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New invariants of G2–structures

DIARMUID CROWLEY

JOHANNES NORDSTRÖM

We define a Z48 –valued homotopy invariant �.'/ of a G2 –structure ' on the tangent
bundle of a closed 7–manifold in terms of the signature and Euler characteristic of
a coboundary with a Spin.7/–structure. For manifolds of holonomy G2 obtained
by the twisted connected sum construction, the associated torsion-free G2 –structure
always has �.'/ D 24 . Some holonomy G2 examples constructed by Joyce by
desingularising orbifolds have odd � .

We define a further homotopy invariant �.'/ such that if M is 2–connected then
the pair .�; �/ determines a G2 –structure up to homotopy and diffeomorphism. The
class of a G2 –structure is determined by � on its own when the greatest divisor of
p1.M / modulo torsion divides 224; this sufficient condition holds for many twisted
connected sum G2 –manifolds.

We also prove that the parametric h–principle holds for coclosed G2 –structures.

53C10, 57R15; 53C25, 53C27

1 Introduction

In this paper we develop methods to determine when two G2 –structures on a closed
7–manifold are deformation equivalent, by which we mean related by homotopies
and diffeomorphisms. The main motivation is to study the problem of deformation
equivalence of metrics with holonomy G2 . Such metrics can be defined in terms
of torsion-free G2 –structures. The torsion-free condition is a complicated PDE, but
we ignore that and consider only the G2 –structure as a topological residue of the
holonomy G2 metric: for a pair of G2 metrics to be deformation equivalent, it is
certainly necessary that the associated G2 –structures are. One would not expect this
necessary condition to be sufficient since the torsion-free constraint is quite rigid. A
much weaker constraint on a G2 –structure is for it to be coclosed, and we find that
the h–principle holds in this case: if two coclosed G2 –structures can be connected
by a path of G2 –structures then they can also be connected by a path of coclosed
G2 –structures.
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1.1 The �–invariant

A G2 –structure on a 7–manifold M is a reduction of the structure group of the frame
bundle of M to the exceptional Lie group G2 . As we review in Section 2.1, a G2 –
structure on M is equivalent to a 3–form ' 2�3.M / of a certain type and we will
therefore refer to such “positive” 3–forms as G2 –structures. A G2 –structure induces a
Riemannian metric and spin structure on M . Throughout this introduction M shall be
a closed connected spin 7–manifold and all G2 –structures ' will be compatible with
the chosen spin structure. We denote the space of all such G2 –structures by G2.M /.

We say that two G2 –structures are homotopic if they can be connected by a continuous
path of G2 –structures, so the set of homotopy classes of G2 –structures on M is
�0G2.M /. The following observation is not new, but the closest statement we have
found in the literature is Witt [34, Proposition 3.3]. The proof is simple and provided
in Section 3.1.

Lemma 1.1 The group H 7.MI�7.S
7//ŠZ acts freely and transitively on �0G2.M /.

The group of spin diffeomorphisms of M , Diff.M /, acts by pull-back on G2.M / with
quotient G2.M / WD G2.M /=Diff.M /. Since G2.M / is locally path connected,

�0G2.M /D �0G2.M /=�0Diff.M /;

and we call �0G2.M / the set of deformation classes of G2 –structures on M . Until
now neither invariants of �0G2.M / nor results about its cardinality have appeared in
the literature.

Our starting point for studying both of these problems is the following characteristic
class formula, valid for any closed spin 8–manifold X (see Corollary 2.5):

(1) eC.X /D 24 yA.X /C �.X /� 3�.X /

2
:

Here the terms are the integral of the Euler class of the positive spinor bundle, the
yA–genus, ordinary Euler characteristic and signature of X ( yA.X / is an integer because

X is spin, and �.X /��.X / mod 2 for any closed oriented X ). Moving from Spin.8/
to Spin.7/, if we use the (real dimension 8) spin representation of Spin.7/ to regard
Spin.7/ as a subgroup of GL.8;R/, then a Spin.7/–structure on an 8–manifold X can
be characterised by a certain kind of 4–form  2�4.X /. A Spin.7/–structure defines
a spin structure and Riemannian metric on X , and (up to a sign) a unit spinor field of
positive chirality. In particular, if a closed 8–manifold X has a Spin.7/–structure then
eC.X /D 0, and (1) implies

(2) 48 yA.X /C�.X /� 3�.X /D 0:
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If W is a compact 8–manifold with boundary M then a Spin.7/–structure on W

induces a G2 –structure on M . From (2) one deduces that the “ yA–defect” �.W /�
3�.W / mod 48 depends only on the induced G2 –structure on M . It turns out, see
Lemma 3.4, that any G2 –structure ' on M bounds a Spin.7/–structure on some
compact 8–manifold and this allows us to define an invariant �.'/.

Definition 1.2 Let .M; '/ be a closed spin 7–manifold with G2 –structure and
Spin.7/–coboundary .W;  /. The �–invariant of ' is the residue

�.'/ WD �.W /� 3�.W / mod 48 2 Z48:

This definition makes sense even if M is not connected, and is additive under disjoint
unions. Among the many analogous invariants in differential topology, perhaps the one
best known to nontopologists is Milnor’s Z7 –valued �–invariant [28] of homotopy
7–spheres, defined as a “p2 –defect” of a spin coboundary. To distinguish all 28 smooth
structures on a homotopy sphere one can use the Eells–Kuiper invariant � [14], which
is another yA–defect (see (9)).

In Section 1.2 we describe how � is related to Lemma 1.1 by interpreting G2 –structures
in terms of spinor fields, and we develop most of the theory in those terms. However,
the definition above is sometimes useful when dealing with examples. It lets us compute
� from a coboundary with the right type of 4–form, and finding such 4–forms can
be easier than describing spinor fields directly, eg in the proof of Theorem 1.7 and
Examples 1.14 and 1.15.

Theorem 1.3 below summarises the basic properties of � . Note that if ' is a G2 –
structure on M , then the 3–form �' is also a G2 –structure, but compatible with the
opposite orientation; �' is a G2 –structure on �M . In addition, if X is a closed
.2nC1/–manifold, we define its rational semicharacteristic by

�Q.X / WD
nX

iD0

bi.X / mod 2:

Theorem 1.3 For all G2 –structures ' on M , �.'/ 2 Z48 is well-defined, and invari-
ant under homotopies and diffeomorphisms. Hence � defines a function

(3) �W �0G2.M /! Z48:

Moreover �.�'/ D ��.'/, and � takes exactly the 24 values allowed by the parity
constraint

(4) �.'/� �Q.M / mod 2:
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Theorem 1.3 entails that �0G2.M / has at least 24 elements. Here are some related
questions that motivate our investigations:
� What are the values of � for torsion-free G2 –structures, ie ones arising from

G2 holonomy metrics? Are there G2 metrics on the same manifold that can be
distinguished by �?

� Do there exist G2 metrics that are not deformation equivalent, but whose associ-
ated torsion-free G2 –structures belong to the same class in �0G2.M /?

� What is the cardinality of �0G2.M /? For example, for which closed spin
manifolds M is � a complete invariant of �0G2.M /?

We give partial answers to the first and third of these questions below, and discuss
directions for further research in Section 1.7.

1.2 The affine difference D , spinors and the �–invariant

An important feature of homotopy classes of G2 –structures is that the identification
�0G2.M /� Z from Lemma 1.1 should be regarded as affine, or as a Z–torsor: there
is no preferred base point, but Lemma 1.1 has the following consequence.

Lemma 1.4 For any pair of G2 –structures '; '0 on M there is a Z–valued difference
D.'; '0/ such that .�0G2.M /;D/Š .Z; subtraction/, ie D.'; '0/D 0 if and only if
' is homotopic to '0 , and for all ' , '0 and '00 ,

(5) D.'; '0/CD.'0; '00/DD.'; '00/:

To understand the relationship between D and � , we first explain the reasoning which
goes into the proof of Lemma 1.1. As we describe in Section 2.2, a choice of Riemannian
metric and unit spinor field on the spin manifold M defines a G2 –structure. Because
any two Riemannian metrics are homotopic, this sets up a bijection between �0G2.M /

and homotopy classes of sections of the unit spinor bundle. This is an S7 –bundle, and
Lemma 1.1 follows from obstruction theory for sections of sphere bundles.

We can both describe D in concrete terms and prove Lemma 1.4 by counting zeros
of homotopies of spinor fields (see Section 3.1). With this understanding of D , the
next lemma is elementary. The intuitive notion of a Spin.7/–bordism is spelled out in
Section 3.3.

Lemma 1.5 Let ' , '0 be G2 –structures on M . Suppose .W;  / is a Spin.7/–
bordism from .M; '/ to .M; '0/, and let W be the closed spin 8–manifold formed by
identifying the two boundary components (see (20)). Then

(6) D.'; '0/D�eC.W /:
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Combining Lemma 1.5 with the characteristic class formula (1), the mod 24 residue
of D.'; '0/ can be computed from just the signature and Euler characteristic of W ,
which equal those of W . So while D only makes sense as an “affine” invariant, its
mod 24 residue is related to the “absolute” invariant � (in particular, � is affine linear).

Proposition 1.6 Let ' and '0 be G2 –structures on M . Then

(7) �.'0/� �.'/� 2D.'; '0/ mod 48:

1.3 The �–invariant for manifolds with G2 holonomy

The exceptional Lie group G2 also occurs as an exceptional case in the classification
of Riemannian holonomy groups due to Berger [3]. It is immediate from the definitions
that a metric on a 7–manifold M has holonomy contained in G2 if and only if it
is induced by a G2 –structure ' 2 �3.M / that is parallel. The covariant derivative
r' of ' with respect to the Levi-Civita connection r of its induced metric can be
identified with the intrinsic torsion of the G2 –structure, so metrics with holonomy in G2

correspond to torsion-free G2 –structures; see Salamon [31, Corollary 2.2, Section 11].

One can define a moduli space of torsion-free G2 –structures on a fixed closed G2 –
manifold M , which is an orbifold locally homeomorphic to finite quotients of H 3

dR.M /.
But while the local structure is well understood, little is known about the global structure.
One basic question is whether the moduli space is connected, ie whether any pair
of torsion-free G2 –structures are equivalent up to homotopies through torsion-free
G2 –structures and diffeomorphism. If one could find examples of diffeomorphic G2 –
manifolds where the associated G2 –structures have different values of � , this would
prove that the moduli space is disconnected.

