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Bounds for the genus of a normal surface
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This paper gives sharp linear bounds on the genus of a normal surface in a triangulated
compact orientable 3—manifold in terms of the quadrilaterals in its cell decomposi-
tion — different bounds arise from varying hypotheses on the surface or triangulation.
Two applications of these bounds are given. First, the minimal triangulations of
the product of a closed surface and the closed interval are determined. Second, an
alternative approach to the realisation problem using normal surface theory is shown
to be less powerful than its dual method using subcomplexes of polytopes.
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Dedicated to Hyam Rubinstein on the occasion of his 65" birthday

1 Introduction

The theory of normal surfaces, introduced by Kneser [31] and further developed by
Haken [20; 21], plays a crucial role in 3—manifold topology. Normal surfaces allow
topological problems to be translated into algebraic problems or linear programs, and
they are the key to many important advances over the last 50 years, including the
solution of the unknot recognition problem by Haken [20], the 3—sphere recognition
problem by Rubinstein and Thompson [39; 40; 44], and the homeomorphism problem
for Haken 3—manifolds by Haken [21], Hemion [23] and Matveev [36].

A normal surface in a triangulated 3—manifold is decomposed into triangles and quadri-
laterals. It is well known that the topology of a normal surface is determined by the
quadrilaterals in its cell structure. In this paper, we give a sharp linear bound on the
genus g of a closed, orientable normal surface in terms of the number ¢ of quadrilateral
discs in the surface; namely 3¢ > 2g. This bound is sharp and significantly improves
the previously known bound 7¢ > 2g due to Kalelkar [30].

All triangulations in this paper are assumed to be semi-simplicial (alias singular) and
all manifolds are orientable, unless stated otherwise. If one restricts the class of
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triangulations or the class of normal surfaces, one can improve the above bound. For
instance, in the case of simplicial 3—manifolds satisfying extra hypotheses, the third
author [42] established the bound ¢ > 4g for certain normal surfaces. We establish the
bound 7¢ > 6g for arbitrary normal surfaces in simplicial 3—-manifolds or minimally
triangulated irreducible 3—manifolds. We also show that, for incompressible surfaces
in arbitrary triangulated 3—manifolds, one has ¢ > 2g. This gives a very simple new
test for compressibility. Moreover, we show that for any oriented normal surface S in
an arbitrary triangulated 3—manifold we have ¢ > ||[S]||, where the right-hand side is
the Thurston norm of the homology class represented by S'.

Our work is combined with bounds by Burton and Ozlen [12] to give bounds on
the genus of a vertex normal surface in terms of the number of tetrahedra of the
triangulation, and hence on the smallest genus of an incompressible surface in terms of
the complexity of a 3—manifold. The material described up to now, as well as additional
special cases (such as 1-sided surfaces or surfaces with boundary) is given in Section 3
and complemented with an extended set of examples in Section 6.

We give two applications of our newly obtained bounds.

» In Section 4.2 we use (a corollary to) the bound for essential surfaces to characterise
the minimal triangulations of the cartesian product of an orientable surface of genus g
and an interval, F x I. A key feature of any triangulation of this manifold is that
it contains a canonical splitting surface of genus at least g and having at least 2g
quadrilaterals. The resulting lower bound of 10g —4 on the number of tetrahedra of
any triangulation of F x [ is attained by the minimal triangulations, which all arise
as inflations of the cones of 1-vertex triangulations of F. The complexity of F x I
was independently obtained by Bucher, Frigerio and Pagliantini [7] with a completely
different approach.

» Given a combinatorial orientable surface S, the problem of finding a polyhedral
embedding of S into R? is known as the realisation problem. One particular sub-
problem is to find realisable surfaces, where the genus is as large as possible with
respect to the number of vertices of the surface. The state-of-the-art technique to
obtain the best known lower bound for the genus is due to Ziegler [48], who projects
2-dimensional subcomplexes of polytopes into R*. However, experimental evidence
suggests great potential for improvement of this bound and thus new techniques to
tackle this problem are highly sought after. In Section 5 we show that the dual method
(using normal surfaces instead of subcomplexes) cannot yield any improved bounds.
Given the generality of this approach and the similarity to the powerful subcomplex
method, this is a surprising result, which gives new insights into the well-studied
realisation problem.
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2 Preliminaries

The notation and terminology of [27] and [45] will be used in this paper, and is briefly
recalled in this section. Only the material in Section 2.4 is not part of the standard
repertoire: here, we define quadrilateral regions and triangle regions in normal surfaces.

2.1 Triangulations

A triangulation 7 consists of a union of pairwise disjoint 3—simplices, A, a set of
face pairings, @, and a natural quotient map p: A=A /® = M, which is required
to be injective on the interior of each simplex of each dimension. Here A is given
the natural simplicial structure with four vertices for each 3—simplex. It is customary
to refer to the image of a 3—simplex as a tetrahedron in M (or of the triangulation)
and to refer to its faces, edges and vertices with respect to the pre-image. Images of
2—, 1- and O-simplices will be referred to as faces, edges and vertices in M (or of
the triangulation), respectively. The quotient space M 1is a pseudo-manifold (possibly
with boundary), and the set of non-manifold points is contained in the O—skeleton.

The degree of an edge in M is the number of 1-simplices in A that map to it. A
triangulation of M is minimal if it minimises the number of tetrahedra in M .

If a triangulation M is also a simplicial complex we say that M is a simplicial
triangulation. A simplicial triangulation in which a simplicial neighbourhood of each
vertex is a simplicial triangulation of the 2—sphere is referred to as a combinatorial
3—manifold. By construction, given an arbitrary triangulation of a closed and compact
3-manifold, its second barycentric subdivision is a combinatorial 3—manifold. A
combinatorial 3—sphere is called polytopal if it is isomorphic to the boundary complex
of a convex 4-polytope. Note that not all combinatorial 3—spheres are polytopal,
whereas all simplicial triangulations of the 2—sphere are isomorphic to the boundary
complex of a convex 3—polytope [43].

Geometry & Topology, Volume 20 (2016)



1628 William Jaco, Jesse Johnson, Jonathan Spreer and Stephan Tillmann

2.2 Complexity

There are different approaches to defining the complexity of a 3—manifold. In this
paper, the complexity ¢(M) of the compact 3—manifold M is the number of tetrahedra
in a minimal (semi-simplicial) triangulation. It follows from the definition that for
every integer k there is at most a finite number of 3—manifolds with complexity k, and
it is shown in [29] that there is at least one closed, irreducible, orientable 3—manifold
of complexity k. Given a closed, irreducible 3—manifold, this complexity agrees with
the complexity defined by Matveev [35] unless the manifold is S3, RP? or L(3,1).
The complexity for an infinite family of closed manifolds was first given in [26]. The
complexity determined here for the infinite family of manifolds with boundary of the
form F x I adds to the known complexities for handlebodies, where a straightforward
Euler characteristic argument gives that ¢(Hg) = 3g —2, where Hl, is the handlebody
of genus g > 1.

Matveev’s complexity of a 3—-manifold is defined as the minimal number of true vertices
in an almost simple spine for the manifold. It has the following finiteness property:
for every integer k, there exists only a finite number of pairwise distinct compact,
irreducible, boundary irreducible 3—manifolds that contain no essential annuli and
have complexity k. This complexity has been computed for various infinite families
of hyperbolic 3—manifolds with one totally geodesic boundary component; see for
instance [47] and [18]. However, if one removes the hypothesis on essential annuli,
there may be infinitely many 3—manifolds of a given Matveev complexity. In particular,
the manifolds of the form F x I, where F is a closed, orientable surface and [ is
a closed interval, have Matveev complexity equal to zero, and we determine their
complexity in Section 4.3.

2.3 Normal surfaces

A normal surface S in M is a properly embedded surface that meets each tetrahedron A
of M in a disjoint collection of triangles and quadrilaterals, each running between
distinct edges of A, as illustrated in Figure 1. There are four triangle types and three
quadrilateral types according to which edges they meet. Within each tetrahedron there
may be several triangles or quadrilaterals of any given type; collectively these are
referred to as normal pieces. The intersection of a normal piece of a tetrahedron with
one of its faces is called a normal arc; each face has three arc types according to which
two edges of the face an arc meets.

Counting the number of pieces of each type for a normal surface S gives rise to a 7—
tuple per tetrahedron of M and hence a 7n—tuple of non-negative integers describing S
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Figure 1: Normal triangles and quadrilaterals within a tetrahedron.

as a point in ]Rl”o, called its normal coordinates. Such a point must satisfy a set of
linear homogengous matching equations (one for each arc type of each internal face).
The solution set to these constraints in Rl’f) is a polyhedral cone whose cross-section
polytope is called the projective solution space. Not all of the rational points in this
polytope give rise to a valid normal surface: for each tetrahedron, at most one of the three
quadrilateral coordinates can be non-zero. These conditions are called the quadrilateral
constraints, and it can be shown that each rational point in the projective solution space
satisfying the quadrilateral constraints corresponds to a normal surface. These points
and their coordinates are called admissible. If a normal surface corresponds to a vertex
in the projective solution space it is called a vertex normal surface, or extremal surface,
meaning that its coordinates lie on an extremal ray of the solution cone. The easiest
example of such a vertex normal surface is the boundary of a small neighbourhood
around a vertex, called a vertex link—if M is a manifold, then this is necessarily a
sphere or disc consisting entirely of triangles.

Due to work by Tollefson [46] we know that any normal surface without vertex linking
components is determined by its quadrilaterals and hence by a vector in Ri’g. In this
case, the matching equations are given by the intersection of the quadrilaterals and the
edges of the triangles, and are called the Q—matching equations. If a normal surface
corresponds to a vertex in the projectivised solution space to the Q—matching equations,
then it is a Q—extremal surface. Intuitively, these equations arise from the fact that as
one circumnavigates the earth, one crosses the equator from north to south as often
as one crosses it from south to north. We now give the precise form of these equations.
To simplify the discussion, we assume that M is oriented and all tetrahedra are given
the induced orientation; see [45, Section 2.9] for details.

