Take a basis v1; : : : ; vl of V and write .etX�/.x/D
Pl
iD1 fi .t; x/vi for some

real-valued functions fi . Then .rX�/.x/D
Pl
iD1 f

0
i .0; x/vi . The function fi .t; x/

has the Taylor expansion fi .t; x/ D fi .0; x/C tf 0i .0; x/C
1
2
t2f 00i .�i;x;t ; x/, where

�i;x;t is a number between 0 and t . Since

.etX�/.x/� �.x/

t
� .rX�/.x/D

t

2

lX
iD1

f 00i .�i;x;t ; x/vi

and f 00i .�; x/ is bounded for �1� � � 1 and x 2M , we get the conclusion.

Recall that we have a cochain map !�0 W Hom.
V�s; V / ,!��.F IV /.
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2.1.3 Lemma The map r is a cochain map and r ı !�0 is the identity. Therefore,
!�0 induces the injective map between cohomologies.

Proof Using the definitions we verify easily that r ı!�0 is the identity.

By Lemma 2.1.2, we have

�.rX�/D lim
t!0

�

�
etX� � �

t

�
D lim
t!0

….etX /�.�/��.�/

t
D �.X/�.�/

for X 2 s and � 2�0.F IV /. By this property of � and a direct calculation, we see
that r is a cochain map.

2.2 Proof of Theorem 1.0.3

Let M �0Ô S be an action, F its orbit foliation and !0 the canonical 1–form of �0 . The
set of all smooth actions M ÔS with the orbit foliation F is denoted by A.F ; S/. We
will prove that any � 2 A.F ; S/ is parameter equivalent to �0 under the assumption
of Theorem 1.0.3. Let ! be the canonical 1–form of � . To show that � is parameter
equivalent to �0 , it is sufficient to prove the existence of some C1 map P W M ! S

and some endomorphism ˆW S ! S satisfying ! D Ad.P�1/ˆ�!0CP �‚, where
‚ 2 �1.S I s/ is the left Maurer–Cartan form of S . See, for instance, Asaoka [1,
Proposition 1.4.4]. In other words, we will show that the s–valued cocycle ! is
cohomologous to a constant s–valued cocycle ˆ�!0 . We call ! an s–valued cocycle
because it is the infinitesimal version of a usual S –valued cocycle over �0 . In our
situation, the usual K–valued cocycles over �0 for some connected, simply connected
Lie group K are in one-to-one correspondence with elements � 2�1.F I k/ satisfying
dF�C Œ�; ��D 0. Two k–valued cocycles �1 and �2 are cohomologous if and only
if �1 D Ad.P�1/�2CP �‚K for some smooth P W M !K , where ‚K denotes the
left Maurer–Cartan form on K . Also, � is a constant cocycle if and only if �Dˆ�!0
for some homomorphism ˆW S !K . See Asaoka [1, Section 1.4.1] for more details.

Now recall that we have a filtration s� h� h2 � � � � � hd � 0. Fix complementary
subspaces Vi for i D 0; : : : ; d , so that sD V0˚ h and hi D Vi ˚ hiC1 . The adjoint
representations sÕ s=h and sÕ hi=hiC1 are canonically identified with representa-
tions3 of s on Vi , which we call �i , and �0 is a multiple of the trivial representation.
For any element X 2 s, let X i be the Vi –component with respect to the decomposition
sD

Ld
iD0 Vi , so that we have X DX0CX1C � � �CXd . In this section we use this

superscript i to indicate the projection operator onto Vi , or to indicate that the element
belongs to Vi . Accordingly, ! is decomposed as ! D !0C � � �C!d .

3Here we do not assume Vi are invariant under ad.
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By looking at the V0–component of the equation dF!C Œ!; !�D 0, we get dF!0D 0.
Our assumption H 1.F IV0/DH 1.sIV0/ implies that there are a linear map 'W s!V0
vanishing on Œs; s� and a smooth map hW M ! V0 satisfying

(1) !0 D '!0C dFh:

We also write '� for ' . This '� plays an important role (or causes trouble) in our
problem.4 Unexpectedly, to determine '� is not so easy. If we can show '� has some
restricted form, we can weaken the assumption of vanishing of cohomologies to a
smaller subset of X . This is what we will do in Sections 3 and 4. Here let us see some
properties of '� .

Let aW M �S ! S be the unique smooth map satisfying �0.x; s/D �.x; a.x; s// and
a.x; 1/D 1. This is defined since �0 and � have the same orbit foliation. The map a
is a cocycle over �0 and is important in our problem.

2.2.1 Lemma For any x 2M and s 2 S ,Z s

1

'�‚C h.�0.x; s//� h.x/D

Z a.x;s/

1

‚0:

Proof Since ‚ satisfies d‚C Œ‚;‚�D 0, we see that '�‚ and ‚0 are V0–valued,
closed 1–forms on S . Fix x 2M and s 2 S . Then, by (1),Z �0.x;s/

x

.'�!0C dFh/D

Z �.x;a.x;s//

x

!0:

These integrals are along a curve contained in a leaf. Take a curve .t/, 0 � t � 1,
on S connecting 1 and s . Then the left-hand side of the above equation isZ 1

0

�
'�!0

�
d

dt
�0.x; .t//

�
C dFh

�
d

dt
�0.x; .t//

��
dt

D

Z 1

0

'�‚
�
d

dt
.t/

�
dt C h.�0.x; s//� h.x/

and, to compute the right-hand side, take a curve 1.t/ connecting 1 and a.x; s/ and
then Z 1

0

!0
�
d

dt
�.x; 1.t//

�
dt D

Z 1

0

‚0
�
d

dt
1.t/

�
dt:

2.2.2 Lemma The map 'W s! V0 is surjective.
4By (1), '� D r.!0/ for r as defined in the previous section. By this formula, we can define '�

without any assumption on the cohomology. But in this case the definition might depend on the choice of
a S –invariant Borel probability measure � .
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Proof Let qW s! s= ker'� be the natural projection and let x'�W s= ker'�! V0 be
the map induced from '� . The map S! V0 mapping s to

R s
1 ‚

0 is surjective becauseR eX
1 ‚0 D X0 for every X 2 s. Fix a point x 2 M . The map S ! S defined by
s 7! a.x; s/ is bijective. See Asaoka [1, Lemma 1.4.6]. By the above lemma, we have
x'�
�R s
1 q‚

�
D
R a.x;s/
1 ‚0�h.�0.x; s//Ch.x/. This and the boundedness of h show

x'� is surjective.

Therefore we can regard ' as an element of X .

2.2.3 Lemma Set P D ehW M ! S . Then

Ad.P /.! �P �‚/D '!0C x!1C � � �C x!d

for some leafwise 1–forms x!i with values in Vi . So we have

(2) ! D Ad.P�1/.'!0C x!1C � � �C x!d /CP �‚:

Proof First we show

P �‚D

1X
jD0

.�1/j
.ad h/j

.j C 1/Š
dFhD dFh�

1

2
.ad h/dFhC � � � :

This is because, for any point x 2M and X 2 TxF , we have

.P �‚/.X/D‚
d

dt
eh.x.t//

ˇ̌̌
tD0
D .Le�h.x//�

d

dt
eh.x.t//

ˇ̌̌
tD0

D
d

dt
e�h.x/eh.x/Ch.x.t//�h.x/

ˇ̌̌
tD0

D

1X
jD0

.�1/j
.ad h.x//j

.j C 1/Š
Xh;

where x.t/ is a curve satisfying dx.t/=dt jtD0 DX .

So ! � P �‚ D '!0 C xx!
1 C � � � C xx!d for some xx!i taking values in Vi . Since

s=h is an abelian Lie algebra, S AdÕ s=h is trivial. Therefore, Ad.P /.! �P �‚/ D
'!0C x!

1C � � �C x!d for some x!i .

By this lemma we can replace ! by a cohomologous cocycle whose V0–component is
constant. We say an element of ��.F IW / for some vector space W is constant if it
lies in the image of !�0 W Hom.