Finding compact manifolds with holonomy G2 is a hard problem. The known con-
structions solve the nonlinear PDE r' D 0 using gluing methods. Joyce [22] found
the first examples by desingularising flat orbifolds, and later Kovalev [24] implemented
a “twisted connected sum” construction. In [10], Corti, Haskins, Nordström, and Pacini
used the classification theory of closed 2–connected 7–manifolds to find examples of
twisted connected sum G2 –manifolds that are diffeomorphic, but without any evidence
either way as to whether the torsion-free G2 –structures are in the same component of
the moduli space.

The twisted connected sum G2 –manifolds are constructed by gluing a pair of pieces of
the form S1 �V , where V are asymptotically cylindrical Calabi–Yau 3–folds with
asymptotic ends R�S1 �K3. We review this construction in Section 4.3 and then
compute � for all such G2 –structures.
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Theorem 1.7 If .M; '/ is a twisted connected sum, then �.'/D 24.

We carry out this calculation by finding an explicit Spin.7/–bordism from a twisted
connected sum G2 –structure ' to a G2 –structure that is a product of structures on
lower-dimensional manifolds, for which � is easier to evaluate.

For all the explicit examples of pairs of diffeomorphic G2 –manifolds found in [10],
Corollary 1.13 below implies that � classifies the homotopy classes of G2 –structures
up to diffeomorphism. Thus diffeomorphisms between these G2 –manifolds can al-
ways be chosen so that the corresponding torsion-free G2 –structures are homotopic.
Theorem 1.8 implies that they are then also homotopic as coclosed G2 –structures, but
the question whether they can be connected by a path of torsion-free G2 –structures, so
that they are in the same component of the moduli space of G2 metrics, remains open.

Theorem 1.7 does not necessarily apply to more general gluings of asymptotically
cylindrical G2 –manifolds. For example, a small number of the G2 –manifolds M

constructed by Joyce [23, Section 12.8.4] have �Q.M / D 1, so those torsion-free
G2 –structures have odd � 6D 24; yet they can be regarded at least topologically as a
gluing of asymptotically cylindrical manifolds.

1.4 The h–principle for coclosed G2–structures

We call a G2 –structure with defining 3–form ' closed if d' D 0 and coclosed if
d�' D 0, where d� is defined in terms of the metric induced by the G2 –structure. For
' to be torsion-free is equivalent to it being both closed and coclosed (Fernández and
Gray [16]). Individually, the conditions of being closed or coclosed are much more
flexible than the torsion-free condition, and we show that coclosed G2 –structures satisfy
the h–principle. Let Gcc

2
.M /� G2.M / be the subspace of coclosed G2 –structures.

Theorem 1.8 The inclusion Gcc
2
.M / ,! G2.M / is a homotopy equivalence.

If M is an open manifold then Theorem 1.8 is a straight-forward application of
Eliashberg and Mishachev [15, Theorem 10.2.1] (see Lê [27, Theorem–Remark 3.17]).
h–principles are generally much harder to prove on closed manifolds, but for coclosed
G2 –structures we can use a microextension trick to reduce the problem to an application
of [15, Theorem 10.2.1] on M � .��; �/. (There is no apparent way to apply the same
trick to closed G2 –structures, which seem closer to symplectic structures in this sense.)

One motivation for considering coclosed G2 –structures is that they are the structures
induced on 7–manifolds immersed in 8–manifolds with holonomy Spin.7/. One can
attempt to construct Spin.7/ metrics on M � .��; �/ using the “Hitchin flow” of
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coclosed G2 –structures; see Hitchin [21]. Bryant [5, Theorem 7] shows that this can
be solved provided that the initial coclosed G2 –structure is real analytic.

Theorem 1.8 implies that any spin 7–manifold M admits smooth coclosed G2 –
structures. When M is closed, Grigorian [19] proves short-time existence of solutions
't for a version of the “Laplacian coflow” of coclosed G2 –structures. Even if the
initial G2 –structure '0 is merely smooth, the coclosed G2 –structures 't will be real
analytic for t > 0 (sufficiently small so that the solution exists). We deduce:

Corollary 1.9 For every closed spin 7–manifold M , M �.��; �/ admits torsion-free
Spin.7/–structures.

1.5 Counting deformation classes of G2–structures

We can think of the set of deformation equivalence classes of G2 –structures as the
quotient (isomorphic to �0G2.M /) of �0G2.M / under the action

�0G2.M /�Diff.M /! �0G2.M /; .Œ'�; f / 7! Œf �'�:

The deformation invariance of � implies that this action on �0G2.M / Š Z is by
translation by multiples of 24, so that �0G2.M / has at least 24 elements. To determine
to what extent � classifies elements of �0G2.M / we need to understand precisely
which multiples of 24 are realised as translations. Combining the characteristic class
formula (1) with Lemma 1.5 we arrive at the following proposition.

Proposition 1.10 Let f W M ŠM be a spin diffeomorphism with mapping torus Tf .
Then

D.'; f �'/D 24 yA.Tf / 2 Z:

The possible values of yA.Tf / are closely related to the spin characteristic class pM WD
p1

2
.M / (see Section 6.1). More precisely, the theory developed by the authors in [11]

identifies the two key quantities

do.M / WD
�

0 if pM is torsion,
Maxfs j s;m 2 Z;m2s divides mpM g otherwise,

and a certain value r 2 f0; 1; 2g that depends on the properties of the automorphisms
of H 4.M / preserving pM and the torsion linking form. If H 4.M / is torsion-free
then do.M / is simply the greatest integer dividing pM , and r D 1 whenever H 4.M /

is 2–torsion-free. do.M / is always even by Lemma 6.1.

The following theorem gives lower bounds on j�0G2.M /j. For a fraction a=b without
common factors, denote Num .a=b/D a.
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Theorem 1.11 If pM D02H 4.M IQ/, then �0G2.M /��0G2.M /�Z. In general

j�0G2.M /j � 24 �Num
�

2r do.M /

224

�
:

So, in particular, if H 4.M / has no 2–torsion then j�0G2.M /j � 24 �Num
�do.M /

112

�
.

For upper bounds on j�0G2.M /j we need spin diffeomorphisms f W M ŠM with
D.'; f �'/¤ 0. When M is 2–connected and pM is not torsion, these are provided
by [11].

Theorem 1.12 If M is 2–connected and pM 6D 0 2H 4.M IQ/, then

j�0G2.M /j D 24 �Num
�

2r do.M /

224

�
:

Also j�0G2.N ]M /j � 24 �Num
�2r do.M /

224

�
for any connected spin 7–manifold N .

Theorem 1.12 helps identify certain manifolds M for which � is a complete invariant
of �0G2.M /.

Corollary 1.13 If 2r do.M0/ divides 224 for some 2–connected M0 such that M Š
N ]M0 , then j�0G2.M /j D 24. In this case two G2 –structures ' and '0 on M are
deformation equivalent if and only if �.'/D �.'0/.

1.6 The � –invariant

We now describe a further invariant that, depending on the topology of M , can
distinguish more classes of �0G2.M /. For the moment we restrict to the special case
when pM is rationally trivial, and postpone the full definition to Section 6.4.

In dimension 7, the Eells–Kuiper invariant � [14, Section 6] arises from considering
the following characteristic class formula: if X is a closed spin 8–manifold, then

(8) 224 yA.X /D p2
X � �.X /:

If M is closed spin with pM a torsion class and W is a spin coboundary, then
pW 2H 4.W IQ/ is in the image of H 4.W;M IQ/, the cohomology relative to the
boundary, and p2

W
2Q is well defined. Then (8) implies that the yA–defect

(9) �.M / WD p2
W
� �.W /

8
2Q=28Z

is independent of the choice of W . (This differs from the definition in [14] by a factor
of 28. The mod Z residue of �.M / is determined by the almost-smooth structure of
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M because pW is a characteristic element for the intersection form; therefore �.M /

can take 28 different values if the underlying almost-smooth manifold is fixed.)

If we consider a G2 –structure ' on a spin manifold M such that pM is torsion, then
we can in a sense cancel the ambiguities in the definitions of the yA–defects � and �
to obtain a stronger invariant. A linear combination of (2) and (8) gives that

7�.X /C 3p2
X
� 45�.X /

2
D 0

for any closed X 8 with Spin.7/–structure. Hence

(10) �.'/ WD 7�.W /C 3p2
W
� 45�.W /

2
2Q

is independent of choice of Spin.7/–coboundary W . If we consider G2 –structures on
a fixed smooth M with pM torsion, then the relation

�.'/D 7�.'/C 12�.M / mod 336Z

means that �.'/ can be determined from �.'/ and �.M /. The �–invariant takes
precisely the values allowed by the constraint

�.'/D 7�Q.M /C 12�.M / mod 14Z:

Similarly to Proposition 1.6, 14D.'; '0/D �.'0/� �.'/, so � distinguishes between
all elements of �0G2.M /. Since � is patently invariant under diffeomorphisms, this
entails the claim from Theorem 1.12 that �0G2.M /D �0G2.M / when pM is torsion.

Example 1.14 S7 has a standard G2 –structure 'rd , induced as the boundary of B8

with a flat Spin.7/–structure. Clearly �.'rd/ � �.B8/ � 3�.B8/ � 1. Meanwhile
pB8 D 0, so �.'rd/D 7.

On the other hand, the flat Spin.7/–structure on the complement of B8 �R8 induces
the G2 –structure �'rd on S7 (with the orientation reversed). If r is a reflection of S7

then b' rdD r�.�'rd/ is a different G2 –structure on S7 inducing the same orientation as
'rd . Since �.b' rd/D�.�'rd/D��.'rd/D�1 (and �.b' rd/D �.�'rd/D��.'rd/D�7)
there can be no homotopy between 'rd and b' rd .

Example 1.15 The sphere S7 has a “squashed” G2 –structure 'sq that is invariant
under Sp.2/Sp.1/ and nearly parallel (ie the corresponding cone metric on R�S7

has exceptional holonomy Spin.7/). This G2 –structure is the asymptotic link of the
asymptotically conical Spin.7/–manifold constructed by Bryant and Salamon [6] on
the total space W of the positive spinor bundle of S4 . This bundle is O.�1/ over
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HP1 with the orientation reversed. Since this space has � D 1 and �D 2, it follows
that �.'sq/ D 2� 3 D �1. Further p2

W
D 1, so �.'sq/ D �7. In particular, 'sq is

homotopic to b' rd ; if we glue W and B8 to form HP2 then we can interpolate to
define a Spin.7/–structure on HP2 .