Consider the collection C of all (ideal) tetrahedra meeting at an edge e in M (including
k copies of tetrahedron o if e occurs k times as an edge in ¢ ). We form the abstract
neighbourhood B(e) of e by pairwise identifying faces of tetrahedra in C such that
there is a well-defined quotient map from B(e) to the neighbourhood of e in M ; see
Figure 2 (left) for an illustration. Then B(e) is a ball (possibly with finitely many
points missing on its boundary). We think of the (ideal) endpoints of e as the poles of
its boundary sphere, and the remaining points as positioned on the equator.

Let o be a tetrahedron in C. The boundary square of a normal quadrilateral of type ¢
in o meets the equator of dB(e) if and only if it has a vertex on e. In this case, it has
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a slope +1 of a well-defined sign on dB(e) which is independent of the orientation
of e. Refer to the middle and right images in Figure 2, which show quadrilaterals with
positive and negative slopes, respectively.

Given a quadrilateral type ¢ and an edge e, there is a total weight wt.(q) of ¢q at e,
which records the sum of all slopes of g at e (we sum because ¢ might meet e more
than once, if e appears as multiple edges of the same tetrahedron). If ¢ has no corner
on ¢, then we set wt.(¢) = 0. For normal coordinates x, the set of quadrilateral
types [, and an edge e in M, the Q-matching equation of e is then defined by

0= qug wite(q)x(q)-

The following result is related to Haken’s Hauptsatz 2 [20]; see [45, Theorem 2.4] for
a proof in the setting of this paper.

Theorem 1 For each x € R3" with the properties that x has integral coordinates, x is
admissible and x satisfies the Q—matching equations, there is a (possibly non-compact)
normal surface S such that x = x(S). Moreover, S is unique up to normal isotopy
and adding or removing vertex linking surfaces, ie normal surfaces consisting entirely
of normal triangles.

2.4 Triangle and quadrilateral regions

Let S be a normal surface in a triangulated, compact 3—-manifold M . Denote by S
the subcomplex of S made up of all triangles in S, by S the subcomplex made up
of all quadrilaterals, and by S©) the set of its vertices. A triangle region in S is the
closure in .S of a connected component of Sx \ S© and a quadrilateral region in S
is the closure in S of a connected component of S\ S© (Kalelkar [30] calls these
regions strongly connected.)

All triangles in a triangle region link the same vertex of M . In fact, since S contains at
most finitely many normal triangles, a triangle region in .S’ never contains two normally

A w W

Figure 2: Slopes of quadrilaterals. Left: the abstract neighbourhood B(e).
Middle: positive slope +1. Right: negative slope —1.
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isotopic triangles. To see this, suppose A, and Ay are two normally isotopic triangles
in some triangle region R. Then A, and Aj are contained in the same tetrahedron oy .
Without loss of generality, we may assume that the corner cut off by A, from gy
contains no normal discs, and the corner cut off by Ap contains only A,. Since R is
a triangle region, there is a path of normal triangles

Ap=Ag,Ar,....Ap = Ag

with the property that subsequent triangles share a common edge, and we may assume
that all these normal triangles are pairwise distinct. We denote by o; the tetrahedron
containing Aj, and note that these tetrahedra are not necessarily pairwise distinct.
Since A; is glued to Ap in R along a normal arc, it follows that A, is glued in S to
a normal disc contained in the corner cut off by A; in o;. Thus A, is glued in S to a
normal triangle, denoted A’,, along a normal arc. It follows that A/l is also contained
in R. Iterating this argument gives, for each j, a normal triangle A} in R which is in
the corner cut off by A; in o;. But this contradicts the fact that the corner in oy cut
off by Ay = A, contains no normal triangle.

A triangle region is a 2—complex, and not necessarily a surface with boundary. We
therefore say that the topological type of a triangle region R in § is the topological
type of its interior. From the above discussion, we know that this is the topological
type of a topologically finite planar surface. Given a triangle region R in S, choose
a compact core C of the planar surface int(R). Then C is a compact planar surface,
and each of its boundary components naturally corresponds to a graph made up of
quadrilateral edges. These graphs are termed chains of (unglued) quadrilateral edges.

3 Bounds on genera of normal surfaces

Given the closed, orientable, connected surface S of genus g = g(.5), there are at
least 2g branches in any spine for S. If S is a normal surface in the triangulated
3—manifold M , denote ¢(S) the number of quadrilateral discs in S. We will give
several bounds on the genus of S, and indicate whether or not they are known to
be sharp.

3.1 Quadrilateral surfaces

The first bound is based on a simple Euler characteristic argument and applies to
surfaces entirely made up of quadrilaterals.

Lemma 2 (Bound for quadrilateral surfaces) Suppose M is a triangulated, compact,
orientable 3—manifold, and let S be a closed, connected, orientable normal surface
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in M consisting entirely of quadrilaterals and having exactly v vertices in its cell
structure. Then q(S) = 2g(S) 4+ v —2. In particular, if v > 2, then ¢(S) > 2g(S). If
v = 1, then for each quadrilateral in S there is a vertex normal surface in M having
exactly one quadrilateral disc (and possibly some triangles) in its cell structure.

» Examples 35 and 36 show that this bound is sharp.!

Proof The proof is a simple Euler characteristic argument. Note that for a quadrilateral
surface the number of edges is exactly twice the number of quadrilaterals. Thus the
Euler characteristic formula gives us x(S)=v—2¢(S)+¢(S) =v—¢(S). Substituting
x(S)=2—-2g(S) yields ¢(S) =2g(S) + (v—2).

Now suppose S has exactly one vertex in its cell structure. In this case, all corners of
quadrilaterals are identified and S meets each tetrahedron in at most one quadrilateral
disc. Since all corners of quadrilaterals are identified and [S]sy = Y Qx, where
Qi # Qj, we see that each Oy is a solution to the QO—matching equations. In particular,
QO is a vertex solution to the Q—matching equations. a

3.2 Closed normal surfaces and applications

Theorem 3 (Bound for closed normal surfaces) Let M be a triangulated, compact,
orientable 3—manifold, and S be a closed, connected, orientable normal surface in M .
Then

3q(S) = 2g(S).
» This improves the bound of 7¢(S) > 2g(S) given by Kalelkar [30].
» Examples 39 and 41 show that this is a sharp bound.

We will give two proofs: the first is short; the second (given in the next subsection)
provides extra insight into the structure of orientable normal surfaces, which will be
used in some of the corollaries.

First proof of Theorem 3 First note that the inequality clearly holds if S' is a sphere;
it also holds if S is a torus since a closed normal surface with no quadrilateral discs is
a vertex linking sphere.

The triangle regions in S are planar surfaces (see Section 2.4). We will construct a
new cell structure on S by modifying the original one as follows: Let R be a triangle
region. Given an edge incident with two triangles in R and connecting different

1 All examples are collected in Section 6. Brief remarks are indicated with » as in the text here.
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boundary components of R, we will shrink this edge to a point, turning the two
adjacent triangles into bigons (we term this process collapsing). This connects the two
boundary components. We will then continue in this fashion until all the boundary
components of R have been joined into a single connected graph.

If a normal triangle in R connects three distinct boundary components of R, then
we will need to shrink at most two of its edges, collapsing the triangle at most into a
monogon. Since this is the most we would ever need to collapse a triangle, each triangle
collapses to either a triangle, bigon or monogon (but not a single vertex). Because
the original triangle region was planar, its image after this operation will have simply
connected interior.

Apply the above construction to all triangle regions in S, giving S a new cell decom-
position. Then we can find a spine for S carried by edges in this cell structure that are
disjoint from the interior of any of the regions corresponding to triangle regions in the
original cell decomposition. Such a spine will consist of edges of quadrilaterals from
the original cell structure.

If some quadrilateral has all four edges in the spine, then the complement of the spine
consists entirely of the interior of the quadrilateral disc. But then the four edges of
the quadrilateral must be identified in pairs, and hence S is a sphere or a torus. We
already know that the inequality holds in this case. So we may assume that each
quadrilateral has at most three edges in the spine, and so there are at most 3¢(.S)
branches in the spine. Since the number of branches is at least 2g(S), we have the
claimed inequality. a

The following corollaries are consequences of the relationship between genus and Euler
characteristic. Recall that for a non-orientable surface S one has x(S) =2—g(S),
where the genus g(.S) of a non-orientable surface is the number of cross-caps.

Corollary 4 (Bound for non-orientable normal surfaces) Let M be a triangulated,
compact, orientable 3—-manifold, and S be a closed, connected non-orientable normal
surface in M . Then

g(S) <3¢(S)+1.
» Example 41 shows that this bound is sharp with ¢ = 1 and g = 4.

Proof Since M is orientable, doubling the normal surface coordinate of a non-
orientable normal surface gives the coordinate of the orientable double cover of the
surface. The (orientable) genus of the double cover will be equal to the (non-orientable)
genus of the original surface, but the number of quadrilaterals will be double. Thus
Theorem 3 implies the inequality. a
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Corollary 5 (Bound for normal surfaces with boundary) Let M be a triangulated,
compact, orientable 3—-manifold, and S be a closed, connected, orientable normal
surface in M with b > 0 boundary components. Then

2g(S)+b=<3q(S)+1.
» Example 43 shows that this bound is sharp with g =¢ =1, and b = 2.

Remark 6 Note that the number of boundary components b does not need to be
known in order to check if equality in Corollary 5 is satisfied: The genus of a bounded
surface S with b boundary components is given by g(S) =1— %(X(S )+ b). Hence
2¢(S)+b=2—x(S)—b+ b and we have

2—x(S)<3¢(S)+1.

Proof Double M along its boundary, notice that the double of S is a normal surface in
the induced triangulation with twice as many quadrilateral discs, and apply Theorem 3.
O

Corollary 7 (Bound for Haken sum) Let M be a triangulated, compact, orientable
3-manifold, and S be a closed, connected, orientable normal surface in M . Suppose
that the disjoint union of S and m vertex linking spheres is the Haken sum of n closed,
connected, orientable normal surfaces. Then

2g(S) <3q(S)+2(1 —n+m).
» Example 44 shows that this bound is sharp for non-trivial Haken sums.

Proof By hypothesis, we have a Haken sum of the form S + ) m;V; = > ny Fy,
where ) “mj = m and ) nj = n. Linearity of Euler characteristic for Haken sums
and Theorem 3 applied to each Fj yields the result. a

3.3 A second proof and its applications

Second proof of Theorem 3 Suppose M is a triangulated, compact, orientable 3—
manifold, and S is a closed, connected, orientable normal surface in M. We give
each M and S an orientation. This determines a transverse orientation of S, and
hence of all normal discs and arcs in S’ (see Figure 3) as well as their pre-images in A.
Before we use this extra structure to study S, we recall the following notions from [14].