V�s; W / ,!��.F IW /. Replacing by cohomologous
cocycles, we will gradually make components constant, and finally get a constant
cocycle. So now we may assume ! D '!0C!1C � � �C!d and proceed to the next
step.
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2.2.4 Lemma Assume that

! D '!0C'
1!0C � � �C'

k�1!0C!
k
C � � �C!d

for some linear maps 'i W s ! Vi , that is, ! is already constant up to the Vk�1–
component. Then we can choose some smooth P W M ! S so that

Ad.P /.! �P �‚/D '!0C'1!0C � � �C'k�1!0C'k!0C x!kC1C � � �C x!d

for some linear map 'k W s! Vk and x!i .

Proof Looking at the Vk –component of the equation dF!C Œ!; !�D 0, we obtain

0D dF!
k
CŒ'!0C'

1!0C� � �C'
k�1!0C!

k; '!0C'
1!0C� � �C'

k�1!0C!
k�k

D dF!
k
C�k'!0^!

k
Cconstant form:

The k appearing in Œ : : : ; : : : �k in the first line of the above denotes the projection
onto Vk . Let DW �p.F IVk/ ! �pC1.F IVk/ be the covariant exterior derivative
arising from the leafwise connection defined by the connection form �k'!0 . We saw
D D dF C�k'!0 ^ in the previous section, so that

(3) D!k D !�0 

for some  2Hom.
V2s; Vk/ by the above computation. Recall r , which is defined in

the previous section. We set � D r.!k/W s! Vk . Then

(4)  D r.!�0 /D r.D!
k/DDr.!k/DD�:

Here D also denotes the differential of Hom.
V�s; Vk/. By (3) and (4), we get

D.!k �!�0�/D 0:

By Lemma 2.2.2 and by our assumption, we have H 1.F I s �k'Õ Vk/DH
1.sI s

�k'Õ Vk/.
Therefore there exist a linear map � 0W s!Vk and a smooth map hW M!Vk satisfying

!k D �!0C �
0!0C dFhC�k'!0hD '

k!0C dFhC�k'!0h:

Here we set 'k D � C � 0 . As before we let P D eh and then

! �P �‚D '!0C'
1!0C � � �C'

k�1!0C .'
k!0C�k'!0h/C xx!

kC1
C � � �C xx!d

for some xx!i . Finally we compute as follows:

Ad.P /.!�P �‚/D eadh.'!0C'
1!0C� � �C'

k!0C�k'!0h/Chigher terms

D '!0C'
1!0C� � �C'

k!0C�k'!0h��k'!0hChigher terms

D '!0C'
1!0C� � �C'

k!0Chigher terms:
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Applying this lemma repeatedly, we see the given ! is cohomologous to a cocycle
of the form !0 D '!0C '

1!0C � � � C '
d!0 . Set ˆ� D ' C '1C � � � C 'd W s! s.

Then !0 D ˆ�!0 is a constant cocycle, because the equation dF!0 C Œ!0; !0� D 0
implies that ˆ� is an endomorphism of the Lie algebra s. This completes the proof of
Theorem 1.0.3.

Let X�0 be the set of all ' 2 X which can be written as '� for some � 2 A.F ; S/
(using the isomorphism s=h' V0 ). What we actually proved in this section is:

2.2.5 Theorem Assume H 1.F/ D H 1.s/, so that we can define X�0 as a subset
of X . If

H 1.F I s adı'Õ Grh.s//DH 1.sI s
adı'Õ Grh.s//

for all ' 2 X�0 , then �0 is parameter rigid.

The next task is to prove the set X�0 is small.

Remark Although we deal with only s–valued cocycles arising from actions �
in A.F ; S/, what we do in this section is actually valid for any k–valued cocycles
over �0 for any connected, simply connected, solvable Lie group K and a subspace h

between Œk; k� and the nilradical of k. Also the acting group S need not be solvable; we
need only assume that the action has an invariant Borel probability measure. Solvability
is used only for the value group K . This might be useful for purposes other than
parameter rigidity.

Remark For actions of semisimple Lie groups or groups with property (T), R–valued
cocycle rigidity implies K–valued cocycle rigidity for any connected simply connected
solvable Lie groups. This is shown by an obvious argument and valid for actions in
broader categories.

Remark As explained in Asaoka [1, Section 1.4.4], H 1.F I s adÕ s/=H 1.sI s
adÕ s/

can be viewed as the formal tangent space at �0 in A.F ; S/=(parameter equivalence).
We can show that H 1.F I s adÕ Grh.s// D H 1.sI s

adÕ Grh.s// implies H 1.F I s adÕ
s/=H 1.sI s

adÕ s/D 0 by an argument using spectral sequences. But the converse seems
to be false.

3 Sufficient condition by the method of Matsumoto and
Mitsumatsu

We prove Theorem 1.0.4 here. Let M �0Ô S be an action which we consider and take
any � 2 A.F ; S/. According to Theorem 2.2.5, what we need to show is that '� ,
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defined in Section 2.2, coincides with the natural projection s� s=n. In this section
we also use the notation �s0.x/D �0.x; s/ and �s.x/D �.x; s/. As in Section 2.2 we
have a S –valued cocycle aW M �S ! S over �0 satisfying �s0.x/D �

a.x;s/.x/ for
all x 2M and s 2 S . For any X 2 s, s 2 S and x 2M ,

.�s0/�XxD
d

dt
�0.x; e

tXs/
ˇ̌̌
tD0
D
d

dt
�0.�

s
0.x/; e

t Ad.s�1/X /
ˇ̌̌
tD0
D .Ad.s�1/X/�s0.x/:

Take a basis of s and its dual basis of s� . The dual basis of s� , after being pulled back
by the canonical 1–form !0 of �0 , is regarded as a global frame of the bundle T �F .
Let �0 2 �dimS .F/ be the wedge product of the global frame, which is a leafwise
volume form. By the above computation, we see

.�s0/
��0 D det Ad.s�1/�0

for all s 2 S . We do the same thing for � , getting another leafwise volume form
� 2�dimS .F/ which satisfies

.�s/��D det Ad.s�1/�

for all s 2S . Here we must use the canonical 1–form ! of � rather than !0 . Fix a com-
plementary subbundle E to TF in TM , that is, TM DTF˚E . Since M is orientable,
we can choose a nowhere-vanishing smooth section �tr of

VdimE
.TM=TF/�. We

have natural projections TF TM!TM=TF defined by E. Let �0 , �2�dimS.M/

and �tr 2�
dimE .M/ be the pullbacks of �0 , � and �tr by the projections. In this

section, bars written over something stand for pulling back something by the projections.
Both �0 ^�tr , �^�tr 2�

dimM .M/ are volume forms of M . So there is a smooth
map cW M � S ! R>0 satisfying .�s/�.�^�tr/ D c. � ; s/.�^�tr/ for all s 2 S .
It is easy to see that c is a cocycle over � , that is, c.x; ss0/ D c.x; s/c.�.x; s/; s0/
for all x 2M and s , s0 2 S . Our assumption H 1.F/DH 1.s/ is equivalent to the
R–valued cocycle rigidity of � . See Maruhashi [4, Section 2], for instance. Thus we
can find a homomorphism ˛W S !R>0 and a smooth map P W M !R>0 such that
c.x; s/DP.x/�1˛.s/P.�.x; s// holds for all x 2M and s 2 S . Then, for any s 2 S ,

.�s/�.P�1.�^�tr//D P.�
s. � //�1c. � ; s/.�^�tr/D ˛.s/P

�1.�^�tr/:

By integrating over M , we get ˛.s/D 1 for all s 2 S . By replacing P�1�tr by �tr

we may assume that

(5) .�s/�.�^�tr/D�^�tr

for all s 2 S . For any x 2M and s 2 S , two maps

.�s0/�; .�
a.x;s//�W .TM=TF/x! .TM=TF/�s0.x/D�a.x;s/.x/
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coincide. This is because �0 and � have the same orbit foliation and it is easy to see
this for small s 2 S . For two small s , s0 2 S , we have

.TM=TF/x
.�s0/�

//

˚

.TM=TF/�s0.x/
.�s
0

0 /�
//

˚

.TM=TF/
�ss
0

0 .x/

.TM=TF/x
.�a.x;s//�

// .TM=TF/�s0.x/
.�
a.�s

0
.x/;s0/

/�

// .TM=TF/
�ss
0

0 .x/

so that .�ss
0

0 /� D .�
s0

0 /� ı .�
s
0/� D .�

a.�s0.x/;s
0//� ı .�

a.x;s//� D .�
a.x;s/a.�s0.x/;s

0//� D

.�a.x;ss
0//� . Using this we can prove the same for general s 2 S . Therefore,

(6) ..�s0/
��tr/x D ..�

a.x;s//��tr/x

for all x 2 M and s 2 S . Let ˇW M � S ! R>0 be the smooth map satisfying
.�s/��tr D ˇ. � ; s/�tr for all s 2 S .