The definition of � becomes more involved when pM is rationally nontrivial. In
general, let d� denote the greatest integer dividing pM modulo torsion (which is even
by Lemma 6.1), and zd� WD gcd.d� ; 4/. One can then replace the p2

W
2Q that appears

in (10) with a Q=2 zd�Z–valued function on

Sd� WD fk 2H 4.M / j pM � d�k is torsiong:
Hence one can define �.'/ as a function Sd� !Q=3 zd�Z, see Definition 6.8. It is
invariant in the sense that if f W M 0!M is a diffeomorphism, then

f �W H 4.M /!H 4.M 0/

restricts to a bijection Sd� ! S 0d� , and �.f �'/ ıf � D �.'/ for any G2 –structure '
on M .

Lemma 1.16

(11) �.'0/� �.'/D 14D.'; '0/ mod 3 zd� :

Together with Proposition 1.6, this means that the values of .�; �/ determine D.'; '0/
modulo lcm.24;Num.3 zd�=14// D 24 Num.d�=112/. However, this does not mean
that the pair .�; �/ distinguishes between 24 Num.d�=112/ classes in �0G2.M /, but
only that it distinguishes that many classes modulo homotopies and diffeomorphisms
acting trivially on cohomology. The reason is that for a general diffeomorphism f

of M , �.'/ ı f �� �.'/ can be a nonzero constant in Q=3 zd�Z. Understanding the
action of f on � reduces to the same technical problem as for the action on �0G2.M /,
and we find that in general .�; �/ can distinguish between 24 Num.2r do.M /=224/

elements of �0G2.M /, which in a sense is a more precise version of Theorem 1.11.
In particular, combining with Theorem 1.12 we find the following result.

Theorem 1.17 If M is 2–connected then .�; �/ is a complete invariant of �0G2.M /.

In combination with the diffeomorphism classification of closed 2–connected 7–
manifolds from [11], we obtain a classification result for 2–connected 7–manifolds
with G2 –structures, stated in Theorem 6.9.

Geometry & Topology, Volume 19 (2015)



New invariants of G2 –structures 2959

1.7 Further problems

The main motivation for this work is to help distinguish between connected components
of the moduli space of G2 metrics on a fixed M . One supply of candidates comes from
2–connected twisted connected sums, but Theorem 1.7 shows that � is not enough to
distinguish between those. All twisted connected sum G2 –manifolds M have do.M /

a divisor of do.K3/D 24, so when M is 2–connected, the only remaining chance of
using the homotopy theory to distinguish between different twisted connected sums
G2 metrics is when do is divisible by 3: by Theorem 1.11 there are in this case 3
different homotopy classes of G2 –structures with � D 24, and they are distinguished
by � . A number of examples of diffeomorphic pairs of twisted connected sums with
do.M /D d�.M /D 6 are exhibited by the authors in [12, Remark 5.7], but we do not
currently have any way to compute � in this situation.

The examples of Joyce with odd � mentioned above can be viewed as a kind of twisted
connected sums, gluing asymptotically cylindrical manifolds with holonomy a proper
subgroup of G2 and cross-section K3�T 2 , but where the torus factor is not rectangular
(as for usual twisted connected sums) but hexagonal. Such “extra-twisted connected
sums” provide candidates of 2–connected G2 –manifolds with fewer restrictions on
the possible values of � , and we will return to this elsewhere.

The definition of � in terms of a coboundary is not always amenable to explicit
computations. A common theme in differential topology is to find ways to express
“extrinsic” invariants (defined in terms of a coboundary) intrinsically, eg Donnelly [13]
expresses the classical Eells–Kuiper invariant in terms of eta invariants. Sebastian
Goette informs us that it is possible to express � analytically, and we plan to study this
and applications to extra-twisted connected sums further in future work.

Some necessary conditions are known for a closed spin 7–manifold M to admit a
metric with holonomy G2 (see eg Joyce [23, Section 10.2]), but there is currently
no conjecture as to what the right sufficient conditions would be. A refinement of
this already very hard problem would be to ask: Which deformation classes of G2 –
structures on M contain torsion-free G2 –structures? This is of course related to
the problem of whether there is any M with torsion-free G2 –structures that are not
deformation equivalent, which was one of our motivations for introducing � . If one
attempts to find torsion-free G2 –structures as limits of a flow of G2 –structures as in
Bryant and Xu [7], Grigorian [19], Weiß and Witt [33] and Xu and Ye [35], does the
homotopy class of the initial G2 –structures affect the long-term behaviour of the flow?

Organisation The rest of the paper is organised as follows. In Section 2 we establish
preliminary results needed to define and compute � . In Section 3 we define the
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affine difference D.'; '0/ and the �–invariant, establish the existence of Spin.7/–
coboundaries for G2 –structures and hence prove Theorem 1.3. We also describe
examples of G2 –structures on S7 in more detail. In Section 4 we compute the �–
invariant for twisted connected sum G2 –manifolds, proving Theorem 1.7. Section 5
establishes the h–principle for coclosed G2 –structures stated in Theorem 1.8. In
Section 6 we describe the action of spin diffeomorphisms on �0G2.M /, give the
general definition of the �–invariant and prove the results from Section 1.5-1.6.
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2 Preliminaries

In this section we describe G2 –structures and Spin.7/–structures on 7 and 8–manifolds,
and their relationships to spinors. We also establish some basic facts about the charac-
teristic classes of spin manifolds in dimensions 7 and 8.

2.1 The Lie groups Spin.7/ and G2

We give a brief review of how Spin.7/ and G2 –structures can be characterised in terms
of forms. For more detail on the differential geometry of such structures, and how they
can be used in the study metrics with exceptional holonomy, see eg Salamon [31] or
Joyce [23]. We defer the analogous discussion of SU.3/ and SU.2/–structures until
we use it in Section 4.

The stabiliser in GL.8;R/ of the 4–form

(12)  0 D dx1234Cdx1256Cdx1278Cdx1357�dx1368�dx1458�dx1467

�dx2358�dx2367�dx2457Cdx2468Cdx3456Cdx3478Cdx5678 2ƒ4.R8/�

is Spin.7/ (identified with a subgroup of SO.8/ by the spin representation). Here and
elsewhere, dx1234 abbreviates dx1 ^ dx2 ^ dx3 ^ dx4 etc. On an 8–dimensional
manifold X , a 4–form  2 �4.X / which is pointwise equivalent to  0 defines a
Spin.7/–structure, and induces a metric and orientation (the orientation form is  2 ).
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The exceptional Lie group G2 can be defined as the automorphism group of O , the
normed division algebra of octonions. Equivalently, G2 is the stabiliser in GL.7;R/
of the 3–form

(13) '0 D dx123Cdx145Cdx167Cdx246�dx257�dx347�dx356 2ƒ3.R7/�:

On a 7–dimensional manifold M , a 3–form ' 2�3.M / that is pointwise equivalent
to '0 defines a G2 –structure, which induces a Riemannian metric and orientation.
Note that

(14) dt ^'0C�'0 Š  0

on R˚ R7 , so the stabiliser in Spin.7/ of a nonzero vector in R8 is exactly G2 .
Therefore the product of a 7–manifold with a G2 –structure and S1 or R has a
natural product Spin.7/–structure, while a Spin.7/–structure  on W 8 induces a
G2 –structure on @W by contracting  with an outward pointing normal vector field.

Remark 2.1 If ' is G2 –structure on M 7 , then �' is a G2 –structure too, inducing
the same metric and opposite orientation (because '0 is equivalent to �'0 under
the orientation-reversing isomorphism �1 2 O.7/). The product Spin.7/–structure
dt ^'C�' on M � Œ0; 1� induces ' on the boundary component M �f1g ŠM , and
�' on M � f0g Š �M .

2.2 G2–structures and spinors

In this paper we are concerned with G2 –structures on a manifold M 7 up to homotopy.
Since there is an obvious way to reverse the orientation of a G2 –structure, while
any two Riemannian metrics are homotopic, we may as well consider G2 –structures
compatible with a fixed orientation and metric. Because G2 is simply–connected, the
inclusion G2 ,! SO.7/ lifts to G2 ,! Spin.7/. Therefore a G2 –structure on M also
induces a spin structure, and we focus on studying G2 –structures compatible also with
a fixed spin structure. As in Section 1, we let �0G2.M / denote the homotopy classes
of G2 –structures on M with a choice of spin structure.

As we already saw, G2 is exactly the stabiliser of a nonzero vector in the spin represen-
tation � of Spin.7/; as a representation of G2 , � splits as the sum of a 1–dimensional
trivial part and the standard 7–dimensional representation. Spin.7/ acts transitively on
the unit sphere in � with stabiliser G2 , so Spin.7/=G2 Š S7 .

From the above, we deduce that given a spin structure on M , a compatible G2 –structure
' induces an isomorphism SM ŠR˚TM for the spinor bundle SM : here R denotes
the trivial line bundle. Hence we can associate to ' a unit section of SM , well-defined
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up to sign. Conversely, any unit section of SM defines a compatible G2 –structure.
A transverse section s of the spinor bundle SM of a spin 7–manifold has no zeros,
so defines a G2 –structure; thus a 7–manifold admits G2 –structures if and only if it is
spin (see Gray [17] and Lawson and Michelsohn [26, Theorem IV.10.6]).

Note that s and �s are always homotopic, because they correspond to sections of
the trivial part in a splitting SM Š R˚ TM and the Euler class of an oriented 7–
manifold vanishes. It follows that SM contains a trivial 2–plane field K �R which
accommodates a homotopy from s to �s . Therefore �0G2.M / can be identified
with homotopy classes of unit sections of the spinor bundle. As stated in Section 1,
Lemma 1.1 now follows by a standard application of obstruction theory, but we will
describe the bijection �0G2.M /Š Z in elementary terms in Section 3.1.

Remark 2.2 Let us make some further comments on the signs of the spinors. Given a
principal Spin.7/ lift zF of the frame bundle F of M , the principal G2 –subbundles
of zF are in bijective correspondence with sections of the associated unit spinor bundle.
The G2 –subbundles corresponding to spinors s and �s have the same image in F ,
hence they define the same G2 –structure on M (they have the same 3–form ' ).

While SO.7/ does not itself act on �, the action of Spin.7/ on .�nf0g/=R� ŠRP7

does descend to an action of SO.7/. Therefore the orbit SO.7/'0 , the set of G2 –
structures on R7 defining the same orientation and metric as '0 , is SO.7/=G2ŠRP7 .
G2 –structures compatible with a fixed orientation and metric on M but without any
constraint on the spin structure therefore correspond to sections of an RP7 bundle.
If M is not spin then this bundle has no sections. Given a spin structure, the unit
sphere bundle in the associated spinor bundle is an S7 lift of the RP7–bundle, and two
G2 –structures induce the same spin structure if they can both be lifted to the same S7

bundle.