Let o be a 2-simplex and o C ¢ be a transversely oriented normal arc. The transverse
orientation can be viewed as a function, which maps one component of o\« to +1 and
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short arc long arc small triangle large triangle quad

Figure 3: Transversely oriented normal arcs and discs.

the other to —1. We say that the maximal subcomplex of o contained in the component
of o \ o having positive sign is dual to «. This subcomplex is either a O—simplex, in
which case we call « a short arc, or a 1-simplex, in which case « is a long arc. See
Figure 3.

The transverse orientation on each normal disc in a 3—simplex induces a transverse
orientation of the normal arcs in its boundary. Each triangle will either have all three
edges dual to the same vertex or all three edges dual to different edges. In the first case,
we will say that the triangles are small. In the second case, we will say that they are
large. Two opposite edges of each quadrilateral will be long, and will be dual to the
same edge of the 3—simplex. We will say that the quadrilateral is dual fo this edge. The
other two edges will be short.

The notions of short and long edges descend from A to the triangulation of M since
they are preserved by the face pairings. In particular, the definition of an edge being
short or long is not relative to the polygon that it is contained in. So if two quadrilaterals
have an edge in common, then this is either a short edge of both quadrilaterals, or a
long edge of both quadrilaterals. (Note that the notions of short/long and small/large
are interchanged by changing the orientation of S. Using the long edges for the
construction is motivated by the applications.)

We will use these properties of quadrilateral edges to define an equivalence relation
on the set of all long edges in the quadrilateral subcomplex of §. Call the long edges
e and f of the quadrilaterals P and Q, respectively, equivalent if there is a chain of
quadrilaterals P = Qy, ..., Qr = Q with the property that successive quadrilaterals
are identified along long edges. In particular, the two long edges of one quadrilateral
are equivalent.

We will again define a new cell structure on S. As above, we pinch the boundary
components of each non-simply connected triangle region together by shrinking edges
in the region that connect disconnected boundary components of each triangle region.
As before, the interior of each resulting region will be simply connected. Denote the
resulting surface S, and note that it is homeomorphic to .S, and that a spine of S is
again contained in the union of all quadrilateral edges.
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Figure 4: Equivalence classes of long quadrilaterals and vertical short edge paths.

But we can restrict the locus of the spine even further: Consider the graph I" on S, con-
sisting of the union of all short edges and precisely one long edge from each equivalence
class of long edges. We claim that the complement of I" in S is a union of pairwise dis-
joint open discs. Consider a vertical path of quadrilateral discs. If this closes up on itself
(in which case the quadrilaterals form an annulus linking a common edge in M ), then
our construction yields an open disc formed by cutting the open annulus along one of the
long edges. If this does not close up on itself, then the extremal quadrilaterals connect
to pinched simply connected triangle regions (possibly the same). Cutting the union
of this simply connected region with the chain of quadrilaterals along any long edge in
the chain results in one or two open discs, and hence again results in simply connected
regions. One can now iterate this procedure over all vertical paths of quadrilateral discs.

Since the complement in S of T is a collection of (open) discs, a spine for S can be
chosen in I'. Since each quadrilateral meets I" in at most two short edges and at most
one long edge, the spine has at most 2g 4+ ¢ = 3¢g edges. |

Corollary 8 (Bound for incompressible normal surfaces) Let M be a triangulated,
compact, orientable 3—-manifold, and S be a closed, connected, orientable normal
surface in M . If S is incompressible, then

2g(S) = q(S).
» This bound is sharp for all g > 1 for manifolds with boundary (see Section 4.3
and Example 45).

» An incompressible torus with two quadrilaterals in a closed 3—manifold is also
given in Example 45.

» The contrapositive certifies compressibility of many of our examples in Section 6.
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Proof Suppose S is an incompressible, closed, connected, orientable normal surface
in M . We may assume that g(S)> 1. In particular, S contains at least one quadrilateral
disc. We will modify the second proof of Theorem 3 and make some additional
observations.

First suppose that there is a triangle region, say R, in .S, which is not simply connected.
Since every simple closed loop in dR bounds a disc in M, it also bounds a disc on S.
We may choose a simple closed curve b C dR with the property that the closed disc
D C S with dD = b contains R. In particular, the graph ' can be chosen such
that ' N D C b; the complement of D contains quadrilateral discs; and the chain of
quadrilateral edges corresponding to b can be contracted to a point in S (though we
will not do this at this stage).

Recall that the long edges e and f of the quadrilaterals P and Q, respectively, are
equivalent if there is a chain of quadrilaterals P = Qy, ..., Oy = Q with the property
that successive quadrilaterals are identified along long edges. The chain of quadrilaterals
P = Qo,..., Qr = Q identifies successive short edges, and we will term a maximal
chain of such short edges a vertical short edge path.

Figure 5: Loop of short quadrilateral edges can be homotoped into a vertex link.

We now claim that the vertical short edge paths in I' can, one by one, be contracted to
points, hence showing that the spine contained in I" arises from at most ¢(.S') long edges.
In the iterative process, we still maintain the terms short quadrilateral edges, long
quadrilateral edges and vertical short edge path for the images of these objects, even
though after a contraction some quadrilaterals have turned into triangles or bigons, and
we denote the surface resulting after k iterations by Sy . Suppose that a vertical short
edge path in S; contains a loop y;. We may assume without loss of generality that y;
is simple. Then the original surface S contains a loop ¥, made up of short quadrilateral
edges and that maps to )}, since we have only pinched short edges in the boundary
of quadrilateral discs. This loop is normally homotopic to a loop contained in a vertex
link (see Figure 5) and hence bounds a disc on S'. This disc maps to a disc on .S with
boundary ¥y, and so y can be contracted to a point. It follows that after all vertical
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short edge path have been iteratively collapsed, we have a surface homeomorphic to S
and with a spine made up of the images of at most ¢(.S) long edges. a

The argument in the above proof can be applied more generally, but pinching a vertical
short edge path may then result in compressions of the surface. One can still obtain
useful bounds if one has conditions that ensure that the genus of any compression is
bounded from below; we illustrate this in two situations.

Corollary 9 (Bound for the splitting surface of a product) Let M = F x I, where
F is a closed, connected, orientable surface with a triangulation. Suppose S is a
closed, connected, orientable normal surface in M which separates the two boundary
components of M . Then

2g(F) =4q(S).

» The canonical splitting surfaces in the minimal triangulations of F' x I given in
Section 4.3 show that this bound is sharp for all values of g > 1.

Proof The argument of the previous proof only needed the fact that a spine for the
surface can be chosen outside of regions on the surface which are bounded by curves
made up of short quadrilateral edges. For any oriented normal surface S in M, a
simple closed curve made up of short quadrilateral edges in S is homotopic to a loop
contained in a vertex link and hence bounds a disc D in M with boundary on S. If D
also bounds a disc on S, then a spine for S' can be chosen disjoint from D. Otherwise,
D is a compression disc, and S\ dD contains a spine for each component of the surface
obtained by compressing S along D. Also note that any further compression disc for
a component S’ of the surface arising from the compression can be chosen disjoint
from the disc on S’ parallel to D.

If M = Fx1I and S is a surface separating the two boundary components of M , it
follows that if one compresses .S along any sequence of compression discs, the resulting
surface has a component that is incompressible, separates the boundary components
of M, and has genus at least the genus of F. Let I'g be a spine for Sg = .S contained
in the union of all short edges and one edge from each equivalence class of long edges.
In the previous proof, vertical short edge paths in I'y were, one by one, contracted to
points. This is now adjusted as follows. Let y( be a vertical short edge path in I'y. If
this bounds a disc on .S, then it is contracted to a point, giving a surface S;, and we
denote I'; the image of I'g. Otherwise, we may assume that a simple closed loop in
the vertical short edge path yq is the boundary of a compression disc for Sy. We then
cut Sy along this loop to obtain a surface with two boundary components, and contract
each of the boundary components to a point. If this process results in a connected
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surface, we denote it S;. Otherwise we denote .S1 a component that separates the two
boundary components of M , and I'y the image of I'y in this component. We can now,
as before, iterate this procedure using the induced cell decomposition. The final surface
will have no vertical edge paths left, and hence the final spine I" will consist of at most
one edge from each equivalence class of long edges and the genus is bounded below
by the genus of F, whence 2g(F) <|T"| <¢q(S). a

Corollary 10 (Bound for Thurston norm) Let M be a triangulated, compact, ori-
entable 3—manifold, and S be a closed, oriented normal surface in M . Then

ST = ¢(S),

where the left-hand side is the Thurston norm of the homology class represented by S .

Proof Assuming that S is connected, we make the following adjustment to the
previous proof. Instead of discarding components, we keep each component after each
compression and terminate when in each component all vertical edge paths have been
collapsed. We then delete all components that are spheres or tori. If the resulting
surface is empty, then ||[S]|| = 0 and there is nothing to prove. Otherwise, denote Sy
the resulting oriented surfaces and I’y their spines consisting of long edges. Then

q(S) =Y Tkl = " 2e(SK) =Y @ x(Sk) = Y —x(SK) = |[[U S]] = ISl

This completes the proof for the case where S is connected. If S is not connected, we
obtain the result by summing the first inequality over all components — the remaining
inequalities then apply as above. a

Corollary 11 (Bound in terms of quads and chains) Let M be a triangulated, com-
pact, orientable 3—manifold, and S a closed, connected, orientable, normal surface
in M . If every chain of quadrilateral edges in the boundary of a non-simply connected
triangle region in S contains at least n edges, then

26(8) = (145 )a(S),

where we set n = oo if there is no non-simply connected triangle region.

» The incompressible surfaces in Example 45 show that this bound is sharp for
n = 00.