3.0.1 Lemma We have ˇ. � ; s/D det Ad.s/ for all s 2 S . Therefore,

(7) .�s/��tr D det Ad.s/�tr:

Proof By (5),

�^�tr D .�
s/�.�^�tr/D .�

s/��^ .�s/��tr:

Since
TxM

.�s/�
//

��

˚

T�s.x/M

��

.TM=TF/x
.�s/�

// .TM=TF/�s.x/

we have .�s/��tr D .�s/��tr . On the other hand, the diagram

TxM
.�s/�

//

��

T�s.x/M

��

TxF
.�s/�

// T�s.x/F

does not commute unless E is �–invariant, so usually .�s/��¤ .�s/��. But

.�s/��^ .�s/��tr D .�s/��^ .�s/��tr

holds, because .�s/�� and .�s/�� coincide when only vectors in TF are substi-
tuted, and .�s/��tr vanishes if we substitute a vector in TF . Therefore, �^�tr D
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.�s/�� ^ .�s/��tr D det Ad.s�1/� ^ ˇ. � ; s/�tr D det Ad.s�1/ˇ. � ; s/� ^�tr and
the claim follows.

Combining (6) and (7), we get

.�s0/
��tr D det Ad.a. � ; s//�tr:

Then, by the same argument as in the proof of the above lemma,

(8) .�s0/
�.�0 ^�tr/D .�

s
0/
��0 ^ .�

s
0/
��tr

D .�s0/
��0 ^ .�

s
0/
��tr

D det Ad.s�1/�0 ^ det Ad.a.x; s//�tr

D det Ad.s�1/ det Ad.a.x; s//�0 ^�tr:

This formula will be the key to proving Theorem 1.0.4.

3.0.2 Lemma For any s 2 S ,

det Ad.s/D etr ad
R s
1 p‚;

where pW s� s=n denotes the natural projection and ad is also used for s=n adÕ Grn.s/.

Proof Any s 2 S can be written as s D eX1 � � � eXk for some X1; : : : ; Xk 2 s. It is
easy to see Z s

1

p‚D p.X1/C � � �Cp.Xk/:

Since tr adp.X/D tr adX for X 2 s, we have

det Ad.s/D etr adX1 � � � etr adXk D etr ad.p.X1/C���Cp.Xk// D etr ad
R s
1 p‚:

Since we have
R s
1 '�‚C h.�0.x; s// � h.x/ D

R a.x;s/
1 p‚ as in Lemma 2.2.1, the

factor appearing in the formula (8) will be

det Ad.s�1/ det Ad.a.x; s//D e� tr ad
R s
1 p‚etr ad

R a.x;s/
1 p‚

D exp
�

tr ad
Z s

1

.'� �p/‚C tr ad
�
h.�0.x; s//� h.x/

��
:

Assume '� ¤ p and we will get a contradiction as follows. We have X 2 s, so that
A WD .'� �p/.X/¤ 0. Since dim s=nD 1 and s is not unimodular, tr adA¤ 0. We
may assume tr adA > 0 by replacing X . Then, for s D eTX with T > 0 large, the
function

det Ad.s�1/ det Ad.a.x; s//D eT tr adAetr ad.h.�0.x;s//�h.x//
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on M must be large because h is bounded. This contradicts the formula (8) by
integrating over M . Therefore, '� D p and this completes the proof of Theorem 1.0.4.

Remark The assumptions dim s=n D 1 and nonunimodularity of s are used only
in the final part of the proof, so we have proved the following: if M is orientable,
tr ad.'� �p/.X/D 0 for all X 2 s, where ad denotes s=n

adÕ Grn.s/.

4 Sufficient condition given by large scale geometry
of solvable Lie groups

4.1 Key proposition to the method

Let X and B be metric spaces. We say a surjective map pW X ! B is a distance-
respecting projection if d.b; b0/D d.p�1.b/; p�1.b0//D dH.p�1.b/; p�1.b0// holds
for any two points b , b0 2B . Here, dH denotes the Hausdorff distance. Let pW X!B

and p0W X 0! B 0 be distance-respecting projections. For a given diagram

X
f
//

p

��

X 0

p0

��

B
'
// B 0

we say f is fiber-respecting over ' if there is C > 0 such that

dH
�
f .p�1.b//; .p0/�1.'.b//

�
< C

for all b 2 B .

4.1.1 Lemma Let G be a Lie group and H be a closed subgroup of G .

(1) Left-invariant Riemannian metrics on G=H are in one-to-one correspondence
with inner products on g=h invariant under H AdÕ g=h by the canonical identifi-
cation g=h' THG=H .

(2) Assume that there exists an invariant inner product for H AdÕ g=h. Take an inner
product of g for which the restriction h? ��! g=h of the projection g! g=h is
an isometry. Endow G and G=H with left invariant Riemannian metrics defined
by these inner products. Let � W G! G=H be the projection. Then, for every
g 2G , the restriction .Lg/�h? ��!TgHG=H of ��W TgG! TgHG=H is an
isometry, and the kernel of ��W TgG! TgHG=H is .Lg/�h.

(3) Assume G is connected. Under the assumption of (2), the map � W G!G=H

is a distance-respecting projection.
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Proof It is easy to check (1) and (2).

(3) Take arbitrary two points b , b0 2G=H .

Claim d.��1.b/; ��1.b0//� d.b; b0/.

For any g 2 ��1.b/ and g0 2 ��1.b0/, take a minimal geodesic  W Œ0; 1�! G con-
necting g and g0 . Since k.� ı /0.t/k D k�� 0.t/k � k 0.t/k by the property of our
metric, d.g; g0/D

R 1
0 k

0.t/k dt �
R 1
0 k.� ı /

0.t/k dt � d.b; b0/.

Claim d.��1.b/; ��1.b0//� d.b; b0/.

Take a minimal geodesic  W Œ0; 1�!G=H connecting b and b0 . Fix a point g2��1.b/.
Then there exists a curve z W Œ0; 1� ! G starting from g such that � ı z D  and
z 0.t/2 .Lz.t//�h

? for all t 2 Œ0; 1�, by a standard argument. For this curve, d.b; b0/DR 1
0 k

0.t/k dt D
R 1
0 kz

0.t/k dt � d.��1.b/; ��1.b0//.

Claim d.b; b0/D dH.�
�1.b/; ��1.b0//.

We have B.��1.b/; C / D ��1.B.b; C // and B.��1.b0/; C / D ��1.B.b0; C // by
the above discussion; this is obvious.

4.1.2 Corollary Let G be a connected Lie group and H a connected, normal, closed
subgroup of G . Take an inner product of g. Endow g=h with the inner product for
which the restriction h? ��!g=h of the projection g!g=h is an isometry. Consider left-
invariant Riemannian metrics on G and G=H corresponding to these inner products.
Then the projection � W G!G=H is a distance-respecting projection.

Proof This is because H AdÕ g=h is trivial.