2.3 Spin.7/–structures and characteristic classes of Spin.8/–bundles

The spin representation of Spin.7/ is faithful, so defines an inclusion homomorphism
Spin.7/ ,! SO.8/, which has a lift i�W Spin.7/ ,! Spin.8/. The restriction of the
positive half-spin representation �C of Spin.8/ to Spin.7/ is a sum of a trivial rank 1
part and the 7–dimensional vector representation (factoring through Spin.7/! SO.7/).
Therefore i�.Spin.7//�Spin.8/ can be characterised as the stabiliser of a unit positive
spinor s0 2�C , and Spin.7/–structures on a spin 8–manifold are equivalent to unit
positive spinor fields (up to sign, in the same sense as G2 –structures). Hence there is
an obvious obstruction to the existence of Spin.7/–structures on an 8–manifold X : it
must be spin, and the Euler class in H 8.X / of the positive half-spinor bundle on X

must vanish.
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Remark 2.3 One can of course also define an embedding i0W Spin.7/ ,! Spin.8/ as
the stabiliser of the coordinate vector e8 in the vector representation R8 of Spin.8/.
The restrictions to this copy of Spin.7/ of the half-spin representation �˙ of Spin.8/
are both isomorphic to the spin representation of Spin.7/. Therefore, if W 8 is a spin
manifold then the restrictions of the half-spinor bundles S˙W to @W are naturally
isomorphic to the spinor bundle S.@W /.

In particular, a positive spinor field on W 8 can be restricted to a spinor field on @W , so
the restriction of a Spin.7/–structure on W to a G2 –structure on @W can be described
in terms of the spinorial picture. Of course, this gives exactly the same result as if we
describe the restriction in terms of differential forms. This is because the image of the
composition of the inclusions

G2 ,! Spin.7/
i0
,! Spin.8/

is equally well described as the stabiliser in Spin.8/ of .s0; e
8/ 2�C �R8 and as the

lift of the stabiliser in GL.R; 8/ of . 0; e8/ 2ƒ4R8 �R8 .

Let us describe briefly our conventions for orientations on the half-spin representations
of Spin.8/. For each fixed nonzero v 2R8 , the Clifford multiplication R8��˙!��
defines orientation-preserving isomorphisms cv̇ W �˙!�� . A feature of the “triality”
in dimension 8 is that the map ycs˙ W R8!�� induced by Clifford multiplication with
a fixed nonzero spinor s˙ 2�˙ is an isomorphism too. The Clifford relations imply
that, for sC D vs� ,

cCv ı ycs� D ycsC ı rvW R8!��;

where rvW R8!R8 is reflection in the hyperplane orthogonal to v . Thus ycsC and ycs�

have opposite orientability. Our convention is that ycs� is orientation-preserving, while
ycsC is not.

More explicitly, R8 , �C and �� can each be identified with the octonions O so that
the Clifford multiplication R8���!�C corresponds to the octonionic multiplication
.x;y/ 7! xy ; see Baez [2, page 162 above (5)]. Then, to satisfy the Clifford relations,
R8��C!�� must correspond to .x;y/ 7!�xxy , where xx is the octonion conjugate
of x . This map is orientation-reversing on the first factor.

Let X be a spin 8–manifold, e 2H 8.X / the Euler class of TX , and e˙ 2H 8.X /

the Euler classes of the half-spinor bundles S˙X . More generally, for any principal
Spin.8/–bundle on any X , let e; e˙ denote the Euler classes of the vector bundles
associated to the vector and half-spin representations of Spin.8/. With our orientation
conventions, the nondegeneracy of the Clifford product implies

(15) eC D eC e�:
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The following statement can be found for instance in Gray and Green [18, page 89].

Proposition 2.4 For any principal Spin.8/–bundle

e˙ D 1
16
.p2

1 � 4p2˙ 8e/:

In degree 8, the yA and L genera are given by

(16)
45 � 27 yAD 7p2

1 � 4p2;

45LD 7p2�p2
1 ;

so Proposition 2.4 can be rewritten as e˙ D 24 yAC 1
2
.˙e � 3L/. If X is closed

and orientable then the integral of the L genus of TX is the signature of X by the
Hirzebruch signature theorem, while the integral of the Euler class is just the ordinary
Euler characteristic.

Corollary 2.5 If X is a closed spin 8–manifold then

e˙.X /D 24 yA.X /C ˙�.X /� 3�.X /

2
:

Remark 2.6 Modulo torsion, the group of integral characteristic classes of a principal
Spin.8/–bundle in dimension 8 is generated by p2

1
, p2 and e , so we could prove

Corollary 2.5 (and hence Proposition 2.4) by checking that the formula holds for the
following spin 8–manifolds.
� S8 : �D 2, yAD � D 0, e˙ D˙1.
� K3�K3: �D242 , �D .�16/2 . yAD4 because the holonomy is SU.2/�SU.2/.

Because this also defines a Spin.7/–structure (see (22)), eC D 0 and e� D��.
� HP2 : �D 3, � D 1. yAD 0 by the Lichnerowicz formula since there is a metric

with positive scalar curvature. e� D �� because S�X Š �TX for any spin
8–manifold X with Sp.2/Sp.1/–structure. This structure also splits SCX into
a sum of a rank 5 and a rank 3 part, so eC D 0. (Alternatively, we can identify a
quaternionic line subbundle of T HP2 , like that spanned by the projection of
the vector field .q1; q2; q3/ 7! .0; q1; q2/ on H3 , with a nonvanishing section
of the rank-5 part of SCX .)

3 The �–invariant

In this section we study the set �0G2.M / of homotopy classes of G2 –structures on a
closed spin 7–manifold M , and prove the basic properties of the invariants D and � .
We conclude the section with some concrete examples.
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3.1 The affine difference

Let M be a closed connected spin 7–manifold, and '; '0 a pair of G2 –structures on
M . We describe how to define the difference D.'; '0/ 2 Z from Lemma 1.4.

A homotopy of G2 –structures is equivalent to a path of nonvanishing spinor fields.
Any path of spinor fields on M can be identified with a positive spinor field s on
M � Œ0; 1�. We can always find s such that the restrictions to M � f1g and M � f0g
are the nonvanishing spinor fields corresponding to ' and �'0 , respectively. Then the
pull-back by s of the Thom class of the positive spinor bundle defines a relative Euler
class in H 8.W;M /, independent of the choice of s , and we define D.'; '0/ to be
its integral nC.M � Œ0; 1�; '; '0/. If we take s to have transverse zeroes then we can
interpret this geometrically as the intersection number of the graph of s with the zero
section.

The affine relation (5) is immediate from this definition. If nC.M � Œ0; 1�; '; '0/D 0,
then s can be chosen to be nonvanishing, so ' and '0 are homotopic if and only if
D.'; '0/ D 0. Given ' we can construct '0 such that D.'; '0/ D 1 by modifying
the defining spinor of ' in a 7–disc B7 : in a local trivialisation we change it from
a constant map B7 ! S7 to a degree 1 map. Thus D can take any integer value,
so D really corresponds to the difference function under a bijection ZŠ �0G2.M /,
completing the proof of Lemma 1.4.

To compute D.'; '0/, we can consider more general spin 8–manifolds W with
boundary M t �M . Generalising the above, let nC.W; '; '0/ be the intersection
number with the zero section of a positive spinor whose restriction to the two boundary
components correspond to ' and �'0 . Form a closed spin 8–manifold W by gluing
the M piece of the boundary of W to the �M piece. We can define a continuous
positive spinor field on W by modifying the spinor field from W in an M � Œ0; 1�
neighbourhood of the former boundary, to interpolate between '0 on M �f1g and �'
on M �f0g. Its intersection number with the zero section is nC.W; '; '0/�D.'; '0/,
so we can compute D as

(17) D.'; '0/D nC.W; '; '0/� eC.W /:

3.2 The definition of �

Let M be a closed spin 7–manifold (not necessarily connected) with G2 –structure
' , and W a compact spin 8–manifold with @W DM . Such W always exist since
the bordism group �Spin

7
is trivial [29]. The restrictions of the half-spinor bundles

S˙W of W to M are isomorphic to the spinor bundle on M (Remark 2.3), and the
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composition SCWjM ! S�WjM of these isomorphisms is Clifford multiplication by
a unit normal vector field to the boundary. Let n˙.W; '/ be the intersection number
with the zero section of a section of S˙W whose restriction to M is the nonvanishing
spinor field defining ' . Let

(18) x�.W; '/ WD �2nC.W; '/C�.W /� 3�.W / 2 Z:

Reversing the orientations, �W is a spin 8–manifold whose boundary �M is equipped
with a G2 –structure �' .

Lemma 3.1 Let W be a compact spin 8–manifold, and ' a G2 –structure on MD@W .

(i) If '0 is another G2 –structure on M then x�.W; '0/�x�.W; '/D 2D.'; '0/.
(ii) x�.W; '/� �Q.M / mod 2.

(iii) x�.�W;�'/D�x�.W; '/.

(iv) If W 0 is another compact spin 8–manifold with @W 0 DM then the closed spin
8–manifold X DW [IdM

.�W 0/ has

48 yA.X /D x�.W 0; '/�x�.W; '/:

Proof (i) Clearly nC.W; '/D nC.M � I; '; '0/C nC.W; '0/.

(ii) For W 4n any compact oriented manifold with boundary, �.W / is by definition
the signature the intersection form, a nondegenerate symmetric form on the image
H 2n

0
.W / of H 2n.W;M /!H 2n.W /. In particular, �.W /� dim H 2n

0
.W / mod 2.

Writing

�.W /D
2n�1X
iD0

bi.W /C
2nX

iD0

b4n�i.W /

and using b4n�i.W /D bi.W;M / and the definition that �Q.W /DP2n�1
iD0 bi.@W /

mod 2, the exactness of the sequence

0!H 0.W;M /!H 0.W /! � � �!H 2n�1.@W /!H 2n.W;M /!H 2n
0 .W /! 0

implies

(19) �.W /C�.W /� �Q.@W / mod 2:

(iii) Let v be a vector field on W that is a unit outward-pointing normal field along M ,
and s 2�.SCW / a spinor field whose restriction to M induces ' . Then the restriction
of the Clifford product v � s 2 �.S�W / also induces ' . By the Poincaré–Hopf index
theorem, the number of zeros of v is �.W /, so n�.W; '/D nC.W; '/��.W / (these
signs are compatible with (15)).
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Reversing the orientations swaps sections of SCW and S�W , and reverses the signs
assigned to the zeros, so nC.�W;�'/D�n�.W; '/. It also reverses the signature,
but preserves the Euler characteristic. Thus

x�.�W;�'/D 2n�.W; '/C�.W /C 3�.W /

D 2nC.W; '/� 2�.W /C�.W /C 3�.W /D�x�.W; '/:

(iv) �.W /C �.�W 0/D �.X / by Novikov additivity [1, 7.1], �.W /C�.�W 0/D
�.X / because �.M /D 0, and X has a transverse positive spinor field whose intersec-
tion number with the zero section is nC.W; '/C nC.�W 0;�'/. Hence

x�.W 0; '/�x�.W; '/D�x�.�W 0;�'/�x�.W; '/D2eC.X /��.X /C3�.X /D48 yA.X /
by Corollary 2.5.