Remark 12 The corollary can also be applied with n denoting the minimal number
of edges in any chain of quadrilateral edges. Note that one needs at least n = 3 to
obtain an improvement on the general bound, and that the above bound is not sharp, as
the number of non-simply connected triangle regions has not been taken into account.
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Proof We modify the previous proofs as follows. We only pinch the small triangle
regions to give simply connected components. In the large triangle regions, we add
edges connecting the boundary components of a non-simply connected region. For
each non-simply connected region, this adds one less than the total number of boundary
components, and we term these edges long cut edges. A spine for the surface is then
contained in the union of all short quadrilateral edges, one edge from each equivalence
class of long quadrilateral edges and the long cut edges. For each vertical short edge
path, we would again like to pinch to a point the portion of it contained in the spine. We
can do this successively. If a short edge has two distinct endpoints, it can be pinched to
a point. If it has identical endpoints then there is a loop (on ') of short edges. This
must correspond to a boundary component of a non-simply connected small triangle
region since the initial pinching of small triangle regions only identifies corners of
quadrilaterals contained on distinct chains of short quadrilateral edges. This shows
that all short edges in the spine can be contracted to points except for at most as many
as there are boundary components of small triangle regions, whence the spine can
be chosen to have at most ¢ + |d| edges, where |d]| is the total number of boundary
components of non-simply connected triangle regions. By hypothesis, n|d| < 4q¢,
giving the desired inequality. |

Corollary 13 (Bound for normal surfaces in simplicial manifolds) Let M be a
triangulated, compact, orientable 3—manifold, and S be a closed, connected, orientable
normal surface in M . If the triangulation of M is simplicial, then

62(S) < 7q(S).
Proof We may apply Corollary 11 with n = 3. O

Remark 14 The bound in Corollary 13 is not known to be sharp. Examples of normal
surfaces S can be constructed with ¢(S) = 3g(S) + O(/g(S)) quadrilaterals (see
Example 38 for a discussion of these examples). All these examples are well within
the conjectured bound of ¢(S) > 3g(S) from [42].

Corollary 15 (Bound for normal surface in minimal, prime manifold) Let M be a
triangulated, compact, orientable, prime 3—manifold, and S be a closed, connected,
orientable normal surface in M . If the triangulation of M is minimal, then

6g(S) =< 7q(S).

Proof The proof is divided into two cases. If the triangulation consists of one or two
tetrahedra, then one can verify the conclusion, for instance, using Regina [10], for all
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fundamental surfaces in the finite list of prime manifolds of complexity up to two. The
case of a general connected surface in these manifolds then follows as in the proof of
Corollary 7.

Hence assume that there are at least 3 tetrahedra in the triangulation. We will show that
work by Jaco and Rubinstein [27] and Burton [8; 9] allows us to apply Corollary 11 with
n = 3. Since M is prime and the minimal triangulation has at least three tetrahedra, it
is O—efficient (see [27]). If a quadrilateral edge in the orientable surface S forms a loop,
then some face is a cone. Corollary 5.4 in [27] now implies M = S 3 contradicting the
fact that minimal triangulations of S3 have one tetrahedron. If two short quadrilateral
edges in S form a bigon, then two faces in the triangulation form a cone (possibly
with further self-identifications), and the triangulation is again not minimal due to [8,
Lemma 2.7 and Corollary 2.10] and [9, Lemma 3.6 and Corollary 3.8]. O

Remark 16 The same bound 6g(S) < 7¢(S) applies to the face-generic, face-pair
reduced triangulations of Luo and Tillmann [32].

3.4 Bounds in terms of the size of the triangulation

Improving upon bounds of Hass, Lagarias and Pippenger [22] for vertex normal surfaces
in simplicial triangulations, Burton and Ozlen [12] showed that the maximal coordinate
of a vertex normal surface in a semi-simplicial triangulation of an orientable closed
3—manifold is at most (4n% + 2)(+/6)", where n is the number of tetrahedra. The
quadrilateral constraints imply that no vertex normal surface in a closed orientable 3—
manifold triangulation can have more than n(4n? +2)(+/6)" quadrilaterals. Theorem 3
and Corollary 8 therefore have the following consequences.

Corollary 17 Let M be a triangulated, compact, orientable 3—manifold. Suppose the
triangulation has n tetrahedra and S is a closed, orientable vertex normal surface S
in M. Then

(3-1) 2(8) < (6n% +3)(Ve6)".
If, in addition, S is incompressible, then

(3-2) 2(S) < 2n? + 1)(V6)".

Remark 18 Equation (3-1) also follows from an elementary counting argument: if S
is an orientable vertex normal surface in M with v(S) vertices, then using the bounds
on triangle and quadrilateral coordinates from [12] one obtains

g(8) < (6n* +3)(vV6)" + L2 —v(S)).
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This equation can be improved further by giving a lower bound on v(.S). In contrast,
Equation (3-2) cannot be derived from [12], and combined with [25] it has the following
immediate application.

Corollary 19 Let M be a compact, orientable 3—manifold with complexity ¢ =c(M).
Then the minimal genus g of an incompressible, closed, orientable surface in M
satisfies

g <22+ 1) (Vo).

In [13] there are examples of families of triangulations containing normal surfaces with
exponentially large normal coordinates. However, these normal surfaces are discs and
spheres.

4 Minimal triangulations of F x I

We now determine the complexity and all minimal triangulations of manifolds of the
form F x I, where F is a closed, orientable surface and [ is a closed interval. The
required results on minimal triangulations of manifolds with boundary in Section 4.2
are of independent interest.

4.1 Examples

We begin by describing the construction of some fairly simple triangulations of F' x I.
Our triangulations come from the Jaco—Rubinstein inflation construction [28] and are
obtained by taking the cone over a minimal triangulation of a closed surface, then
inflating at the ideal vertex created by the cone point. We give a brief review of the
inflation construction as needed for these examples. Inflations of more general ideal
triangulations and their inverse operation of crushing a triangulation along a normal
surface are fully developed by Jaco and Rubinstein in [28] and [27], respectively.

4.1.1 Inflations of triangulations Suppose 7, is a minimal triangulation of the
closed, orientable surface F, of genus g and let 7* be the cone on 7, with cone
point v*. Aninflation of 7* at v* is a triangulation 7" of Fgx /. The triangulation 7 is
very closely related to 7*; in particular, the inflation 7 is a minimal vertex triangulation
of F x I (has all its vertices in the boundary and only one vertex in each boundary
component) and can be crushed along a component of its boundary [28], giving back
the triangulation 77*.

The collection of all normal triangles at the vertex v* in the tetrahedra of 7* form
a normal surface (made up only of triangles) called the vertex-linking surface at v*;
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let S* denote this vertex-linking surface. The surface S* has an induced triangulation,
say S*, isomorphic to Tg; hence, S* is a minimal triangulation of the vertex-linking
surface S*. The minimal triangulation S* of S* can be viewed as a triangulation of a
4g—gon in the plane, obtained without adding vertices, and with its boundary edges
identified in pairs. The inflation construction starts with the selection of a minimal
spine in the one-skeleton of the triangulation S*; we call such a minimal spine a frame.
In the current situation the collection of boundary edges in any 4g—gon representation
of §* gives rise to a frame, say A; such a frame A in S* has one vertex and 2g edges.
See Figure 7.

An inflation of 7* is guided by such a frame A in the triangulation S* of the vertex-
linking surface S*. Each edge of A is a normal arc in a face of 7* and corresponds
to the intersection of that face with the vertex-linking surface S*; see Figure 6. Each
vertex in A corresponds to the intersection of an edge of 7* with the vertex-linking
surface S*. Figure 7 shows examples of possible frames in SZ,‘ forg=1and g =2,
along with their intersection with a small neighbour of the vertex of the frame in the
vertex-linking surface S*. The frames are indicated in the figure by bold edges.

¢j

Figure 6: The intersection of the frame with a face o of 7™ is a single edge
of the frame; shown here as the bold line.

Inflation at a face Each edge in a frame accounts for the addition of a tetrahedron to
the ideal triangulation 7* by the construction we call “an inflation at a face” of 7*.
This construction comes with a prescription for undoing face identifications of 7*
and introducing new face identifications between faces of tetrahedra in 7* and faces
of the added tetrahedra; see Figure 8. At this step some of the faces of the added
tetrahedra have not been assigned face identifications. In Figure 8 (right) these are the
faces (e;)(012) and (e;)(013); this is resolved by a construction at each vertex of the
frame, which we refer to as “an inflation at an edge of 7*”. The new edge (¢;)(01)
will be an edge in the triangulation 7 that is in the boundary of Fg x I; the edge
(p)(ch) <> (ej)(23) <> (p')(c'b’) is an edge of the given triangulation T of Fg.
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Figure 7: The local view of edges of a frame at the vertex where the vertex-
linking surface S* meets the edge E of 7*. The bold edges are edges of the
frame A and the lighter edges are non-frame edges of the triangulation S*
of $*, coming from the triangulations 77 (left) and 7; (right), respectively.

o (P o y (r)

Figure 8: The edge e; of the frame A lies in the face common to tetrahedra
(p) and (p’). An inflation at the face o opens up the identification between
(p) and (p’) and adds a new tetrahedron (e;) along with induced face
identifications between (p) and (e;) and (ej) and (p’). Left: (p)(abc) <>

(p)(@'b'¢’). Right: (p)(abc) <> (e;)(032) and (¢;)(132) <> (p)(a'b'c’).

Inflation at an edge In general, an inflation at an edge can take on a combination
from three possibilities denoted in [28] as generic, crossing or branch. However, in
our very simple situation in this work, there is only one vertex in the frame A and at
that vertex we have a branch of index 4g leading to precisely 4g unidentified faces
of added tetrahedra. We complete these face identifications by adding a cone over a
4g—gon, P* in Figure 9; the unidentified faces of the added tetrahedra, following the
inflation at a face, are identified with the 4g triangular faces in the cone P*. The
identification of the unidentified faces of the added tetrahedron (e;) are determined by
the orientation of the edge e; in S*. To complete the triangulation we can subdivide
the cone in numerous ways using 4g — 2 tetrahedra.

Complexity of an inflation The complexity of an inflation is defined in [28]; the
complexity is determined by the frame and, in general, involves the number of edges,
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Figure 9: Branch index 4g for the case g = 2. The edge E meets the frame
in one point, a branch point of index 4g (g > 1). The cone over a planar
4g—gon is added and then subdivided into 4g — 2 tetrahedra, without adding
vertices. Face identifications can be read off from the right-hand side.

the number of crossings, and the index of each branch point. However, the results from
[28] applied here give the complexity of our frame, written C(A), as

C(h) =e(h) +2(b(A)—1),

where e (1) is the number of edges of the frame A and h(A) is the index of the branch
point of A. It follows from [28] that if |7*| denotes the complexity of the ideal
triangulation 77*, then the complexity of the inflation 7 of 7% is

ITI=1T"+CQ).