Let us return to our previous setting M �0Ô S . Take an action � 2 A.F ; S/ and let
aW M �S ! S be the cocycle over �0 defined by � , that is, �0.x; s/D �.x; a.x; s//.

4.1.3 Lemma For any x 2M , the map S ! S taking s to a.x; s/ is a bi-Lipschitz
diffeomorphism for any left-invariant Riemannian metric on S .

Proof See Asaoka [1, Lemma 1.4.6] for a proof that the map is a diffeomorphism.

To see that the map is bi-Lipschitz, equip TF with the metric h � ; � i�0 for which
.!0/x W TxF ��! s is isometric for all x 2M . We can easily verify that the metric
obtained by pulling back h � ; � i�0 through the map S !M taking s to �0.x; s/ is
the original Riemannian metric on S . Similarly, we also have the metric h � ; � i�
on TF defined by using � . Since M is compact, there is a constant C > 1 such that
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C�1k � k�0 �k � k��Ck � k�0 . For any s , s02S , take a minimal geodesic  W Œ0; 1�!S

connecting s and s0 . Then

d.s; s0/D

Z 1

0

k 0.t/k dt D

Z 1

0

 d
dt
�0.x; .t//


�0
dt

D

Z 1

0

 d
dt
�.x; a.x; .t///


�0
dt

�
1

C

Z 1

0

 d
dt
�.x; a.x; .t///


�
dt

D
1

C

Z 1

0

 d
dt
a.x; .t//

 dt
�
1

C
d.a.x; s/; a.x; s0//:

The inverse is also Lipschitz by the same argument.

Recall that h is a subspace between Œs; s� and n. Let K� and H be the Lie sub-
groups corresponding to ker'� and h and z'�W S=K�! S=H be the map induced by
'�W s! s=h. Both S=K� and S=H are vector groups and z'� is a linear isomorphism.
The following proposition is the key for our method to reduce the set X�0 :

4.1.4 Proposition For any � 2 A.F ; S/ and x 2M , consider the diagram

S
a.x; � /

//

zq
��

S

zp

��

S=K�
z'�

�
// S=H

where the vertical maps are the natural projections. We give S a left-invariant Rie-
mannian metric, and S=K� and S=H the left-invariant Riemannian metrics considered
in Corollary 4.1.2. Then a.x; � / is a fiber-respecting bi-Lipschitz diffeomorphism
over z'� .

Proof Let qW s! s= ker'� and pW s! s=h be the natural projections. Then we have

e
R s
1 q‚ D zq.s/ and e

R s
1 p‚ D zp.s/

for all s 2 S . Indeed, writing s D eX1 � � � eXk for some X1; : : : ; Xk 2 s,

e
R s
1 q‚ D exp

�Z eX1

1

q‚C

Z eX1eX2

eX1
q‚C� � �C

Z s

eX1 ���eXk�1
q‚

�
D eq.X1/C���Cq.Xk/:
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Let x'�W s= ker'�! s=h be the map induced by '� . By exponentiating the equation
x'�.
R s
1 q‚/C h.�0.x; s//� h.x/D

R a.x;s/
1 p‚ from Lemma 2.2.1, we get

z'�zq.s/e
h.�0.x;s//�h.x/ D zp.a.x; s//:

Since M is compact, there is a constant C > 0 such that

(9) d
�
z'�zq.s/; zp.a.x; s//

�
D d.1; eh.�0.x;s//�h.x// < C

for any s 2 S . This means that the diagram commutes up to bounded distance. Let f
be the inverse map of a.x; � /. By Lemma 2.2.1,Z f .s/

1

q‚C x'�1�
�
h
�
�0.x; f .s//

�
� h.x/

�
D x'�1�

�Z s

1

p‚

�
:

Exponentiating both sides of the equation,

zqf .s/ex'
�1
� .h.�0.x;f .s///�h.x// D z'�1� zp.s/:

As before there is a constant C 0 > 0 such that

(10) d.zqf .s/; z'�1� zp.s// < C
0:

Let C 00>0 be a constant such that d.a.x; s1/; a.x; s2//�C 00d.s1; s2/ for all s1 , s22S .
Take any b 2 S=K� . Then we can show that

dH
�
a.x; zq�1.b//; zp�1.z'�.b//

�
�maxfC;C 0C 00g

in the following way:

Claim a.x; zq�1.b//� B
�
zp�1.z'�.b//; C

�
.

By (9), d
�
z'�.b/; zp.a.x; s//

�
< C for any s 2 zq�1.b/. Therefore, a.x; s/ is in

B
�
zp�1.z'�.b//; C

�
.

Claim zp�1.z'�.b//� B.a.x; zq
�1.b//; C 0C 00/.

By (10), d.zqf .s/; b/ < C 0 for any s 2 zp�1.z'�.b//, so that we can find s0 2 zq�1.b/
satisfying d.s0; f .s//� C 0 . Then d.a.x; s0/; s/� C 00d.s0; f .s//� C 00C 0 .

This proposition puts a strong restriction on the map z'� which we want to know, as in
the next section or Section 5.2.
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4.2 Proof of Theorem 1.0.5

As in Section 1, let

Ai D

0@˛.i/1 : : :

˛
.i/
n

1A
for i D 1; : : : ; k be diagonal matrices with positive diagonal entries and set SA D
Rn ÌA.t/ Rk , where A.t/ D A

t1
1 � � �A

tk
k

for t D .t1; : : : ; tk/ 2 Rk . Ogasawara [8]
proved the following theorem to classify up to quasiisometry groups obtained from Zn

by performing certain HNN extensions several times, which is a generalization of a
result of Farb and Mosher [3] on quasiisometric rigidity of abelian-by-cyclic groups.

4.2.1 Theorem If
SA

f
//

��

SA0

��

Rk
'
// Rk

is a diagram in which vertical maps are natural projections and f is a fiber-respecting
quasiisometry over some linear map ' , then there is a permutation matrix P 2GL.n;R/
such that PA.t/D A0.'.t//P for every t 2Rk . In particular, there exists a diagram

SA
�
//

��
˚

SA0

��

Rk
'
// Rk

where the upper horizontal map is an isomorphism of Lie groups taking .v; t/ to
.P v; '.t//.

Consider an action M �0Ô S for S D SA and assume that for any j there is some i for
which ˛.i/j ¤1. It is easy to check that this is equivalent to Œs; s�DRn . We let hD Œs; s�.
For any � 2 A.F ; S/, we have ker'� D Œs; s� and then K� D Rn . Therefore, by
Proposition 4.1.4, a.x; � / is a fiber-respecting bi-Lipschitz diffeomorphism over z'� in:

S
a.x; � /

//

��

S

��

Rk
z'�

// Rk

Hence, by the above theorem we get z'� 2WS . Using Theorem 2.2.5, this completes
the proof of Theorem 1.0.5.
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Remark There are solvable Lie groups for which this method does not work. Consider
the solvable Lie group S DR2 ÌR.t/R for

R.t/D

�
cos 2�t � sin 2�t
sin 2�t cos 2�t

�
:

Then the standard Euclidean metric on R3 identified with S is a left-invariant Riemann-
ian metric on S . Hence, for any c 2 R n f0g there is a bi-Lipschitz diffeomorphism
f W S ! S such that:

S
f
//

��
˚

S

��

R
� c
// R

So we do not have any restriction on c .

5 Parameter rigidity of suspension-like actions on
mapping tori

We prove Theorem 1.0.6 here. The proof is based on Theorem 2.2.5, Proposition 4.1.4
and a theorem of Farb and Mosher [3]. To calculate cohomologies we use Mayer–
Vietoris exact sequences.

The action which we consider is M D Zn.Tn �R/Ô S , where S D V ÌˆR. Let F
be its orbit foliation.