Corollary 3.2 �.'/ WD x�.W; '/ mod 48 2 Z48 is independent of the choice of W ,
and for all ' and '0 ,

�.'0/� �.'/� 2D.'; '0/ mod 48:

This gives the majority of the proofs of Theorem 1.3 and Proposition 1.6. To complete
the proofs it remains only to show the existence of Spin.7/–coboundaries, since
Definition 1.2 is phrased in terms of those. We show the existence of the required
Spin.7/–coboundaries in the following subsection.

3.3 Spin.7/–bordisms

Let ' , '0 be G2 –structures on closed 7–manifolds M , M 0 . A Spin.7/–bordism
from .M; '/ to .M 0; '0/ is a compact 8–manifold with boundary M t�M 0 and a
Spin.7/–structure  inducing the respective G2 –structures on the boundary. More
formally, we require that @W D f .M / t f 0.M 0/ for embeddings f W M ,! @W ,
f 0W M 0 ,! @W that pull back the contraction of  with the outward normal field to
' and �'0 , respectively. If M DM 0 then we can form a closed spin 8–manifold by
identifying the boundary components,

(20) W WDW =.f 0 ıf �1/:

Clearly, there is a topologically trivial Spin.7/–bordism W (ie there is a diffeomor-
phism W ŠM � Œ0; 1�, but it does not have to preserve the Spin.7/–structure) from '

to '0 if and only if they are deformation equivalent, ie f �'0 is homotopic to ' for
some diffeomorphism f W M ŠM .
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Remark 3.3 If .W;  ; f; f 0/ is a Spin.7/–bordism from .M; '/ to .M 0; '0/ then
.W;  ; f 0; f / is Spin.7/–bordism from .�M 0;�'0/ to .�M;�'/. However, it does
not follow in general that �W has a Spin.7/–structure making it a Spin.7/–bordism
from .M 0; '0/ to .M; '/ (because the orientation of a Spin.7/–structure cannot be
reversed). In particular, if W is a Spin.7/–coboundary for .M; '/, then �W is not
necessarily a Spin.7/–coboundary for .�M;�'/, unless �.W / D 0, see proof of
Lemma 3.1(iii).

The Spin.7/–structure  induces a nonvanishing positive spinor field s on W . By
Remark 2.3 the restriction of s to @W is the spinor defining the G2 –structures '
and �'0 , so nC.W; '; '0/ D 0. In particular, when ' and '0 are G2 –structures on
the same manifold M DM 0 , Lemma 1.5 follows from (17). Similarly, if W is a
Spin.7/–coboundary for .M; '/ then x�.W; '/ D �.W /� 3�.W /, so Corollary 3.2
and Lemma 3.4(ii) imply Theorem 1.3.

Lemma 3.4 (i) For a connected compact spin 8–manifold W with connected
boundary M , there is a unique homotopy class of G2 –structures on M that
bound Spin.7/–structures on W .

(ii) Any G2 –structure has a Spin.7/ coboundary (that is, any two G2 –structures are
Spin.7/–bordant).

Proof If W is connected with nonempty boundary then there is no obstruction to
defining a nonvanishing positive spinor field on W , so there is some G2 –structure '
on M that bounds a Spin.7/–structure on W . If '0 is another G2 –structure bounding
a Spin.7/–structure on W , consider an arbitrary spin filling W 0 of �M , and let �'00
be a G2 –structure on �M that bounds a Spin.7/–structure on W 0 . Then W tW 0
admits two Spin.7/–structures that define bordisms from ' and '0 , respectively, to
'00 . Hence

D.'; '0/DD.'; '00/�D.'0; '00/D 0;

and ' and '0 must be homotopic.

For (ii), take any spin filling W of M , and let ' be a G2 –structure on M that bounds
a Spin.7/–structure. In order to find a Spin.7/–coboundary for some other '0 with
D.'; '0/ D ˙k , we use that if X and X 0 are closed spin 8–manifolds then, since
yA and � are bordism-invariants, and in particular additive under connected sums,

Corollary 2.5 implies that

eC.X ]X 0/D eC.X /C eC.X 0/� 1:

(We could also see that for any pair of positive spinor fields s , s0 on X , X 0 one can
define a spinor field on X ]X 0 that equals s and s0 outside the connecting neck, and
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with a single zero on the neck.) Therefore '0 will bound a Spin.7/–structure on W 0
the connected sum of W with k copies of a manifold with eC D 2 or 0, eg S4 �S4

or T 8 .

3.4 Examples of G2–structures on S 7

To make the discussion more concrete, we elaborate on some examples on S7 , where
D can be described in the following direct way. The spinor bundle of S7 can be
trivialised by identifying it with the restriction of the positive half-spinor bundle
on B8 , thus up to homotopy, a G2 –structure ' on S7 can be identified with a map
f from S7 to the unit sphere in �C . The difference D between two G2 –structures
on S7 equals the difference of the degrees of the corresponding maps S7 ! S7 :
D.'; '0/D degf � degf 0 .

Example 3.5 We first illustrate how this description works for the standard round
G2 –structure 'rd and its reverse b' rd , which we already understand from Example 1.14.
By definition, 'rd corresponds to a constant map frdW x 7! s0 . The G2 –structure 'rd

is invariant under the action of Spin.7/, and so is frd , in the sense that frd.gx/D s0D
gs0 D gfrd.x/ for any g 2 Spin.7/.

Let r be a reflection of S7 , and b' rd D r�.�'rd/ as before. Then b' rd is invariant
under the action of the conjugate subgroup r Spin.7/r � Spin.8/. If x0 2 S7 is a
vector orthogonal to the hyperplane of the reflection, then 'rd and b' rd take the same
value at x0 . Thus yfrd.x0/D s0 , and yfrd.rgrx0/D .rgr/s0 for any g 2 Spin.7/. The
outer automorphism on Spin.8/ of conjugating by r swaps the positive and negative
spin representations via Clifford multiplication by x0 , so .rgr/s0D x0 � .g.x0 � s0//D
x0 �.g.x0/�s0/ for g 2Spin.7/. Hence yfrdW S7!S7 equals the orientation-preserving
diffeomorphism c�x0

ı ycs0
ı .�r/, and D.b'rd; 'rd/D deg yfrd� degfrd D 1.

Example 3.6 Consider the octonionic left-multiplication parallelism on S7 , ie the
trivialisation of TS7 obtained by considering u 2 S7 as a unit octonion and defining
LuW Im O Š TuS7 as left multiplication by u. Its associated G2 –structure 'O has
'O.u/ D Lu'0 for a fixed G2 –structure '0 . The associated map fOW S7! S7 is
u 7! zLus0 , where S7 ! Spin.8/, u 7! zLu is the continuous lift of S7 ! SO.8/,
u 7!Lu (with zL1 D Id) which acts on s0 2�C .

Here is one way to understand zLu . The Moufang identity u.xy/uD .ux/.yu/ holds
for any u;x;y 2O [20, Lemma A.16(c)], so .Lu;Ru;LuıRu/ 2 SO.8/3 preserves
the Cayley multiplication. As mentioned before, the Cayley multiplication on O can be
identified with Clifford multiplication R8 ���!�C , whose stabiliser in the group
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SO.R8/� SO.��/� SO.�C/ is precisely Spin.8/ [2, (5)]. Hence a copy of S7 in
Spin.8/ whose action on R8 is by Lu must act on �C by Lu ıRu . If we choose the
identification �C ŠO so that s0 corresponds to 1, then fO.u/D zLus0 corresponds
to u2 , so degfO D 2. Hence D.'O; 'rd/D 2, and �.'O/D�3.

Example 3.7 The G2 –structure 'rd is invariant under the order-4 diffeomorphism
given by scalar multiplication by i on S7 � C4 (since i Id 2 SU.4/ � Spin.7/) so
descends to a G2 –structure 'rd=Z4 on the quotient S7=Z4 . This is the boundary of
the unit disc bundle of O.�4/ on CP3 (the canonical bundle of CP3 ), which has an
SU.4/–structure restricting to 'rd=Z4 (indeed, the total space admits a Calabi–Yau
metric asymptotic to C4=Z4 ; see Calabi [9, Section 4]). The self-intersection number
of a hyperplane in the zero section is �4, so � D�1, and �.'rd=Z4/D 4C 3D 7.

Remark 3.8 While Example 3.7 illustrates that � itself is not multiplicative under
covers, if ' and '0 are G2 –structures on the same closed spin 7–manifold M and
pW zM !M is a degree k covering map then D.p�';p�'0/D kD.'; '0/.

Remark 3.9 The fact that 'rd and b' rd are both invariant under the antipodal map
on S7 is not incompatible with D.'rd; b' rd/ being odd, because the G2 –structures
they define on RP7 D S7=˙1 induce different spin structures. The actions of Spin.7/
and the conjugate r Spin.7/r on RP7 can both be lifted to the spinor bundle. Since
�1 acts trivially on RP7 , its image under either lift will be ˙Id, and the two spin
structures can be distinguished by which of the two lifts acts as CId.

Similarly, 'rd defines the same spin structure on RP7 as the octonionic left multi-
plication parallelism of RP7 , but not the right multiplication one. This is related to
the fact that Spin.7/ can be described as the subgroup of SO.8/ generated by left
multiplication by unit imaginary octonions, while the subgroup generated by right
multiplications is a conjugate of Spin.7/ by a reflection.

4 � of twisted connected sum G2–manifolds

Our motivation for introducing the invariant � is to give a tool for studying the ho-
motopy classes of G2 –structures. We now show how the definition of � in terms of
Spin.7/–bordisms allows us to compute it for the large class of “twisted connected
sum” manifolds with holonomy G2 . Before describing the twisted connected sums,
we explain how to compute � of G2 –structures defined as products of structures on
lower-dimensional manifolds. This is then used in the proof of Theorem 1.7, that
the torsion-free G2 –structures of twisted connected sum G2 –manifolds always have
� D 24.
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4.1 SU.3/ and SU.2/–structures

Let us first describe SU.3/ and SU.2/–structures in terms of forms, along the lines of
Section 2.1.