In particular, for 7* the cone over a minimal triangulation of a compact, orientable
surface of genus g > 1, we have |7*| =4g—2 and C(A) =2g +2(2g—1). Asa
special case of [28, Theorems 4.3 and 4.4], we have the following theorem.

Theorem 20 Suppose Tg is a minimal triangulation of the closed, orientable sur-
face Fg, g > 1, and T* is the ideal triangulation formed by taking the cone over T
with ideal vertex v*. Let T be an inflation of T*. Then the underlying point set of T
is homeomorphic to Fg x I and T has complexity |T| =10g —4.

4.1.2 Examples of inflations Here we give examples by carrying out the construction
of Theorem 20; these examples provide very straightforward examples of inflations
of ideal triangulations and are shown later in this section to provide models for the
minimal triangulations of the family of 3—manifolds M = Fg x I, where Fj is the
closed orientable surface of genus g > 1. We also provide a five-tetrahedron (minimal)
triangulation of S2 x I via an inflation of the cone over a minimal triangulation of the
2-sphere S2.
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(g = 1) In Figure 10 we give an inflation of the ideal triangulation determined by
taking the cone over a two-tetrahedron triangulation of S! x S!. By following the
sequence of steps we start with a minimal triangulation of the 2—torus, and take the
cone over this triangulation, getting an ideal triangulation of S! x ST x [0, 1) with
ideal vertex v*. We choose a frame A = (e;) U (e;) in the vertex-linking surface S*.
The next step is to inflate in the edges of A, adding the tetrahedra (e;) and (e;). We
then inflate at the edge E, adding a cone on the 4—gon for the branch point of order 4.
By Theorem 20, we have a triangulation of F; x I. Note the complexity of the frame
is C(A) =4, hence, the six-tetrahedron triangulation.

S* vertex-linking

S cone on Tg e Ak surface
A
a Te

b T
d
inflate at edge \mﬂate at faces
(P*) A
o S
’ 1 0 v
y/ X e]yl “—4" /
e
2 g 2SN :
) (e2) )| KT
S, boundary-linking
canonical splitting surface b

Figure 10: Triangulation of Fy x I: an inflation of the cone on a minimal
triangulation of F; = S! x S! at the cone point v*, resulting in a six-
tetrahedron triangulation of F; x I . The boundary-linking, canonical splitting
surface S is the inflation of the vertex-linking surface S*.

(g = 2) If F has genus at least 2, the procedure is as above for the torus. In
Figure 11 we give an informative way to visualise an inflation of an ideal triangulation
by constructing the induced “inflation” of the vertex-linking surface S*. The edges of
the frame inflate to normal quadrilaterals in the tetrahedra added by an inflation at a
face. The vertex of the frame inflates to 4g —2 normal triangles in the 4g —2 tetrahedra
added with an inflation at an edge. This inflation of the vertex-linking surface S*
results in a normal cell decomposition of a boundary-linking and canonical splitting
surface, S, in 7 of Fg x I.
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F>x {3}

Figure 11: Boundary components and canonical separating genus-2 surface
of a minimal 16—tetrahedron triangulation of F, x I'. The solid and dashed
lines denote spines in the boundary components corresponding to the four
quadrilaterals in the splitting surface.

(g =0) In this example we show a minimal triangulation of S2x I using the inflation
construction. Note, in particular, that we have chosen a frame that separates and so
for the inflation at the edge, we have two cones to attach, each a cone over a single
triangle, itself a cone over the circle. Again, the steps of the inflation construction can
be observed by following the sequence of arrows, beginning with a 2—triangle minimal
triangulation of S? and forming the cone over this triangulation with ideal vertex v*.
We have a frame with a single edge A = (e;) in the vertex-linking surface S*. The next
step is to inflate in the edge ey, adding the tetrahedron (eq) to 7* and a quadrilateral
to the vertex-linking surface S*. We then inflate at the edge E, adding two cones,
each a cone on a triangle. By Theorem 20, we have a 5—tetrahedron triangulation of
S2 x I. This process is not unique, leading to three combinatorially distinct minimal
triangulations of S2 x . One of them is shown in Figure 12 below.
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*

cone on 7o vertex-linking

S, boundary-linking
canonical splitting surface

Figure 12: Triangulations of S? x I: a five-tetrahedron triangulation of
S2 x I obtained by inflating from the cone point v* of the cone on a minimal
triangulation of S2.

4.2 Boundary faces of tetrahedra and edges of small order

We start with some general observations. Suppose M is a compact, irreducible, d—
irreducible, orientable 3—manifold with non-empty boundary. Jaco and Rubinstein [27]
show that a minimal triangulation of M is O—efficient and all vertices are in oM with
precisely one vertex in each boundary component (unless M is the 3-ball).

Lemma 21 Suppose that M is a compact, irreducible, d—irreducible, orientable 3—
manifold with non-empty boundary, and M is not homeomorphic to the 3-ball. If T is
a minimal triangulation of M , then no tetrahedron of T has more than one face in the
boundary of M .

Proof Suppose 7 is a minimal triangulation of M . Our proof considers possible
cases.

If a tetrahedron of 7 has four faces in the boundary, then 7 is the one-tetrahedron
triangulation of the 3—ball, which contradicts M not being homeomorphic to the 3—ball.
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If a tetrahedron of T has three faces in the boundary, then 7 has a boundary component
with at least two vertices since the vertex in common to the three faces cannot be
identified with any of the other vertices of the tetrahedron. Hence, by the results of
[27] mentioned above, a component of dM is a 2—sphere and contradicts M not being
homeomorphic to the 3—ball.

If atetrahedron of 7 has two faces in the boundary, then suppose A is such a tetrahedron.
In this case A has all its vertices in the same component, say B, of M . Let e be the
edge of A common to the two faces of A in B. Then e is a diagonal of a quadrilateral Q
(possibly with some identifications) in a minimal triangulation of B induced by the
triangulation 7. Let ¢’ be the edge of A opposite e (ie A is the join of the edges
e and e’). Suppose int(e’) C int(M). If the two faces of A having ¢’ in common
are not identified with each other, then A is a tetrahedron layered on a triangulation
of M, and hence 7 would not be a minimal triangulation of M . If the two faces
of A having ¢’ in common are identified with each other, then 7 is a one-tetrahedron
triangulation of the 3-ball or the solid torus, contradicting our hypothesis. The only
remaining possibility is ¢/ C dM . Hence, we have ¢’ C B, the same component as e,
and an edge in the minimal triangulation of B, say 7p, induced by 7. However, ¢’ is a
loop in M homotopic through A to the diagonal of Q transverse to e. Let e* denote
the diagonal in Q transverse to ¢; then a diagonal flip in Q exchanging e for e¢*
gives a minimal triangulation of B with both ¢’ and e* as edges. But ¢’ is homotopic
through M to e* and M is d-irreducible, giving that ¢’ and ¢* are homotopic in B.
This is impossible for distinct edges of a minimal triangulation of B, unless B were
the 2—sphere. But this contradicts M not being homeomorphic to the 3-ball. a

Remark 22 The hypotheses that M not be homeomorphic to the 3—ball and that M
be d—irreducible are both necessary. The minimal (one-tetrahedron) and O—efficient
triangulation of the 3-ball has two faces in the boundary. Every minimal triangulation
of a handlebody of genus g, g > 1, is layered and hence must have a tetrahedron with
two faces in the boundary; a handlebody of genus g > 1 is not d—irreducible.

An analysis of edges of small order was provided for minimal triangulations of closed
manifolds in [27; 26]; we provide a similar analysis here, in the case of edges of
order 1 or 2 for minimal triangulations of manifolds with boundary. The necessary
modifications for the case of nonempty boundary from the argument in [27] are minor.

Proposition 23 Suppose M is a compact, orientable, irreducible, d—irreducible 3—
manifold with nonempty boundary and T is a minimal triangulation of M .

(1) IfT has an edge of order 1, then M is a 3—ball.
(2) If T has an edge of order 2, then it must be in oM .
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Proof Suppose 7 has an edge ¢ of order 1. If e is in dM , then a tetrahedron of T
would meet dM in at least two faces; hence, by Lemma 21, M is homeomorphic to the
3-ball. So, we consider the case where the interior of ¢, an edge of order 1, is in int(M).
Let A denote the tetrahedron of 7 containing e; then the edge ¢’ opposite e in A
bounds adiskin A C M . If ¢’ were in OM , then since M is d—irreducible we have that
M is a 3-ball and 7 is the one-tetrahedron, O—efficient triangulation of the 3-ball. So,
the only possibility is that ¢’ is in the interior of M . Let D’ denote the disk bounded
by ¢’ in M andlet N = N(D’) be a small regular neighbourhood of D" in M . Then
the frontier of N, denoted D, is a properly embedded disk in M (D’ meets dM in the
vertex of the triangulation 7). The edge ¢’ serves as a barrier and D shrinks to a normal
disk or sweeps completely across M . The former contradicts M being O—efficient
[27] and the latter results in M being the 3—ball and contradicts 7 being minimal.

4

5/ a a 5//
faces identified / P
'd Y]
B b ¢
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€ b//

e
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a

d

Figure 13: Interior edge of order 2.

Suppose T has an interior edge, say e, of order 2. Then, as in Figure 13 [27, Figure 38],
there are two tetrahedra a’b’c’d’ and a”b”¢”d” meeting in at least two faces that have
the edge e in common. Our proof is similar to that in [27] with just a couple of minor
twists. The idea, just as in [27], is to show that the triangulation can be collapsed
and contradict that it is minimal. However, there are possible obstructions to such a
collapse. One obstruction would be that the edges ¢’ and ¢” are already identified
and the identification takes b’¢’ to ¢”b” ; however, in this case there would be an RP?
embedded in M , contradicting M being irreducible (M has nonempty boundary). A
second obstruction to collapsing is that the faces ¢ and ¢’ (or b and b’) are both in M ;
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but then M would have an isolated vertex « (or b) in the boundary and 7" would not
be a minimal triangulation. The last possible obstruction to the desired collapse is that
t and t' (or b and b’) are already identified. Since M is orientable, there are three
possible identifications of the face a’b’¢’ with the face «”b”¢.” Just as in the proof
of [27, Proposition 6.3], two of these identifications lead to a 3—fold in M, giving M
a connected summand the lens space L(3, 1) and contradicting M being irreducible
(M has boundary); the third, a’b’c’ <> a”’b”¢”, makes the vertex an interior vertex,
contradicting 7 being minimal. |

Recall that the complexity of a 3—manifold was defined in Section 2.2 as the minimal
number of tetrahedra in a triangulation.