5.1 Cohomology

The bracket operation of the Lie algebra sD V Ìˆ� R is

Œ.v1; t1/; .v2; t2/�D .Œv1; v2�Cˆ�.t1/v2�ˆ�.t2/v1; Œt1; t2�/

D .ˆ�.t1/v2�ˆ�.t2/v1; 0/:

Let T D .0; 1/ 2 s. We will use the notation ad0X D adX jV for X 2 s. Then
ad0T D ˆ�.1/, so that ˆt D et ad0T and AjV D ead0T . Since we assume 1 is not
an eigenvalue of AjV , ad0T W V ! V does not have 0 as an eigenvalue, hence it is
invertible. So we have Œs; s�D V .

Let us examine which cohomologies to compute. We take Œs; s�D V as a subspace h

appearing in Theorem 1.0.3. We consider representations s
adı'Õ GrV .s/D s=V ˚V

for ' D '� for some � 2 A.F ; S/. The first component s adı'Õ s=V is just the trivial
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representation. Let T be the image of T under the natural projection s� s=V and put
'.T /D cT . Then the second component s adı'Õ V is given by .v; t/v0D ct.ad0T /v0D
c.ad0.v; t//v0 , so that it is just s c ad0Õ V . Therefore we must compute

H 1.F/ and H 1.F I s c ad0Õ V /

for all c 2R. But we will see that vanishing of H 1.F/ and H 1.F I s ˙ ad0Õ V / suffices
by the method of large scale geometry and this reduction fits our assumption of Zariski
density nicely.

5.2 Application of large scale geometry

Here we use rigidity of quasiisometries between solvable Lie groups found by Farb and
Mosher. They prepare the following theorem as a tool to prove quasiisometric rigidity
of abelian-by-cyclic groups. In [3, Theorem 5.2] a slightly different statement is given,
but the following is also proved:

5.2.1 Theorem Let ˆ.1/t and ˆ.2/t be one-parameter subgroups of GL.p;R/ and
Si DRp Ìˆ.i/ R. If

S1
�
//

��

S2

��

R
id
// R

is a diagram in which vertical maps are natural projections and � is a fiber-respecting
quasiisometry over id. Then absolute Jordan forms of ˆ.1/1 and ˆ.2/1 coincide up to
permutation of Jordan blocks. (Here an absolute Jordan form refers to a matrix obtained
by replacing the diagonal entries of a Jordan normal form over the complex field with
their absolute values.)

Returning to our situation, we have

S
a.x; � /

//

��

S

��

R
� c

// R

where a.x; � / is a fiber-respecting bi-Lipschitz diffeomorphism by Proposition 4.1.4.
Composing with

S
�
//

��

˚

V Ìˆct R

��

R
�1=c

// R
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where the above horizontal map takes .v; t/ to .v; t=c/, we get

S //

��

V Ìˆct R

��

R
id

// R

in which the above horizontal map is a fiber-respecting bi-Lipschitz diffeomorphism
over id. Then, by Theorem 5.2.1, absolute Jordan forms of ˆ1 and ˆc coincide.
Let ˛1; : : : ; p̨ be the eigenvalues of ad0T , so that eigenvalues of ˆt D et ad0T are
et˛1 ; : : : ; et˛p . Therefore the sets fje˛1 j; : : : ; je˛p jg and fje˛1 jc ; : : : ; je˛p jcg coincide
with multiplicity. Since ˆ1 has an eigenvalue of absolute value not equal to 1, we must
have cD˙1. So we need to verify only the vanishing of H 1.F/ and H 1.F I s˙ ad0Õ V /

to show parameter rigidity of the action.

5.3 Mayer–Vietoris argument

Let s �Õ W be a representation on a finite-dimensional real vector space satisfying
�.v/D 0 for all v 2 V . We will try to calculate the first cohomology H 1.F I s �Õ W /.

Let U1 and U2 be the projections to M of Tn � .0; 1/ and Tn �
�
�
1
2
; 1
2

�
, so that

M D U1[U2 . Then we have a short exact sequence of cochain complexes

0!��.F IW /!��.F jU1 IW /˚�
�.F jU2 IW /!��.F jU1\U2 IW /! 0:

The second map is � 7! .�jU1 ; �jU2/ and the third is .�1; �2/ 7! �2jU1\U2 � �1jU1\U2 .
Hence, we obtain an exact sequence of cohomology

H 0.F jU1 I�/˚H
0.F jU2 I�/

P
�!H 0.F jU1\U2 I�/

!H 1.F I�/!H 1.F jU1 I�/˚H
1.F jU2 I�/

Q
�!H 1.F jU1\U2 I�/;

so that we have

(11) H 1.F I�/' cokerP ˚ kerQ:

To compute H 1.F I�/, we first compute H 1.F jU1 I�/. Let G be the orbit foliation
of the translation action Tn Ô V . Define �W Tn ,! U1 by �.x/ D

�
x; 1
2

�
. The

map ��W ��.F jU1 IW /!��.GIW / obtained by pullback is a cochain map5 between�
��.F jU1 IW /; dFC�!0^

�
and .��.GIW /; dG/, where !0 is the canonical 1–form

of the action M Ô S . In fact, ��.dF C �!0 ^ /� D dG��� C ��.�!0 ^ �/ D dG���

5However, p�W ��.GIW /!��.F jU1 IW / is not a cochain map, where pW U1! Tn maps .x; t/
to x .
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for � 2�k.F jU1 IW / due to our assumption on � . Thus we get the induced map on
cohomologies

��W H�.F jU1 I�/!H�.GIW /:

Note that W in H�.GIW / is just a direct sum of the trivial coefficient R.

5.3.1 Lemma ��W H 1.F jU1 I�/!H 1.GIW / is an isomorphism.

Proof We first show injectivity:

Take Œ�� 2H 1.F jU1 I�/ satisfying ��Œ��D 0. We must show the existence of a smooth
˛W U1!W such that

(12) �D dF˛C�!0˛:

Such an ˛ must satisfy �.T /D T˛C�.T /˛ , where T is regarded as a vector field
using the action. Note that T is just the vector field @=@t , where .x; t/ 2 U1 . We have
a smooth map hW Tn!W satisfying ���D dGh. Using this we let

˛.x; t/D e�.t�1=2/�.T /
�Z t

1=2

e.s�1=2/�.T /�.T /.x; s/ dsC h.x/

�
for x 2Tn and t 2 .0; 1/. This ˛ satisfies @˛.x; t/=@t D��.T /˛.x; t/C�.T /.x; t/,
ie �.T /D T˛C�.T /˛ and ˛

�
x; 1
2

�
D h.x/. To show (12) we have to prove

�.X/�X˛ D 0

for all X 2 V . Note that

(13) .�.X/�X˛/
�
x; 1
2

�
D 0

for X2V . Since 0D.dF�C�!0^�/.T;X/DT �.X/�X�.T /��.ŒT;X�/C�.T /�.X/,
we have

(14) T .�.X/�X˛/DX�.T /C�.ŒT;X�/��.T /�.X/�X.�.T /��.T /˛/�ŒT; X�˛

D��.T /.�.X/�X˛/C�.ŒT;X�/�ŒT; X�˛:

Choose a basis of V which turns ad0T into a real Jordan normal form

M0BB@
a 1
: : :

: : :
: : : 1

a

1CCA˚M
0BBBBBBBBBBB@

b �c 1

c b 1
: : :

: : :
: : :

: : :
: : : 1

: : : 1
b �c

c b

1CCCCCCCCCCCA
;
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where a , b , c 2 R and c ¤ 0. Let X1; : : : ; Xk be the basis of the subspace corre-
sponding to the matrix 0BB@

a 1
: : :

: : :
: : : 1

a

1CCA ;
so that the relations

ŒT; X1�D aX1; ŒT;X2�D aX2CX1; : : : ŒT;Xk�D aXkCXk�1

hold. By (14), T .�.X1/�X1˛/D .a��.T //.�.X1/�X1˛/. The solution is

.�.X1/�X1˛/.x; t/D e
.t�1=2/.a��.T //.�.X1/�X1˛/

�
x; 1
2

�
:

So we get �.X1/ � X1˛ D 0 by (13). For X2 we also have T .�.X2/ � X2˛/ D
.a��.T //.�.X2/�X2˛/, so �.X2/�X2˛D0. Repeating this we get �.Xi /�Xi˛D0
for i D 1; : : : ; k .