Let zkDx2k�1Cix2k be complex coordinates on R6 . Then the stabiliser in GL.6;R/
of the pair of forms

�0 D dz1 ^ dz2 ^ dz3 2ƒ3.R6/�˝C;

!0 D i
2
.dz1 ^ dxz1C dz2 ^ dxz2C dz3 ^ dxz3/ 2ƒ2.R6/�;

is SU.3/. An SU.3/–structure .�; !/ on a 6–manifold induces a Riemannian metric,
almost complex structure and orientation (the volume form is � i

8
�^�D 1

6
!3 ). On

R˚R6 ,

(21) dt ^!0CRe�0 Š '0;

and SU.3/ is exactly the stabiliser in G2 of a nonzero vector in R7 . The product of a
6–manifold with SU.3/–structure and S1 or R has a product G2 –structure, while the
boundary of a 7–manifold with G2 –structure has an induced SU.3/–structure.

The stabiliser in GL.4;R/ of the triple of forms

!I
0 D dx12C dx34; !J

0 D dx13� dx24; !K
0 D dx14C dx23 2ƒ2.R4/�

is SU.2/. The stabiliser in SU.2/ of a nonzero vector is clearly trivial, and the boundary
of a 4–manifold W with SU.2/–structure .!I ; !J ; !K / has a natural coframe defined
by contracting each of the three 2–forms with an outward pointing normal vector field.

If e1; e2; e3 is a coframe on R3 then

e123C e1 ^!I
0 C e2 ^!J

0 C e3 ^!K
0 Š '0

on R3˚R4 . Therefore the product of a parallelised 3–manifold and a 4–manifold with
SU.2/–structure has a natural product G2 –structure. Similarly, if we let !I

1
; !J

1
; !K

1

denote an equivalent triple of 2–forms on a second copy of R4 , and vol0 D 1
2
.!I

0
/2

etc, then

(22) vol0C!I
0 ^!I

1 C!J
0 ^!J

1 C!K
0 ^!K

1 C vol1 Š  0

on R4˚R4 , so the product of two 4–manifolds W0 , W1 with SU.2/–structures has a
natural product Spin.7/–structure. If W0 is closed while @W1 is nonempty, clearly the
G2 –structure induced on @.W0 �W1/ by this Spin.7/–structure equals the product of
!�

0
with the coframe on @W1 induced by !�

1
.
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4.2 Product G2–structures and spinors

Above we described two types of product G2 –structures. In order to compute � of
such products, we shall need to describe SU.3/ and SU.2/ in terms of spinors.

The half-spin representations �˙ of Spin.6/Š SU.4/ are the standard 4–dimensional
representation of SU.4/ and its dual. The inclusion SU.3/ ,!SO.6/ lifts to the obvious
inclusion SU.3/ ,! SU.4/, so the stabiliser of a nonzero element in �C is exactly
SU.3/. Hence, analogously to Section 2.2, SU.3/–structures on a 6–manifold N

compatible with a fixed spin structure and metric can be defined by positive unit spinor
fields (which always exist and any two are homotopic since the real rank of SCN

is 8).

If N is the boundary of a spin 7–manifold M , then the half-spinor bundles on N

are both isomorphic, as real vector bundles, to the restriction of the spinor bundle
from M . Analogously to Remark 2.3, the restrictions of G2 –structures on M to
SU.3/–structures on N can be described equivalently in terms of differential forms
or spinors. As there is no obstruction to extending a nonvanishing section of a rank 8
bundle on M from the boundary to the interior, it follows that any SU.3/–structure on
N is induced as the boundary of a G2 –structure on M .

Lemma 4.1 If N is a 6–manifold with an SU.3/–structure .�; !/, then the product
G2 –structure ' D d� ^!CRe� on S1 �N has �.'/D 0.

Proof Any spin 6–manifold N bounds some spin 7–manifold M , as the bordism
group �Spin

6
is trivial [29]. Then any product G2 –structure ' on S1 �N bounds a

product Spin.7/–structure on S1 �M . The S1 factor makes

�.S1 �M /D �.S1 �M /D 0;

so �.'/D 0.

Now we consider dimensions 3 and 4. Before looking at the spinors we prove a
topological lemma.

Lemma 4.2 For any compact spin 4–manifold W with boundary Y ,

�.W /� �2.Y / mod 2;

where �2.Y / is the mod 2 semicharacteristic
P1

iD0 dim H i.Y IZ2/.
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Proof Repeating the argument in the proof of (19) with Z2 –coefficients instead of
Q–coefficients shows that there is a mod 2 identity

�.W /� dim H 2
0 .W IZ2/C�2.Y / mod 2;

where H 2
0
.W IZ2/ is the image of H 2.W;Y IZ2/!H 2.W IZ2/. The intersection

form of W defines a nonsingular bilinear form over Z2 on H 2
0
.W IZ2/. This injects

as an orthogonal summand into the mod 2 intersection form of the manifold X WD
W [IdY

�W . Since X is a closed spin 4–manifold, its intersection form is even, and
hence the form on H 2

0
.W IZ2/ is too. By [30, Chapter III, Lemma 1.1] the rank of

every nonsingular even bilinear form over Z2 is even, which completes the proof.

The spin representations of Spin.4/Š SU.2/�SU.2/ are the standard 2–dimensional
complex representations of the two factors. Therefore the stabiliser of a nonzero positive
spinor is one of the SU.2/ factors, and a unit spinor field on a spin 4–manifold defines
an SU.2/–structure.

The spin representation of Spin.3/ Š SU.2/ is again the standard representation
of SU.2/. The stabiliser of a nonzero spinor is trivial, so a unit spinor field defines
a parallelism, ie a trivialisation of the tangent bundle. For a spin 4–manifold with
boundary Y , the restriction of either the positive or negative spinor bundle to Y is
isomorphic to the spinor bundle of Y . The analogue in dimension 4 of Corollary 2.5 is
that

(23) e˙.X /D 3
4
�.X /˙ 1

2
�.X /

for any closed spin 4–manifold X (it suffices to check for X D S4 and K3). Recall
Rokhlin’s theorem that �.X / is divisible by 16.

Lemma 4.3 Let X be a closed 4–manifold with an SU.2/–structure .!I ; !J ; !K /

and Y a closed 3–manifold with a coframe field .e1; e2; e3/. Then

�.'/D 24�2.Y /
�.X /

16
mod 48

for the product G2 –structure ' D e1 ^ e2 ^ e3C e1 ^!I C e2 ^!J C e3 ^!K on
Y �X .

Proof Pick a spin coboundary W of Y . Let nC.W; �/ be the intersection number
with the zero section of a positive spinor field on W whose restriction to Y is the
defining spinor field of the parallelism � equivalent to the coframe field. We can apply
connected sums with T 4 or S2�S2 to make nC.W; �/D 0 (this is the same argument
as in Lemma 3.4), so we can assume that � bounds an SU.2/–structure on W .
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If X has an SU.2/–structure then eC.X / D 0, so (23) implies �.X / D �3
2
�.X /.

W �X is a Spin.7/–coboundary for ' so, applying Lemma 4.2 in the final step,

�.'/D �.W �X /� 3�.W �X /D .�24�.W /� 48�.W //
�.X /

16

D 24�2.Y /
�.X /

16
mod 48:

4.3 Twisted connected sums

Now we sketch the basics of the twisted connected sum construction, ignoring many
details that are required to justify that the resulting G2 –structures are torsion-free (see
[24; 10]). The construction starts from a pair of asymptotically cylindrical Calabi–Yau
3–folds V˙ . We can think of these as a pair of (usually simply connected) 6–manifolds
with boundary S1 � †˙ , for †˙ a K3 surface. They are equipped with SU.3/–
structures .!˙; �˙/ such that on a collar neighbourhood C˙ Š Œ0; 1/� @V˙ of the
boundary

(24)
!˙ D dt ^ duC!I

˙;

�˙ D .du� idt/^ .!J
˙C i!K

˙ /;

where u is the S1 –coordinate, t is the collar coordinate and .!I
˙; !

J
˙; !

K
˙ / is an

SU.2/–structure on †˙ . The construction assumes that there is a diffeomorphism
f W †C!†� such that

f �!I� D !JC; f �!J� D !IC and f �!K� D�!KC :

Now define G2 –structures on S1 �V˙ by

'˙ D dv^!˙CRe�˙;

where v denotes the S1 –coordinate, and a diffeomorphism

F W @.S1 �VC/Š S1 �S1 �†C! S1 �S1 �†� Š @.S1 �V�/;
.v;u;x/ 7! .u; v; f .x//:

In the collar neighbourhoods C˙
'˙ D dv^ dt ^ duC dv^!I

˙C du^!J
˙C dt ^!K

˙ ;

so 'C and '� patch up to a well-defined G2 –structure ' on the closed manifold

(25) M D .S1 �VC/[F .S
1 �V�/:

One arranges that this G2 –structure can be perturbed to a torsion-free one. Because F

swaps the circle factors at the boundary, M is simply–connected if VC and V� are.
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4.4 A Spin.7/–bordism

We now proceed with the proof of Theorem 1.7, that the twisted connected sum
G2 –structures defined above always have � D 24. Consider the diffeomorphism

zF D Id��Id�f W S1 �S1 �†C! S1 �S1 �†�;
and the “untwisted connected sum” zM D .S1�VC/[ zF .S1�V�/. Then zM DS1�N ,
where N D VC [�Id�f V� . Let r denote the right angle rotation .v;u/ 7! .u;�v/
of S1 �S1 and g WD F ı zF�1 , and let Tr and Tg denote their mapping tori. Then
g D r � Id† , so Tg Š Tr �†.

To compute �.'/ of the twisted connected sum G2 –structure ' on M and prove
Theorem 1.7 we will construct a Spin.7/–bordism W to product G2 –structures on
zM tTg . Let

B˙ D f.y � 1
2
/2C t2 < 1

16
g � I �S1 �C˙;

W˙ D I �S1 �V˙ nB˙;

where y denotes the I –coordinate, and t the collar coordinate on C˙ � V˙ as before.
@W˙ is a union of five pieces, meeting in edges at fyg�S1�S1�† for yD0; 1

4
; 3

4
and

1: a “top” and “bottom” piece each diffeomorphic to S1 �V˙ , Œ0; 1
4
��S1 �S1 �†˙

and Œ3
4
; 1��S1 �S1 �†˙ , and E˙ WD f.y � 1

2
/2C t2 D 1

4
g � I �S1 �C˙ .