Proposition 24 Suppose M is a compact, irreducible, d—irreducible, orientable 3—
manifold with non-empty boundary. A lower bound on the complexity of M in terms
of the genus of its boundary is given by

c(M)=2 Y (2g(F)—1),
FCoM

where the sum is taken over all connected components F of OM .

Proof This is an immediate consequence of Lemma 21 and the fact that the number
of faces in a minimal triangulation of a closed surface of genus g is 4g —2. a

4.3 Complexity of F x I and its minimal triangulations

Theorem 25 Let F be a closed, orientable surface of genus g > 1 and I be a closed
interval. Then ¢(F x I) =10g —4.

Proof The lower bound on complexity from above gives ¢(F x I) > 8g —4, where
g = g(F). This arises from taking into account the boundary faces of the triangulation.
Choose one colour (called red) for one boundary component, denoted F;, and another
colour (called blue) for the other, Fj. We have genus(F,) = genus(Fp) = g.

This gives tetrahedra of types A,, Ap, By, Bp, and C, where A, has four vertices
of colour x, By precisely three vertices of colour x, and C precisely two vertices of
colour x. The faces in the red boundary component are all in tetrahedra of type A4,
or B,,so |A;|+ |By| > 4g—2. Similarly |Ap|+ |Bp| = 4g —2, and so

|Ar| +|Ap| + [Br| + | Bp| = 8g — 4.

We get a canonical normal splitting surface S from the colouring, which contains
exactly one quadrilateral disc for each tetrahedron of type C. Hence Corollary 9
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implies that |C| = ¢(S) > 2g. Thus, ¢(F x I) > 10g — 4. The equality now follows
from the triangulations described in Section 4.3. |

Proposition 26 c(S*xI)=5

Proof Above we provided an example of a triangulation of S? x I with five tetrahedra;
it remains to prove that this is the minimal number required. We will use the notation
from the proof of Theorem 25. The splitting surface S is not a vertex link and hence
must contain at least one quadrilateral disc, whence |C| > 1. Also note that S cannot
consist of quadrilaterals alone, and that the number of triangles in S is even. Since each
quadrilateral disc has two short edges and two long edges, and each small (resp. large)
triangle has three short (resp. long) edges, the numbers | B,| and | Bp| are both even.
It remains to show that neither can be zero. We may take advantage of the symmetry of
the situation and suppose that |B,| = 0. Since F; is non-empty, this implies |A4,| # 0,
but then the triangulation is not connected since tetrahedra of type 4, can only connect
to tetrahedra of type C through tetrahedra of type B,. In particular, the minimal
number required is |C| =1 and |B,| = 2 = | Bp|. It is now easy to check that any
triangulation of this form arises from the inflation procedure and that there are precisely
three combinatorially inequivalent minimal triangulations. a

We conclude that the triangulations constructed in Section 4.1 are minimal triangula-
tions; we end this discussion by showing that all minimal triangulations arise in this way.

Proposition 27 Let S be a closed, orientable surface. Every minimal triangulation of
F x I is obtained by inflating the cone over a 1—vertex triangulation of F .

Proof We suppose that g(F) > 1 (the case of a sphere was already treated in
Proposition 26), and use the notation and conclusions from the proof of Theorem 25. As-
suming minimality of the triangulation gives |C|=2g and |A4,|+|Ap|+|B,|+|Bp| =
8g — 4. In particular, each tetrahedron of type Ay or By has a unique face in the
boundary of F x I. But this forces |A,| = 0 = | 4|, since otherwise the triangulation
is not connected. So there are 2g tetrahedra of type C and 4g — 2 tetrahedra of each
type B, and By,.

Denote S the splitting surface, which is known to have genus g. We first show that
there are exactly two triangle regions in S, each of which is a closed disc. Indeed, the
vertex link V}, of the blue vertex is a disc and S has a subsurface normally isotopic
to the subsurface of V}, consisting of exactly those normal triangles in V}, that do not
meet dV}. Similarly for the link of the red vertex. Moreover, this accounts for all
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normal triangles present in S. Let R; and R, denote these triangle regions in S'. It
follows that both dR, and dR, are unions of quadrilateral edges in S.

The homotopy taking S into the blue boundary component takes Rj onto F and
hence dRp onto a frame in Fp. Since there are 2g quadrilateral discs, there are at
most 2g edges in the frame on F}. But since the triangulation of F} is minimal, there
must be exactly 2g edges in the frame, and in particular no two quadrilaterals in S
meet along blue edges. It follows that the disc Rp in S has 4g edges and 4g — 2
faces, and hence is a 4g—gon triangulated with all vertices on the boundary. The same
reasoning applies to the disc R, .

Crushing the triangulation of F'x I along S now results in two triangulated cones; one
is a cone on the triangulation of Fj}, and the other a cone on the triangulation of F; .
We work with the former triangulated cone and denote it 7. The frame on Fj arising
from dRj can be isotoped to a frame in the link of the cone point of 7. Now inflation
inserts 2g tetrahedra of type C as well as a cone on a 4g—gon. The interior of the
4g—gon is naturally identified with the image of the interior of R, on F;, and hence
the cone can be subdivided to give a triangulation combinatorially equivalent to the
one we started with. i

S The polyhedral realisation problem

The famous realisation problem asks whether or not a given combinatorial orientable
surface S is realisable, ie if it has a polyhedral embedding into R3. We will show
that there is no sequence of realisable normal surfaces of unusually high genus, ie
super-linear genus with respect to the number of vertices.

5.1 Polyhedral embeddings

A decomposition of a surface into polygons such that the intersection of each pair of
polygons is either empty, a common vertex or a common edge is called a combina-
torial surface. Given a combinatorial surface S with set of vertices V', a polyhedral
embedding of S is a function

i:Ve—R3

assigning coordinates to the vertices of S, such that the convex hull of the vertices of
each polygon of S under i is a (flat) 2—dimensional polygon in R* and that two of
these polygons intersect at most in a common vertex or edge, ie no self-intersections of
the surface occur. An orientable combinatorial surface is called realisable into R3 if it
has a polyhedral embedding.
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5.2 Surfaces of unusually high genus

Despite major research efforts to solve the realisation problem in general, only partial
results exist as of today. It is well-known that all combinatorial 2—spheres are realisable
[43]. Moreover, while there are combinatorial tori with no polyhedral embedding [48;
19], we know that all the triangulated ones are realisable [3]. For higher-genus surfaces,
results become increasingly sparse. For example, we know due to [41] that none of the
neighbourly 12—vertex triangulated orientable surfaces of genus six, ie the ones with
the maximum number of edges, is realisable.

Furthermore, many other aspects of the realisation problem are largely unknown. Here
we will focus on one of them: given a sequence of combinatorial surfaces (Si)ren
with ny vertices, where nj — 0o as k — oo, what is the highest genus g(S%) such
that Sy can be polyhedrally embedded into R*? An elementary calculation shows that
a combinatorial surface S with n vertices has genus at most quadratic in #, namely
g(8)= % (n—3)(n—4) (see for example [48, Lemma 2.1]) and this bound is sharp in
infinitely many cases, as shown by Ringel [38]. However, neither a general obstruction
nor any examples are known for families of surfaces of genus g(Sk) ~ny, o € (1,2],
to be realisable in R3. The best current lower bound of

g(Sk) ~ sni logy ny

is due to McMullen, Schulz and Wills [37] or, more recently, Ziegler [48]. This bound
is only slightly better than the trivial bound g(Sj) € O(n;). We will therefore call
a sequence of realisable combinatorial surfaces Sy to be of unusually high genus if

g(Sk)/ng — oo.

5.3 Polyhedral embeddings of normal surfaces

There are various techniques to find realisable surfaces of high genus:

e (Csészar [15] proved the realisability of Mobius’ triangulated 7—vertex torus by
giving explicit coordinates of the vertices, found by an intuitive search.

¢ Bokowski developed a more systematic approach to find coordinates for a polyhedral
embedding of a combinatorial surface using oriented matroids (see Bokowski and
Brehm [5] or Bokowski and Eggert [6]). This technique also yields obstructions to
polyhedral embeddings of certain combinatorial surfaces.

e The realisation problem was settled for small triangulations of surfaces using a
computer-aided random search for coordinates due to Lutz [34], Bokowski [4] and
Hougardy, Lutz and Zelke [24].

Geometry & Topology, Volume 20 (2016)



Bounds for the genus of a normal surface 1655

e McMullen, Schulz and Wills [37] constructed a sequence of surfaces of unusually
high genus by recursively connecting parallel copies of a surface with itself by an
increasing number of handles. These are the first examples of realisable combinatorial
surfaces with less vertices than handles.

¢ A more recent approach, due to Ziegler [48], looks at surfaces as subcomplexes of
the 2—skeleton of a 4—polytope. Any of these subcomplexes has a polyhedral realisation
by projecting the 4—polytope into one facet and hence into R3 via the projection of
a Schlegel diagram. This approach yields an alternative construction of polyhedral
embeddings of combinatorial surfaces of unusually high genus. To illustrate the power
and convenience of this method, note that the 7—vertex Mobius torus is a subcomplex
of the cyclic 4—polytope with 7 vertices and hence realisable (cf. Csdszar’s result in
[15] and [1; 16]). Another corollary of this method is that any triangulated surface
(oriented or non-oriented) has a polyhedral embedding into R, since any triangulated
surface occurs as a subcomplex of a cyclic 6—polytope.

Here, we present an additional realisation technique using normal surfaces. Namely,
we consider a normal surface S in the boundary complex dP of the simplicial 4—
polytope P. The surface S can be realised in R3 by projecting S C 9P into a
tetrahedron A € dP, which is disjoint from S. If no such tetrahedron exists, we can
choose A to be a tetrahedron with the least number of normal discs and push these
discs out of A by inserting a small number of extra vertices in their exteriors: for any
normal triangle near a vertex v of A, place an extra vertex above v and cone over
its three normal arcs; see Figure 14. For each quadrilateral, enlarge the quadrilateral
around A by adding three extra vertices and cone over a fourth vertex to close the
surface as shown in Figure 15. Since at most one quadrilateral type exists, arbitrarily
many normal pieces inside A can be embedded simultaneously in this way.