Let X1 , Y1; : : :, Xk , Yk be the basis of the subspace corresponding to0BBBBBBBBBBB@

b �c 1

c b 1
: : :

: : :
: : :

: : :
: : : 1

: : : 1
b �c

c b

1CCCCCCCCCCCA
:

We proceed similarly. The relations are

ŒT; X1�D bX1C cY1; ŒT; Y1�D�cX1C bY1;

ŒT; X2�D bX2C cY2CX1; ŒT; Y2�D�cX2C bY2CY1;
:::

:::

The first equation to solve is

T

�
�.X1/�X1˛

�.Y1/�Y1˛

�
D

�
b��.T / c

�c b��.T /

��
�.X1/�X1˛

�.Y1/�Y1˛

�
;

and the solution is�
�.X1/�X1˛

�.Y1/�Y1˛

�
.x; t/D exp

��
t� 1

2

� �b��.T / c

�c b��.T /

���
�.X1/�X1˛

�.Y1/�Y1˛

��
x; 1
2

�
:
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So we have �.X1/�X1˛ D 0 and �.Y1/� Y1˛ D 0. Repeating, we eventually get
�.Xi /�Xi˛ D 0 and �.Yi /�Yi˛ D 0 for i D 1; : : : ; k . This proves the injectivity.

We now prove surjectivity:

Take any Œ�� 2H 1.GIW /. We must construct � 2�1.F jU1 IW / satisfying

(15) dF�C�!0 ^ �D 0

and ���D � . We will construct �, requiring the additional property �.T /D 0. In order
to satisfy (15), for any X 2 V we should construct �.X/ such that

(16) T �.X/� �.ŒT;X�/C�.T /�.X/D 0

holds. Fix a basis X1; : : : ; Xp of V and let .aij / be the matrix representing ad0T
with respect to X1; : : : ; Xp ; then ŒT; Xj � D

Pp
iD1 aijXi . The �.Xj / should sat-

isfy T �.Xj /�
Pp
iD1 aij�.Xi /C �.T /�.Xj / D 0 and �.Xj /

�
x; 1
2

�
D �.X0j /. Here,

for X 2 V , we denote by X0 the section of T G satisfying ��X0 DX jtD1=2 . So we
must solve

T

0@�.X1/:::
�.Xp/

1AD
0@.aj i /�

0@�.T / : : :
�.T /

1A1A0@�.X1/:::
�.Xp/

1A :
The solution is0@�.X1/:::

�.Xp/

1A .x; t/D exp

0@�t � 1
2

�0@.aj i /�
0@�.T / : : :

�.T /

1A1A1A0@�.X01 /:::

�.X0p /

1A .x/:
We define �.Xi / by this, then �.X/ for any X 2 V is defined by linearity, so that
we have defined � 2�1.F jU1 IW /. Then (16) and ���D � are satisfied. To see that
(15) holds, we only have to show .dF�C�!0 ^ �/.X; Y /D 0 for all X , Y 2 V . Put
� D dF�C�!0 ^ �. Then

T .�.X; Y //D TX�.Y /�T Y�.X/

DX.�.ŒT; Y �/��.T /�.Y //C ŒT; X��.Y /

�Y.�.ŒT;X�/��.T /�.X//� ŒT; Y ��.X/

D��.T /�.X; Y /C �.X; ŒT; Y �/C �.ŒT;X�; Y /

and �.X; Y /
�
x; 1
2

�
D X0�.Y 0/� Y 0�.X0/D dG�.X

0; Y 0/D 0. As in the proof of
injectivity we can show �.Xi ; Xj /D 0, so that (15) is satisfied. This completes the
proof.
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By the assumption that V is a Diophantine subspace of Rn , the leafwise cohomology
H 1.GIW / vanishes, ie H 1.GIW /DH 1.V IW /D V �˝W . Thus H 1.F jU1 I�/'
V �˝W . Let qW s! V be the natural projection.

5.3.2 Lemma An element '˝w 2 V �˝W corresponds to

.e.t�1=2/.ad0T /�'/q!0˝ e
�.t�1=2/�.T /w 2�1.F jU1 IW /

by the above isomorphism, where .ad0T /�W V �! V � is the adjoint of ad0T .

Proof Put � D .e.t�1=2/.ad0T /�'/q!0 ˝ e
�.t�1=2/�.T /w . Then ��� D ' ˝w and

�.T / D 0. For X 2 V , �.X/ D .e.t�1=2/.ad0T /�'/.X/e�.t�1=2/�.T /w satisfies
T �.X/D �.ŒT;X�/��.T /�.X/. So we see dF�C�!0 ^ �D 0, as in the proof of
Lemma 5.3.1.

Now, U1 \ U2 is the disjoint union of the projections to M of Tn �
�
0; 1
2

�
and

Tn �
�
1
2
; 1
�
. We define the maps

�1=2W T
n ,! U1; �1=2.x/D

�
x; 1
2

�
;

�0W T
n ,! U2; �0.x/D .x; 0/;

�1=4W T
n ,! U1\U2; �1=4.x/D

�
x; 1
4

�
;

�3=4W T
n ,! U1\U2; �3=4.x/D

�
x; 3
4

�
:

We will calculate the bottom map of the next commutative diagram, in which the
vertical maps are isomorphisms:

H 1.F jU1 I�/˚H 1.F jU2 I�/
Q

//

��
1=2
˚��0
��

˚

H 1.F jU1\U2 I�/

��
1=4
˚��
3=4

��

.V �˝W /˚ .V �˝W / // .V �˝W /˚ .V �˝W /

5.3.3 Lemma The bottom map of the above diagram is 
�e�.ad0T /�=4˝ e�.T /=4 e.ad0T /�=4˝ e��.T /=4

�e.ad0T /�=4˝ e��.T /=4 e�.ad0T /�=4˝ e�.T /=4

!
:

Proof We define F W Tn�R!Tn�R by F.x; t/D .A�1x; t�1/. Take an element
.'1˝w1; '2˝w2/ of .V �˝W /˚ .V �˝W /. This is mapped by the vertical map to

..e.t�1=2/.ad0T /�'1/q!0˝ e
�.t�1=2/�.T /w1; .e

t.ad0T /�'2/q!0˝ e
�t�.T /w2/;
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which is in turn mapped by Q to�
.et.ad0T /�'2/q!0˝ e

�t�.T /w2� .e
.t�1=2/.ad0T /�'1/q!0˝ e

�.t�1=2/�.T /w1;

F �
�
.et.ad0T /�'2/q!0˝e

�t�.T /w2
�
�.e.t�1=2/.ad0T /�'1/q!0˝e

�.t�1=2/�.T /w1

�
:

Since F �
�
.et.ad0T /�'2/q!0˝e

�t�.T /w2
�
D .e.t�1/.ad0T /�'2/q!0˝e

�.t�1/�.T /w2 ,
the above element equals�
.e.t�1=4/.ad0T /�e.ad0T /�=4'2/q!0˝ e

�.t�1=4/�.T /e��.T /=4w2

� .e.t�1=4/.ad0T /�e�.ad0T /�=4'1/q!0˝ e
�.t�1=4/�.T /e�.T /=4w1;

.e.t�3=4/.ad0T /�e�.ad0T /�=4'2/q!0˝ e
�.t�3=4/�.T /e�.T /=4w2

� .e.t�3=4/.ad0T /�e.ad0T /�=4'1/q!0˝ e
�.t�3=4/�.T /e��.T /=4w1

�
and finally this is mapped by the vertical arrow to�
e.ad0T /�=4'2˝ e

��.T /=4w2� e
�.ad0T /�=4'1˝ e

�.T /=4w1;

e�.ad0T /�=4'2˝ e
�.T /=4w2� e

.ad0T /�=4'1˝ e
��.T /=4w1

�
:

By using the canonical isomorphism V �˝W ' Hom.V;W /, the map in the above
lemma becomes a map QW Hom.V;W /˚Hom.V;W /! Hom.V;W /˚Hom.V;W /
which sends

�
˛
ˇ

�
to 
�e�.T /=4 ı˛ ı e� ad0T=4C e��.T /=4 ıˇ ı ead0T=4

�e��.T /=4 ı˛ ı ead0T=4C e�.T /=4 ıˇ ı e� ad0T=4

!
:

5.3.4 Lemma If
�
˛
ˇ

�
is in the kernel of Q , then ˛ and ˇ satisfy e�.T /ı˛D˛ıead0T

and e�.T / ıˇ D ˇ ı ead0T .