We form a “keyhole” bordism W by gluing some of these pieces: identify Œ0; 1
4
��

S1 � S1 �†˙ via Id � zF , and Œ3
4
; 1� � S1 � S1 �†˙ via Id � F . Then @W is a

disjoint union M t zM t Tg , where M is formed by gluing the top pieces of @WC
and @W� and zM by gluing the bottom pieces, while the keyhole boundary component
EC[E� can be identified with the mapping torus Tg .

It is easy to compute that H1.Tr / Š Z �Z2 , so �2.Tr / � 1. Since �.†/ D �16,
Lemma 4.3 implies that any product G2 –structure on Tr �† has � D 24, while a
product G2 –structure on zM has �D 0. To complete the calculation of �.'/ it remains
to show that W does indeed admit a suitable Spin.7/–structure, and to compute the
topological invariants of the Spin.7/–bordism W .

Lemma 4.4 �.W /D 0 and �.W /D�16.

Proof For the Euler characteristic, we use the usual inclusion-exclusion formula. The
spaces WC , W� and WC\W� all contain S1 factors, so

�.W /D �.WC/C�.W�/��.WC\W�/D 0:
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For the signature, we must apply Wall’s signature formula [32] because W is formed
by gluing WC and W� along only parts of boundary components. The piece of the
boundaries of WC and W� that we glue is X0 D .Œ0; 1

4
�t Œ3

4
; 1�/ � T 2 � †. Let

Z D @X0 D f0; 1
4
; 3

4
; 1g �T 2 �† (the edges of @W˙ ), and

X˙ WD @.W˙/ nX0 D .f0; 1g �S1 �V˙/tE˙;

where E˙ are the keyhole pieces as defined above.

Throughout this proof we will use real coefficients for all cohomology groups. We need
to identify the images A, B and C in H 3.Z/ of H 3.X0/, H 3.XC/ and H 3.X�/,
respectively; each is a Lagrangian subspace with respect to the intersection form . � ; � /
on H 3.Z/. The vector space K D A\ .B CC /=..A\B/C .A\C // admits the
following natural nondegenerate symmetric bilinear form q : if a; a0 2 A\ .BCC /

(representing Œa�; Œa0� 2K ) and a0 D b0C c0 , b0 2 B , c0 2 C , then we set

q.Œa�; Œa0�/ WD �.a; b0/:

Since W˙ both have signature 0, the signature formula [32, Theorem, page 271] implies
that the signature of W equals the signature of .K; q/.

We can identify Zy WD fyg � T 2 � † with S1 � @VC . On Zy , let v denote the
coordinate on the S1 factor from S1 � VC , and u the coordinate on the S1 factor
in @VC . Let �C D Œdv� and �� D Œdu� 2 H 1.Zy/. If w 2 H 4.†/ is positive then
�C ^ �� ^w 2 H 6.Zy/ is positive with respect to the orientation on Zy given by
the identification with S1 � @VC . The orientation on Z that we should use to define
its intersection form in the application of the signature formula is that induced as the
boundary of XC , ie

Z DZ1 t�Z 3
4
tZ 1

4
t�Z0:

Since the K3 surface † has no cohomology in odd degrees, the vector space H 3.Z/

decomposes as the sum of 8 copies of L WD H 2.†/: we let Ly˙ denote the image
of L!H 3.Zy/; ` 7! �˙ ^ `. (This means for example that if ˛˙ 2H 2.V˙/ then
the restriction of Œdv�^˛˙ 2H 3.W˙/ to Zy lies in LyC for y D 0; 1

4
, and in Ly˙

for y D 3
4
; 1.) For h 2H 3.Z/, let hy˙ 2 L denote the Ly˙ component under this

isomorphism. Then the intersection form on H 3.Z/ is given in terms of the inner
product h � ; � i on L by

(26) .h; h0/D ˝h1C; h01�
˛� ˝h1�; h01C

˛� ˝h 3
4
C; h03

4
�
˛C ˝h 3

4
�; h03

4
C
˛

C ˝h 1
4
C; h01

4
�
˛� ˝h 1

4
�; h01

4
C
˛� ˝h0C; h00�

˛C ˝h0�; h00C
˛
:
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Let N˙ denote the image of H 2.V˙/ in H 2.†/Š L, and T˙ � L the orthogonal
complement. By the long exact sequence of the pair .VC;S1�†C/ and Poincaré–
Lefschetz duality, the image of H 3.VC/ in H 3.S1�†/ is the annihilator of the image
of H 2.VC/ under the intersection pairing, which equals Œdu�^TC . We find that

(27)

AD fh 2H 3.Z/ j h0˙ D h 1
4
˙; h 3

4
˙ D h1˙g;

B D fh 2H 3.Z/ j h0C; h1C 2NC; h0�; h1� 2 TC; h 1
4
˙ D h 3

4
˙g;

C D fh 2H 3.Z/ j h0C; h1� 2N�; h0�; h1C 2 T�; h 1
4
˙ D˙h 3

4
�g:

Given an element of K represented by aD bCc , we can certainly find some h2A\B

with h1˙ D b1˙ . Replacing a by a� h, we may assume without loss of generality
that b1˙ D 0. Similarly we can assume c1˙ D 0, and then a1˙ D 0 too. Setting

n WD a0C; t WD a0�; nC WD b0C; tC WD b0�; n� WD c0C and t� WD c0�;

the remaining components are determined by (27). Thus we find that any element of
K can be represented by aD bC c such that

aD

0BB@
0 0

0 0

n t

n t

1CCA ; b D

0BBB@
0 0

1
2
.nC t/ 1

2
.�nC t/

1
2
.nC t/ 1

2
.�nC t/

nC tC

1CCCA ; c D

0BBB@
0 0

1
2
.�n� t/ 1

2
.n� t/

1
2
.n� t/ 1

2
.nC t/

n� t�

1CCCA
(where the top left matrix entry corresponds to the 1C component etc), and

n˙ 2N˙; t˙ 2 T˙; nD nCC n�; t D tCC t�:

Representing a pair of classes Œa�; Œa0� 2K by elements of that form, applying (26) and
rearranging gives

(28) 2q.Œa�; Œa0�/D�2.a; b0/D�hn;�n0Ct 0iC ht; n0Ct 0iC hn; 2t 0Ci � ht; 2n0Ci
D hn; n0iC ht; t 0iC hn; t 0C�t 0�iC ht;�n0CCn0�i:

Now consider

K0 D fŒa� 2K j n 2NC\N�; t 2 TCCT�g;
K˙ D fŒa� 2K j nD t 2N˙\ .TCCT�/g:

If we use (28) to evaluate the product of two elements of K0 , then the cross terms
hn; t 0i etc vanish, and q.Œa�; Œa0�/ D hn; n0i C ht; t 0i D hnC t; n0C t 0i. Hence K0 is
isometric to L, so it has signature �16.
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If Œa�2KC , then the RHS of (28) reduces to 2ht; n0�i, which vanishes if Œa0�2K0CKC .
Similarly K� is orthogonal to K0CK� . This implies in particular that KC and K�
are transverse, and since KC˚K� is a sum of isotropic spaces it has signature 0.

Finally, note that KC˚K� is a complement to K0 in K : given .n; t/2 .NCCN�/�
.TCCT�/ we can certainly subtract an element of NC\N� from n to ensure that
n 2 TCCT� , and then an element of TCCT� from t to ensure nD t . Hence the
orthogonal complement to K0 is precisely KC˚K� , and

�.W /D �.K/D �.K0/C �.KC˚K�/D�16:

To finish the proof of Theorem 1.7, we need to exhibit a Spin.7/–structure on W with
the right restrictions to the boundary components: the restriction to M should be the
twisted connected sum G2 –structure ' , while the restrictions to zM D S1 �N and
Tg D Tr �† should be product G2 –structures. We can define an SU.3/–structure on
N as follows. Let V 0� be the complement of the collar neighbourhood C� � V� . On
C� , set

!0 D dt ^ duC c�!
I�C s�!

J� ;

�0 D .du� idt/^ .c�!J� � s�!
I�C i!K� /;

where c� D cos �; s� D sin � for a smooth function � supported on C� , such that
� D �=2 on @V� . Take z! to be !C on VC , !0 on C� , and !� on V 0� , and define
z� analogously. Then .z!; z�/ is a well-defined SU.3/–structure on N , and z' D
d�^ z!CRe z� is a product G2 –structure on zM . Next we define the Spin.7/–structure
 on W . Let y be the I coordinate on each half. First, define � on I �C� to be
�=2 on a neighbourhood of Œ0; 1

4
� � @V� and have compact support in Œ0; 1

2
/ � C�

(see Figure 1), and use this to define forms z! and z� on I � V� . Since dy is a
global covector field on W0 , defining a Spin.7/–structure is equivalent to defining a
G2 –structure on each slice y D const. Take this to be 'C D d� ^!CCRe�C on
fyg �S1 �VC , and d� ^ z!CRe z� on fyg �S1 �V� . Then the restriction of  to
the boundary components M and zM are ' and �z' respectively, as desired.

Finally we show that the restriction of  to the “keyhole” boundary component
Tg DEC[E� is a product G2 –structure too. We first outline the argument, starting
from E˙ Š Œ0;˙���S1 �S1 �†˙ (the first factor corresponding to one half of the
circle f.y� 1

2
/2Ct2D 1

16
g) being embedded as a product inside I�C˙ . The restriction

of  to I �C˙ is a product of two SU.2/–structures, so the induced G2 –structure on
E˙ is a product of a coframe field on Œ0;˙���S1�S1 and an SU.2/–structure on †.
The coframes on the two copies of Œ0;˙���S1 �S1 patch up to a coframe on their
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WC W�

� D 0

� D �
2

M

zM D S1 � N

Tg D Tr �†

Id � F

Id � zF

y D 1

y D 0

Figure 1: The “keyhole” bordism W

union Tr , and the G2 –structure on Tg is the product of that with an SU.2/–structure
on †.