Figure 14: Subdividing and embedding a normal triangle.

A normal surface where additional vertices have to be added will be referred to as
nearly realisable. For instance, each Gale surface of Example 37 is contained in the
boundary complex of the cyclic 4—polytopes, and one needs to add four vertices in the
interior of one quadrilateral disc. The Gale surfaces give a family of nearly realisable
normal surfaces with increasing genus.
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_

Figure 15: Subdividing and embedding a normal quadrilateral.

This new realisation technique applies to normal subsets of all triangulations of R* and
thus a natural question to ask is whether if it can be used to construct normal surfaces
of unusually high genus. We will use Corollary 13 from Section 3 to show that this is
in fact not possible.

5.4 An obstruction to normal surfaces of unusually high genus

Theorem 28 Let M be a combinatorial 3—manifold and let S C M be a closed,
orientable normal surface. Then

2g(S) < 7/fo(S).

Remark 29 The theorem in particular applies with M = 9P, where P is a simplicial
4—polytope, and S C dP an orientable normal surface in the boundary complex of P.

Definition 30 (Vista from vertex link) Let M be a compact, triangulated 3—manifold
with vertex set V. Let x € V and denote V, the normal surface in M linking x.
Suppose S C M is a normal surface. Then the vista Cx(S) of S from V is the union
of all normal arcs contained in the quadrilateral subcomplex of S, which are normally
isotopic into V.

As an example of the definition, consider the normal sphere S linking the edge (x, y)
in a combinatorial 3—manifold. The vistas Cx(S) and C,(S) are topological circles,
whilst any other vista is either empty or an interval. The following lemma is proven by
drawing a picture of the vista on the vertex link.

Lemma 31 Let M be a combinatorial 3—manifold with vertex set V and x € V.
Suppose S C M is a normal surface in M . If Cy(S) is non-empty, then the number
of edges in Cyx(S) is strictly less than 3 times the number of vertices in Cx(S).
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Proof Let G be a connected component of C,(S). Then G is a graph, and there
is a normal homotopy taking it to a graph G’ in V. Denote p: G — G’ the natural
projection map. Now G’ is a planar graph, and since M is a combinatorial 3—manifold,
G’ is simple. So G’ is either a tree or has at least three vertices. In either case,
e(G’) < 3v(G’). If the pre-image of some edge of G’ contains k edges in G, then
the pre-image of each of its endpoints contains at least k£ vertices in G (possibly
more). In particular, for each vertex v of G’, we have |p~!(v)| > max{|p~!(e)|},
where the maximum is taken over all edges e incident with v, whence we also have
e(G) < 3v(G). =

Proof of Theorem 28 Each vertex v of the quadrilateral subcomplex of S lies in
exactly two vistas, being the two endpoints of the edge S intersects in v, whence

Y fo(Cx(S)) < 2£o(S).
xevV

By definition, no two vistas have an edge in common. Since there are at least 2g edges
in the quadrilateral subcomplex of S, we have

U cx(S)‘ =D 1Cx(S)] = 2.

X€e€V xX€eV
By Lemma 31, we have
3/0(Cx(S)) > |Cx(S)].

and altogether, evoking Corollary 13, we have

6¢(5)<74(S) =2 Y ICx(S)] < 3-3+ D fo(Cx(SN =T-3- fo(S). O

xevV xevV

Remark 32 By [42, Conjecture 4.6] the inequality of Theorem 28 would even become

g(8) < fo(S).

which is fairly close to the values of the Gale surfaces of Example 37.

Remark 33 For each Gale surface of Example 37, its genus is close to the maximum
genus possible for a (simplicial) normal surface with the same number of vertices.
Since it is embedded in the boundary complex of a 4—polytope, we see that in the
framework of normal surfaces, polyhedral realisation into R3 does not seem to invoke
any significantly stricter constraints than the existence of a polyhedral embedding into
an arbitrary combinatorial 3—manifold.
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Question 34 Do similar observations hold for the polytopal subcomplex method? In
particular, is it more difficult to find surfaces of unusually high genus in the 2—skeleton
of 4—polytopes than in the 2—skeleton of an arbitrary combinatorial 3—manifold?

6 Examples

In the following we will provide an extended set of examples certifying that most
bounds presented in Section 3 are in fact sharp. For an overview over the lower bounds
in the simplicial, the essential and the general case as well as the currently known best
examples for genus g(S) < 10, see Figure 16.

80
70 e  general
60 _ general lower bound
L d
L d
L d
7 0 “ .o" & essential
~— ” .
o 40 ’4’ .e’.
é - o’.. i
5 ” _e® = = essential lower bound
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PRty o Cand +  simplicial
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e o= YT e
10 | ot PO e T implicial lower bound
10 HM{ _____________ . s + T simplicial lower boun:
é_g{ﬁ-_—-:""; + + conjecture
0 - *+ L
0 5 10 15 20 25 30 35 40 45 50 = = = - simplicial lower bound
# quadrilaterals q(S)

Figure 16: Lower bounds and examples for simplicial, essential and general
normal surfaces.

6.1 Quadrilateral surfaces

Example 35 (A Heegaard torus in S*) Lemma 2 is sharp for v = 1 and genus 1.
To see this, consider the 1—quadrilateral torus in the 1-tetrahedron triangulation of the
3—sphere shown in Figure 17.

Example 36 (Quadrilateral surfaces with two vertices) Lemma 2 is also sharp for
v =2 and arbitrary genus. For the 2—vertex case, consider the family of 2g—tetrahedron
3—vertex 3—spheres Bg, g > 2, given by the gluings specified in Table 1; here i (abc)
in row j, column (def) means that triangle (def) of tetrahedron j is glued to
triangle (abc) of tetrahedron i. Each of the B¢, g > 2, contains a quadrangulated
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v 7 0:01/23 Yo

v

Figure 17: An edge link in the 2—vertex, 1-tetrahedron triangulation of the
3—sphere — a torus consisting of a single quadrilateral.

tetrahedron  face (012) face (013) face (023) face (123)
0 0(032) 1(013) 0(021) 1(123)
1 2(012) 0(013) 2(023) 0(123)
2 1(012) .. 1(023)
2k —1 2k(012) 2k(023)
2k 2k —1(012) 2k +1(013) 2k —1(023) 2k + 1(123)
2k +1 2k(013) 2k(123)
2¢—3 2g —2(012) 2g —2(023)
2¢g -2 2¢—3(012) 2g—1(013) 2g—3(023) 2g—1(123)
2¢—1 2¢—1(032) 2g—2(013) 2g—1(021) 2g—2(123)

Table 1: Gluings for the 2—vertex case.

genus-g splitting surface with only two vertices. The splitting surface is given by one
quadrilateral per tetrahedron, each separating vertices 0 and 2 from 1 and 3, and is
shown in Figure 18.

Example 37 (Gale surfaces) The following construction describes a family of sim-
plicial triangulations of the 3—sphere containing interesting quadrilateral surfaces. The
cyclic 4—polytope Cy4(n) with vertex set V = {0,1,...,n — 1} is neighbourly, ie it
contains all possible (g) edges. On the other hand, by Gale’s evenness condition, the
span of all odd vertices V7 = {1,3,...,n— 1} as well as the span of all even vertices
V>, =1{0,2,...,n—2} each have dimension 1. Altogether, the normal surface G, that

separates Vi from V, has genus ("/ 22_1) and slices each of the (g) — n tetrahedra
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Figure 18: Genus-g splitting surface in 9B, with only 2g quadrilaterals.

in the boundary of the polytope in a quadrilateral. As a consequence, G, has %nz

vertices and the f—vector
16 = (.22 =), (3) =)

g(Gn) = an* —33n+1=1f5(G) — 3/ fo(Gy) + L.

We call the splitting surface G, a Gale surface (see [42]). It has the maximum genus
with respect to n and linear genus with a relatively large constant with respect to
f0(Gp). Furthermore, it is polyhedrally realisable in R3 by just adding four vertices
in one quadrilateral disc (see Section 5).

whence

Example 38 (Simplicial triangulations) Suppose we have an n—vertex simplicial
3—manifold triangulation M containing a complete graph K, on m vertices, m < n,
such that each edge in K, is of degree three in M . Then the boundary of a small
neighbourhood of K, is a normal surface S of genus g(S) = (mz_l) consisting of
q(S)=3 ('g ) quadrilaterals and possibly a large number of triangles. Given an arbitrarily
large number of vertices, such a simplicial triangulation M is easy to construct: take
a collection of cones over simplicial 2—sphere triangulations with sufficiently many
degree-three vertices and pairwise join these cones together by identifying the star
around a degree-three edge, and finally closing off the resulting complex. Note that
this family can also be extended to all values g > 0, g(S) # ("), by slightly
modifying M . Altogether, this results in normal surfaces S with

q(S) =3g(S) + 0(v¢g(S)).

Despite an extended computer search using the classification of simplicial 3—manifold
triangulations with few vertices [2; 33] and the library of 3—-manifold triangulations
contained in the GAP package simpcomp [17] these examples of normal surfaces in
simplicial triangulations have the least number of quadrilaterals for fixed g # 2 amongst
all known examples. In the case g = 2 there is an 8—vertex 3—manifold triangulation
of S3 containing a normal surface with only 14 quadrilaterals where the above method
would result in 15 quadrilaterals.
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It is thus conjectured that
q(S) = 3g(S)

for normal surfaces in simplicial triangulations [42].

6.2 Fundamental normal surfaces

Example 39 (3¢ =2g) Theorem 3 is sharp for g =0 and g = 3, and hence a sharp
linear bound for genus in terms of quadrilateral discs.

(g = 0) For this case consider any vertex linking sphere in a closed 3—-manifold.

(g =3) The 6-tetrahedron triangulation of the 3—sphere given by the gluings in
Table 2 contains a genus-3 vertex normal surface (in standard coordinates) with only
two quadrilaterals, which is shown in Figure 19.