Proof The pair
�
˛
ˇ

�
is in the kernel if and only if �e�.T /=2 ı ˛C ˇ ı ead0T=2 D 0

and �˛ ı ead0T=2C e�.T /=2 ıˇD 0. By eliminating ˇ or ˛ we get the conclusion.

Next we will calculate the map H 0.F jU1 I�/˚H 0.F jU2 I�/
P
�!H 0.F jU1\U2 I�/.

The group H 0.F jU1 I�/ consists of all smooth functions f W U1 ! W satisfying
dFf C�!0^f D0, which is equivalent to the equations Tf C�.T /f D0 and Xf D0
for all X 2 V . Since the action TnÔ V has a dense orbit, such an f must be constant
along the directions of tori; write f .x; t/D f .t/. Solving the differential equation, we
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get f .t/ D e�.t�1=2/�.T /f
�
1
2

�
. Thus we have an isomorphism H 0.F jU1 I�/ ' W

which sends f to f
�
1
2

�
. The bottom arrow of the diagram

H 0.F jU1 I�/˚H 0.F jU2 I�/
P
//

��
1=2
˚��0

��

˚

H 0.F jU1\U2 I�/

��
1=4
˚��
3=4

��

W ˚W
P

// W ˚W

sends an element .w1; w2/ as follows:

.w1; w2/ 7! .e�.t�1=2/�.T /w1; e
�t�.T /w2/

7!
�
e�t�.T /w2� e

�.t�1=2/�.T /w1; F
�.e�t�.T /w2/� e

�.t�1=2/�.T /w1
�

D
�
e�t�.T /w2� e

�.t�1=2/�.T /w1; e
�.t�1/�.T /w2� e

�.t�1=2/�.T /w1
�

7! .e��.T /=4w2� e
�.T /=4w1; e

�.T /=4w2� e
��.T /=4w1/:

An element .w1; w2/ is in kerP if and only if w2D e�.T /=2w1 and w1D e�.T /=2w2 .
So,

(17) kerP ' ker.id�e�.T //�W

by .w1; w2/ 7! w2 .

Finally we calculate the cohomology H 1.sI�/ of the Lie algebra. A 1–cocycle is a
linear map 'W s! W satisfying �.T /'.X/� '.ŒT;X�/ D 0 for all X 2 V . So the
space of 1–cocycles is isomorphic to HomT .V;W /˚W by the isomorphism which
sends ' to .'jV ; '.T //, where HomT .V;W / denotes the space of .ad0T; �.T //–
equivariant linear maps from V to W . On the other hand, a 1–coboundary maps Z 2 s
to �.Z/c 2W for some c 2W . So a linear map 'W s!W is a 1–coboundary if and
only if '.X/D 0 for all X 2 V and '.T / 2 im�.T /. The space of 1–coboundaries
is isomorphic to 0˚ im�.T / by the above isomorphism. Therefore, we have

(18) H 1.sI�/' HomT .V;W /˚ .W= im�.T //:

5.4 Vanishing of the cohomology

As we saw in Section 5.2 we must show vanishing of the following cohomologies:

(a) The trivial representation sÕR.

(b) The restriction of ad to V and its negative, s ˙ ad0Õ V .
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(a) By (18) in last section, H 1.s/'f'W V !R j'ıad0T D 0g˚R. By (11) and (17),
H 1.F/ ' R˚ kerQ . If .˛; ˇ/ is in kerQ , then, by Lemma 5.3.4, ˛ D ˛ ıˆk for
all k 2 Z. By the assumption of Zariski density, ˛ D ˛ ıˆt for all t 2 R. Thus,
˛ ı ad0T D 0 by differentiation. The same thing holds for ˇ and then we have ˛ D ˇ .
So kerQ' f'W V !R j ' ı ad0T D 0g and H 1.F/DH 1.s/.

(b) By (18), H 1.sI˙ ad0/'f'W V !V j ' ıad0T D˙ ad0T ı'g. By (11) and (17),
H 1.F I˙ ad0/' kerQ . If .˛; ˇ/ is in kerQ , then, by Lemma 5.3.4, ˆ˙kı˛D˛ıˆk
for all k 2 Z. By the assumption of Zariski density, ˆ˙t ı˛ D ˛ ıˆt for all t 2R.
Thus, ˙ ad0T ı˛ D ˛ ı ad0T by differentiation. Note that here we use the benefit of
large scale geometry. Since the map kerQ! f'W V ! V j ' ı ad0T D˙ ad0T ı'g
mapping .˛; ˇ/ to ˛ is injective, we have H 1.F I˙ ad0/DH 1.sI˙ ad0/.

This completes the proof of Theorem 1.0.6.

6 Parameter rigidity of transitive locally free actions and
rigidity of lattices

6.1 Relations between transitive locally free actions and lattices

Let S be a connected, simply connected solvable Lie group, �0 be a cocompact lattice
in S and M D �0nS

�0Ô S be the action by right multiplication.

We put

A.�0; S/ WD fM
�Ô S j � is transitive locally freeg;

H.�0; S/ WD f˛W �0! S j ˛ is an injective homomorphism and ˛.�0/ is a latticeg:

Then

H.�0; S/=Aut.�0/D f� � S j � is a cocompact lattice isomorphic to �0g:

6.1.1 Proposition There is a one-to-one correspondence between

A.�0; S/=.C1–conjugacyCAut.S//

and

Aut.S/nH.�0; S/=Aut.�0/

D Aut.S/nf� � S j � is a cocompact lattice isomorphic to �0g

taking � to the isotropy subgroup of � at the point x0 D �0 .
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Proof Well-definedness and injectivity are easy. For surjectivity, take any cocompact
lattice � in S isomorphic to �0 . Then, by a theorem of Mostow (see for example
Raghunathan [9, Theorem 3.6]), �nS and �0nS DM are diffeomorphic. So the map
is also surjective.

6.1.2 Proposition There is a one-to-one correspondence between

A.�0; S/=parameter equivalence

and
Aut.S/nH.�0; S/:

Proof The definition of the map is as follows: For a transitive locally free action
M

�Ô S , let a�W M � S ! S be the smooth map uniquely defined by �0.x; s/ D
�.x; a�.x; s// and a�.x; 1/D 1. Then a� is a cocycle over �0 :

a�.x; ss
0/D a�.x; s/a�.�0.x; s/; s

0/:

Let �� be the isotropy subgroup of � at x0 . Then we have a�.x0; � /W �0 ��!�� � S .
So we will define the map by � 7! a�.x0; � /.

Let us see the well-definedness of this map. Take two transitive locally free actions
M

�iÔ S for i D 1, 2 which are parameter equivalent. So there are ˆ 2 Aut.S/ and a
diffeomorphism F W M !M which is homotopic to the identity such that

(19) F.�1.x; s//D �2.F.x/;ˆ.s//:

Let bW M � S ! S be the cocycle over �1 defined by �1.x; s/ D �0.x; b.x; s//.
Note that s D a�1.x; b.x; s//. We have �1.x; s/ D �2

�
x; a�2.x; b.x; s//

�
and then

a�2.x; b.x; s// is a cocycle over �1 . Since F is homotopic to the identity, we can
define a smooth map P W M ! S by F.x/D �2.x; P.x/�1/. By (19), we see

a�2.x; b.x; s//D P.x/
�1ˆ.s/P.�1.x; s//

D P.x/�1ˆ
�
a�1.x; b.x; s//

�
P
�
�0.x; b.x; s//

�
;

so that
a�2.x; s/D P.x/

�1ˆ.a�1.x; s//P.�0.x; s//

for all s 2 S , since b.x; � /W S ! S is invertible. Taking x D x0 and s D  2 �0 , we
have

a�2.x0; /D P.x0/
�1ˆ.a�1.x0; //P.x0/:

So the map is well-defined.
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Next let us show the injectivity. Take two transitive locally free actions M �iÔ S for
i D 1; 2 for which there exists ˆ 2 Aut.S/ such that a�2.x0; / D ˆ.a�1.x0; //

for every  2 �0 . Take bW M � S ! S satisfying �2.x; s/D �0.x; b.x; s//, so that
s D b.x; a�2.x; s//. We have S –equivariant diffeomorphisms ��inS

��!M mapping
��i s to �i .x0; s/. Using these, define a diffeomorphism F by:

M

F

��

˚

��1nS

ˆ

��

�
oo

M ��2nS
�

oo

Here ˆ denotes the map ��1s 7! ��2ˆ.s/. Obviously F.�1.x; s//D �2.F.x/;ˆ.s//.
To see that F is homotopic to the identity, take any  2 �0 D �1.M/ and a curve
cW Œ0; 1�! S connecting 1 and  and consider the curve �0.x0; c. � //W Œ0; 1�!M .
Since �0.x0; c.t//D �1

�
x0; a�1.x0; c.t//

�
, we have

F
�
�0.x0; c.t//

�
D �2

�
x0; ˆ

�
a�1.x0; c.t//

��
D �0

�
x0; b

�
x0; ˆ

�
a�1.x0; c.t//

���
:

Therefore, F�W �1.M/! �1.M/ maps  to

b
�
x0; ˆ.a�1.x0; //

�
D b.x0; a�2.x0; //D :

So F must be homotopic to the identity.

Finally, we show the surjectivity. Take any ˛W �0! S . Put � WD ˛.�0/ and y0 WD
� 2�nS . We have an isomorphism ˛W �0

��!� of the fundamental groups of .M; x0/
and .�nS; y0/. By Witte [10, Theorem 7.4], which is a refinement of Mostow’s
theorem used in the proof of the previous proposition, we can find a diffeomorphism
F W .M; x0/ ! .�nS; y0/, which induces ˛W �0 ��! � on the fundamental groups.
Define M �Ô S by �.x; s/D F�1.F.x/s/. Then � is a transitive, locally free action.
We have F.�0.x0; s// D y0a�.x0; s/ for all s 2 S . Take any 0 2 �0 . Choose a
curve sW Œ0; 1�! S connecting 1 and 0 . Then the curve �0.x0; s.t// represents 0 in
�1.M; x0/. Thus the curve y0a�.x0; s.t// represents F�.0/D˛.0/ in �1.�nS; y0/.
Since the curve a�.x0; s.t// in S is the lift of the curve y0a�.x0; s.t// starting from 1,
we get a�.x0; 0/D ˛.0/. This proves the surjectivity.

6.1.3 Proposition The map

A.�0; S/!H.�0; S/

defined in Proposition 6.1.2 is continuous. Here A.�0; S/ is endowed with the topology
induced from the C1 compact–open topology of C1.M �S;M/ and H.�0; S/ has
the topology of pointwise convergence.
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Proof Take any 0 2�0 . We must show that a�.x0; 0/2S is continuous with respect
to � . The map A.�0; S/!C1.S;M/ which sends � to �.x0; � / is continuous. Take
a C1–curve cW Œ0; 1�! S connecting 1 and 0 . Let c�W Œ0; 1�! S be the lift of the
curve �0.x0; c.t// with respect to the covering �.x0; � /W S !M starting at 1. Then
a�.x0; 0/D c�.1/. The map A.�0; S/!C1.Œ0; 1�; S/ taking � to c� is continuous.
In particular, � 7! c�.1/D a�.x0; 0/ is continuous.

6.1.4 Proposition We have a commutative diagram

A.�0; S/=parameter equivalence

����

˚

�
// Aut.S/nH.�0; S/

����

A.�0; S/=.C1–conjugacyCAut.S// �
// Aut.S/nH.�0; S/=Aut.�0/

where the horizontal maps are as defined above and the vertical surjective maps are
defined obviously.

Proof This is obvious.

By combining Proposition 6.1.2 with Theorem 1.0.3, we get the following:

6.1.5 Corollary Let S be a connected, simply connected solvable Lie group, �0 be a
lattice in S and h be a subspace between Œs; s� and n. If

H 1.�0nS I s
adı'Õ Grh.s//DH 1.sI s

adı'Õ Grh.s//

for all surjective Lie algebra homomorphisms 'W s! s=h, then any injective homomor-
phism ˛W �0! S whose image is a lattice is transformed into the inclusion �0 ,! S

by an element of Aut.S/. In particular, if � is a lattice in S isomorphic to �0 , there
is an isomorphism of S which transforms � into �0 .

6.2 A counterexample to Theorem 1.0.1 for solvable Lie groups

Now we show a counterexample to Theorem 1.0.1 for solvable Lie groups. The
next example is taken from Baues and Klopsch [2, Example 2.2], which is due to
Milovanov [7]. Consider A0 D

�
0
1
�1
3

�
2 SL.2;Z/, which has � D 1

2
.3C

p
5 / and

��1 D 1
2
.3�
p
5 / as eigenvalues, and let

X.t/D

0BB@
�t cos 2�t ��t sin 2�t
�t sin 2�t �t cos 2�t

��t

��t

1CCA
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for t 2 R. Since X.1/ and AD
�
A0

A0

�
2 SL.4;Z/ are conjugate, the solvable Lie

group S DR4 ÌX.t/R contains a lattice �0 isomorphic to Z4 ÌAZ. Then the set

H.�0; S/=Aut.S/

is uncountable, as in Baues and Klopsch [2]. Therefore, by Proposition 6.1.2 the set

A.�0; S/=parameter equivalence

is uncountable, so that the natural action �0nS Ô S is not parameter rigid. However,
by computing �0=Œ�0; �0� using �0 ' Z4 ÌAZ, we can show H 1.�0nS/DH

1.s/.

6.3 A locally parameter rigid action of a contractible group which is not
parameter rigid

Let M �0Ô S be an action with the orbit foliation F . The set of all smooth actions
M Ô S with the orbit foliation F is denoted by A.F ; S/, which is endowed with
the topology induced from the C1 compact–open topology of C1.M �S;M/. An
action M �0Ô S is called locally parameter rigid if any � 2 A.F ; S/ which is close
enough to �0 is parameter equivalent to �0 . In [1, Section 1.1.2], Asaoka comments
that there is no known locally parameter rigid action of a contractible group which is not
parameter rigid. Here we give an example of such an action. In [2, Example 2.5], Baues
and Klopsch give an example of a connected, simply connected, solvable Lie group S
which has a Zariski dense lattice �0 such that Aut.S/nH.�0; S/ is countably infinite.
Here Zariski density means that the Zariski closures of Ad.�0/ and Ad.S/ in GL.s/
coincide. If we take such S and �0 then the action �0nS

�0Ô S by right multiplication
is not parameter rigid, by Proposition 6.1.2. Let us show that this action is locally
parameter rigid. Since �0 is a Zariski dense lattice in S , the inclusion �W �0 ,! S is
locally rigid, that is, the Aut.S/–orbit of � in H.�0; S/ is a neighborhood of �. See
for example Baues and Klopsch [2, Theorem 1.9]. Take an open neighborhood U
of � in H.�0; S/ which is contained in the Aut.S/–orbit of �. Let V be the inverse
image of U by the map A.�0; S/!H.�0; S/; then V is an open neighborhood of �0
in A.�0; S/ by continuity. Since U projects to a one-point set in Aut.S/nH.�0; S/,
V also projects to a one-point set in A.�0; S/=parameter equivalence. Therefore, �0
is locally parameter rigid.
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