Example40 (q=g) For g =1 and g =2 there exist examples of orientable normal
surfaces with the minimal number of quadrilaterals with respect to Theorem 3.

tetrahedron face (012) face (013) face (023) face(123)
0 0(301) 0(120) 2(023) 1(123)
1 3(012) 2(103) 2(123) 0(123)
2 4(012) 1(103) 0(023) 1(023)
3 1(012) 5(013) 4(123) 4(023)
4 2(012) 5(203) 3(123) 3(023)
5 5(231) 3(013) 4(103) 5(201)

Table 2: Gluings for a triangulation of the 3—sphere with six tetrahedra.

w
v MAY U 2:0 v w’ w wi sy
14444 444 144444
< 0:0 1:1 i1 4:
h 4 0:01/23 5:03/12
2:0 0:1 3: 5:
AL MMM
/ LA 4444 / vYvy /
w v 1:1 v v w w
w

Figure 19: A genus-3 quadrilateral fundamental normal surface with only two quadrilaterals.
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(g =1) For this case consider the 1—quadrilateral torus inside the 1-tetrahedron
triangulation of the 3—sphere from Example 35.

(g =2) Thereis a 4-tetrahedron O—efficient 3—sphere given by the gluings in Table 3.

The triangulation contains a genus-2 fundamental normal surface in quadrilateral
coordinates with only two quadrilaterals, which is shown in Figure 20.

tetrahedron face (012) face (013) face (023) face (123)
0 3(012) 1(013) 2(023) 1(123)
1 3(013) 0(013) 2(013) 0(123)
2 3(231) 1(023) 0(023) 3(023)
3 0(012) 1(012) 2(123) 2(201)

Table 3: Gluings for a 4—tetrahedron O—efficient 3—sphere.

Figure 20: A genus-2 quadrilateral fundamental normal surface with only two quadrilaterals.

Example 41 (Non-orientable normal surface) The S5—tetrahedron triangulation of
S2? x S! given by the gluings in Table 4 contains a non-orientable vertex normal

tetrahedron face (012) face (013) face (023) face (123)

0 0(013)  0(012)  2(023) 1(123)
1 4(012)  4(013)  3(023)  0(123)
2 4(230)  4(231)  0(023)  3(123)
3 3(013)  3(012) 10023)  2(123)
4 1(012) 1013)  2(201)  2(301)

Table 4: Gluings for a 5—tetrahedron triangulation of S2 x S'!.

surface of Euler characteristic —2 with only one quadrilateral. The surface is shown
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in Figure 21. Note that taking the orientable double cover of this surface yields a
2—quadrilateral orientable surface of Euler characteristic —4, and hence another sharp
example for Theorem 3.

-~
-~
-~

M
1444

1:3]  4:01/23 1:2

44

oV
ARA]

Figure 21: A 1-quadrilateral non-orientable normal surface of Euler charac-
teristic —2.

Example 42 (g =¢q) The family of triangulations s, given in [13] provides exam-
ples of normal surfaces of arbitrary genus g > 1 each with few quadrilaterals with
respect to their genus. It consists of a cycle of n tetrahedra, each identified with itself
around a degree-one edge and joined to each other along the remaining triangles such
that all vertices become identified. For all n > 1, the triangulation s, is a 1-vertex
O—efficient triangulation of the 3—sphere.

The triangulation #,, contains exactly (Z) genus-k normal surfaces, each having k
quadrilaterals dual to k of the n edges of degree one. In particular, there is a genus-n
normal surface containing exactly n quadrilaterals.

In standard coordinates all of these surfaces are fundamental normal surfaces. However,
the n—quadrilateral genus-n normal surface is the sum of n fundamental tori minus
(n — 1) copies of the vertex link, so it is not fundamental in Q—coordinates.

Example 43 (Normal surface with boundary) There is a 4—tetrahedron triangulation
of the 3-ball containing a 2—punctured torus with only one quadrilateral and thus an
example of equality in Corollary 5 (g =1, b =2 and ¢ = 1). The triangulation is given
by the gluings in Table 5, where d denotes a triangle in the boundary. The 2—punctured
torus is shown in Figure 22.

Example 44 (A non-trivial Haken sum with ¢ = 5 and ¢ = 4) Consider the 8—
tetrahedron triangulation M of S? x S given by the gluings in Table 6. M contains
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tetrahedron face (012) face (013) face (023) face (123)
0 0(013) 0(012) 0 1(123)
1 3(012) 3(013) 2(023) 0(123)
2 2(013) 2(012) 1(023) 0
3 1(012) 1(013) 3(312) 3(230)

Table 5: Gluings for the triangulation in Example 43.

60 31 10
2:3 0:3
“ 1:3 A
11 20 21 ) 11
2:3 2:2
3:3
30 1:3 3:01/23 1:2 33
3:2
0:3 0:2
— A
611—44 20 20 20 V¥ o1
" 1:2 V
2:2 0:2
60 32 10

Figure 22: A 2—-punctured torus (b = 2, g = 1) with only one quadrilateral.

tetrahedron face (012) face (013) face (023) face (123)

0 3(012) 10013)  2(023) 1(123)
4(132)  0(013)  4(023)  0(123)
3(032) 5(013)  0(023)  3(321)
0(012)  6(013)  2(021)  2(321)
7(120)  7(013) 1(023) 1(021)
6(032)  2(013)  6(021)  7(320)
5(032)  3(013)  5(021)  7(123)
4201)  4(013)  5(321)  6(123)

N N N B W N

Table 6: Gluings for the triangulation in Example 44.
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a 1—quadrilateral non-orientable surface s of non-orientable genus 4 with coordinates

s1 =((0,0,0,0:0,1,0),(1,0,1,0:0,0,0), (0,0,0,1:0,0,0), (0, 1,0,0:0,0,0),
(1,1,1,0:0,0,0),(0,0,1,1;0,0,0), (0, 1,1,0:0,0,0), (1, 1,1,0: 0,0, 0) ),

as well as a 2—quadrilateral orientable surface s, of genus 3 with coordinates

s =((0,1,0,1;0,1,0),(1,1,1,1;0,0,0), (0,0,0,2;0,0,0), (0, 2,0,0;0,0,0),
(1,1,1,1;0,0,0),(0,0,0,2;0,0,0),(0,2,0,0;0,0,0),(1,1,0,0; 1,0, 0) ).

Hence, s; and s, attain equality in Corollary 4 and Theorem 3, respectively. Moreover,
s1 and s, are compatible, non-disjoint and the sum of the orientable double cover
of s together with s, is connected. It follows that 2s; + s, is a non-trivial example
for which the bound from Corollary 7 is sharp.

2s1 + s, has 48 triangles, 4 quadrilaterals and genus 5. It is shown in Figure 23.

6.3 Incompressible surfaces

Incompressible surfaces are extremely hard to find because checking for incompress-
ibility requires running an algorithm with a doubly exponential worst case running time.
However, Burton, Coward and Tillmann were able to obtain a complete classification
of all incompressible surfaces of the 11031 triangulations from the Hodgson—Weeks
census by running extensive computer experiments (see [11] for a description of the
methods underlying this classification). As a result, there are 36449 incompressible
Q-extremal surfaces, 19696 of which are injective and 16753 of which occur as a
double cover of a non-orientable vertex normal surface. All incompressible surfaces
have genus 2 < g <5 and none of them attains equality in Corollary 8. However, some
of them have only a few more quadrilaterals than necessary. Comparing the number
of quadrilaterals in these surfaces to the number of quadrilaterals in the complete set
of 441331 Q—extremal surfaces of genus 2 < g <5 in the census reveals a slightly
higher average number of quadrilaterals amongst the incompressible surfaces, as can
be seen in Tables 7-10.

genus # surfaces ming ¢(S) ¢(S) maxg g(S)
2 16622 6 20 90
3 3023 15 34 109
4 46 27 48 85
5 5 36 43 56

Table 7: Census data for injective essential surfaces.
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Figure 23: A non-trivial Haken sum genus-5 surface with only four quadrilaterals.
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genus # surfaces ming ¢(S) ¢(S) maxg g(S)
2 11711 6 23 114
3 4598 14 44 226
4 355 24 61 166
5 89 32 55 98

Table 8: Census data for double covers.

genus # surfaces ming ¢(S) ¢(S) maxg g(S)
2 28333 6 21 114
3 7621 14 40 226
4 401 24 59 166
5 94 32 55 98

Table 9: Census data for all essential surfaces.

genus # surfaces ming ¢(S) ¢(S) maxg g(S)
2 268202 5 13 100
3 120844 7 22 187
4 37877 13 33 205
5 14408 19 42 200

Table 10: Census data for all (orientable) vertex surfaces.
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Figure 24: Number of quadrilaterals in the incompressible surfaces (left) and
in all Q—extremal surfaces (right) of the Hodgson—Weeks census.

The complete data for all Q—extremal surfaces compared to the incompressible surfaces
of 2 < g <4 in the census are summarised by Figure 24.

Example 45 (Incompressible surfaces with ¢ = 2g) By construction, the separating
surfaces used in Section 4.2 to show that ¢(Sg x I) < 10g —4 are incompressible and

Geometry & Topology, Volume 20 (2016)



1668

William Jaco, Jesse Johnson, Jonathan Spreer and Stephan Tillmann

have exactly 2g quadrilaterals each. Hence, the bound presented in Corollary 8 is
sharp for all values g > 1.

Below we present the case g = 1, where the 2—quadrilateral incompressible torus
lives inside the minimal trivial torus bundle 7 x S! which can be obtained from the
6-tetrahedron triangulation of Sg x I given by the gluings in Table 11 by identifying
its two boundary components (see Figure 25).

tetrahedron face (012) face (013) face (023) face (123)
0 4(012) 3(013) 2(023) 1(123)
1 3(320) 4(230) 5(023) 0(123)
2 3(231) 4(321) 0(023) 5(123)
3 5(103) 0(013) 1(210) 2(201)
4 0(012) 5(102) 1(301) 2(310)
5 4(103) 3(102) 1(023) 2(123)

Table 11: Gluings for a 6-tetrahedron triangulation of Sg X 1.

U5 UZ 1)6 AAA U] WY US
vy LA A A4
1:2 0:3 0:2
- -

U3 3: 01/23 Vg 4: 01/23 U3

5:3 2:2 2:3
a4 M
Vg U1 Vs Uy Ve

Figure 25: A 2—quadrilateral incompressible torus.
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