In order to fill in the details of this sketch we need to write down the structures
explicitly, which is rather cumbersome. To make the notation slightly more manageable
we will use a complex form as a shorthand for an ordered pair of real forms, so
that an SU.2/–structure can be defined by one complex and one real 2–form, or
a coframe field on a 3–manifold by one complex and one real 1–form. Also, we
identify both †C and †� with a standard K3 surface †, so that f corresponds to
Id† . Setting yD�1

2
c˛C 1

2
; t D 1

2
s˛ for ˛ 2 Œ0; �� lets us identify EC � I �CC with

Œ0; ���S1 �S1 �†. On I �CC ,  is the product of the SU.2/–structure

(29)
�
.dy � idt/^ .dvC idu/; dy ^ dt � dv^ du

�
on I�Œ0; 1/�S1�S1 and .!ICCi!JC; !KC / on †. The induced G2 –structure on EC is
given by contraction with the normal vector field c˛

@
@y
�s˛

@
@t

. The result is the product
of the same SU.2/–structure on † with the coframe field .ei˛.dvC idu/; 1

2
d˛/ on

Œ0; ���S1 �S1 .

Similarly, for ˛ 2 Œ�; 2�� we set y D �1
2
c˛ C 1

2
; t D �1

2
s˛ to identify Œ�; 2�� �

S1 � S1 �†� Š E� . On I � C� , the restriction of  is given by the product of
(29) on I � Œ0; 1/�S1 �S1 and .e�i�.!I�C i!J� /; !K� / on the tangent space to the
† factor. Contracting with the normal vector field c˛

@
@y
C s˛

@
@t

gives the coframe
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.e�i˛.dvC idu/;�1
2
d˛/ on Œ�; 2���S1 �S1 . Now, as product G2 –structures,

.e�i˛.dvC idu/;�1
2
d˛/ � .e�i�.!I�C i!J� /; !K� /

D .ei.��˛/.dvC idu/;�1
2
d˛/ � .!I�C i!J� ; !K� /

D .ei.˛��/.duC idv/; 1
2
d˛/ � .!ICC i!JC; !KC /:

Tg is formed by gluing the boundaries of Œ0; ���S1�S1�† and Œ�; 2���S1�S1�†
using .�; v;u;x/ 7! .�;u; v;x/ and .0; v;u;x/ 7! .2�; v;�u;x/. These maps preserve
the SU.2/–structure on the † factor, and match up the coframes .ei˛.dvCidu/; 1

2
d˛/

and .ei.˛��/.duC idv/; 1
2
d˛/ to a well-defined coframe on Tr (since �D 0 at ˛D �

and � D �=2 at ˛ D 0, 2� ). Thus the G2 –structure on Tg D Tr �† is a product,
completing the proof of Theorem 1.7.

4.5 Orbifold resolutions

For some of Joyce’s examples of compact G2 –manifolds constructed by resolving
flat orbifolds, the torsion-free G2 –structures are homotopic to twisted connected sum
G2 –structures, and thus have � D 24. It is proved in [25] that in some cases there
is even a connecting path of torsion-free G2 –structures, but that is irrelevant for the
calculation of � .

We have no general technique for computing � of orbifold resolution G2 –manifolds. We
note, however, that a small number of examples have b2.M /C b3.M / even, eg Joyce
[23, Section 12.8.4]. Those G2 –manifolds have �Q.M /—and hence �—odd.

5 The h–principle for coclosed G2–structures

We now prove Theorem 1.8, that coclosed G2 –structures satisfy the h–principle. We
first set up some notation, continuing from Section 2.1.

5.1 Positive 4–forms

For a vector space V of dimension 7, let ƒ3CV � and ƒ4CV � denote the space of
forms equivalent to '0 (as defined in (13)) and �'0 respectively. These are open
subsets of the spaces of forms. Any ' 2ƒ3CV � defines a G2 –structure, and thus an
inner product and orientation, and a Hodge star operator. This gives a nonlinear map
ƒ3CV � ! ƒ4CV �; ' 7! �' , which is two-to-one. The stabiliser of a � 2 ƒ4CV � is
isomorphic to G2�f˙1g, so � together with a choice of orientation on V determines
a G2 –structure [4, Section 2.8.3].
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We say that a G2 –structure on a 7–manifold M , defined by a positive 3–form ' 2
Secƒ3C.M /, is coclosed if the associated 4–form �D�' 2Secƒ4C.M / is closed. The
set of coclosed G2 –structures on an oriented manifold M is therefore the same as the
space of closed positive 4–forms Cloƒ4C.M /� Secƒ4C.M /. (Each section induces
a spin structure, and the space Gcc

2
.M / appearing in the statement of Theorem 1.8 is a

subset of Cloƒ4C.M / compatible with a fixed spin structure on M .)

5.2 Microextension

It is generally easier to prove h–principles for partial differential relations on open
manifolds than on closed manifolds. The Hirsch microextension trick is the strategy to
prove h–principles on closed manifolds by reducing the problem to an h–principle on
an open manifold of higher dimension.

In order to apply the microextension trick, we consider 4–forms on 8–manifolds such
that the restriction to every hypersurface is a positive 4–form. The key point that makes
the argument work is that not only is the set of such forms open, but moreover any
positive 4–form from a hypersurface can be extended this way. This is the feature that
enables us to prove the h–principle for coclosed G2 –structures on closed manifolds,
but not for, say, symplectic structures or closed G2 –structures.

Definition 5.1 For a vector space W of dimension 8, let

R.W /D f� 2ƒ4W � j �jV 2ƒ4CV � for every hyperplane V �W g:

If W D V ˚R and ' 2ƒ3CV � then the invariance of  D dt ^'C�' under Spin.7/
(see (14)), which acts transitively on the hyperplanes, shows that  2R.W /.

Lemma 5.2 R.W / is open in ƒ4W � .

Proof Let G ŠRP7 denote the Grassmannian of hyperplanes in W , and � W V!G

the tautological bundle. If f W ��1.U /!U �R7 is a local trivialisation, then ƒ4W ��
U !ƒ4.R7/� , .�;V / 7! fV �.�jV / is continuous, so the preimage of ƒ4C.R7/� is
open. Hence if � 2 R.W / then for each V 2 G there are open neighbourhoods
BV �ƒ4W � of � and CV �G of V such that �0jV 0 2ƒ4CV 0� for each �0 2BV and
V 0 2 CV . Since G is compact it can be covered by CV1

; : : : ;CVk
for finitely many

V1; : : : ;Vk 2G . Then BV1
\� � �\BVk

is an open neighbourhood of � in ƒ4W � and
contained in R.W /.
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For an 8–manifold N , let R.N /�ƒ4.N / be the subbundle with fibres R.TxN /�
ƒ4T �x N . Let CloR.N / � SecR.N / denote the subspace of closed 4–forms, and
Cloa R.N / the subspace of forms representing a fixed cohomology class a 2H 4

dR.N /.
Because the subbundle R.N /�ƒ4.N / is open and invariant under the natural action
of Diff.N /, [15, Theorem 10.2.1] immediately implies that Cloa R.N / ,! SecR.N /

is a homotopy equivalence if N is an open manifold.

5.3 The proof of Theorem 1.8

We prove the following stronger version of Theorem 1.8.

Theorem 5.3 Let M be a closed 7–manifold. Let Ik ! Secƒ4C.M /, s 7! �s and
Ik ! H 4

dR.M /, s 7! as be families such that �s 2 Cloas
ƒ4C.M / for all s 2 @Ik .

Then the family �s is homotopic in Secƒ4C.M /, relative to @Ik , to a family � 0s such
that � 0s 2 Cloas

ƒ4C.M / for all s 2 Ik .

In particular:

� Cloƒ4C.M / ,! Secƒ4C.M / is a homotopy equivalence.

� Cloaƒ
4C.M/ ,!Secƒ4C.M/ is a homotopy equivalence for each fixed a2H 4

dR.M/.

Proof Identify �s with its pull-back to M �R, and let

�s D �sC dt ^��s � td.��s/ 2 Secƒ4.M �R/:

Then there is � > 0 such that �s takes values in R over N WD M � .��; �/ for
all s 2 Ik , and �s 2 Cloas

R.N / for s 2 @Ik . If as � a is constant in s then it
follows immediately from [15, Theorem 10.2.1] that the family �s is homotopic in
SecR.N /, relative to @Ik , to a family �0s 2 Cloa R.N /. If we set � 0s D �0sjM then
� 0s 2 Cloaƒ

4C.M / for all s 2 Ik , and the restriction to M of the homotopy from �

to �0 gives a homotopy from � to � 0 in Secƒ4C.M /.

The proof of [15, Theorem 10.2.1] builds on [15, Proposition 4.7.4], which is stated
for the case when as is constant. However, the proof still works if as is allowed to
depend on s (see [15, Exercise in Section 10.2]).

6 The action of spin diffeomorphisms on �0G2.M /

Let .M; '/ be a closed connected spin 7–manifold with G2 –structure. In this section
we investigate the action of the group of spin diffeomorphisms of M on the set of
homotopy classes of G2 –structures on M :

�0G2.M /�Diff.M /! �0G2.M /; .Œ'�; f / 7! Œf �'�:
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The quotient is the set �0G2.M / of deformation classes of G2 –structures. To determine
the action for a specific spin diffeomorphism f W M Š M amounts to computing
the difference class D.'; f �'/ 2 Z: The existence of the �–invariant ensures that
D.'; f �'/D 24k for some integer k . In this section we relate the possible values of
k to the topology of M and in particular pM 2H 4.M /. At the end we provide the
general definition of the �–invariant.

6.1 The spin characteristic class pM

Recall that the classifying space B Spin is 3–connected and �4.B Spin/ŠZ. It follows
that H 4.B Spin/Š Z is infinite cyclic. A generator is denoted ˙p1

2
and the notation

is justified since for the canonical map � W B Spin! B SO we have ��p1 D 2p1

2
,

where p1 is the first Pontrjagin class. Given a spin manifold X , we write

pX WD
p1

2
.X / 2H 4.X /:

The following lemma is well known to experts.

Lemma 6.1 [11, Lemma 2.2(i)] For a closed spin 7–manifold M , pM 2 2H 4.M /.

For later use, we recall from Section 1 that d� denotes the greatest divisor of pM

modulo torsion, while do WDMaxfs j s;m2Z;m2s divides mpM g; we set d�DdoD0

if pM is torsion. Both are even by Lemma 6.1.

Example 6.2 If H 4.M /Š Z˚Z4 and pM 7! .8; 2/ then d� D 8 while do D 4.

6.2 Translations of G2–structures and mapping tori

Given .M; '/ and a spin diffeomorphism f W M Š M , we wish to calculate the
difference element D.'; f �'/ 2 Z. Note that (given ' ) the homotopy class Œf �'� 2
�0G2.M / depends only on the pseudoisotopy class of f . For suppose that F is
pseudoisotopy between diffeomorphisms f0 and f1 , ie a diffeomorphism F W M �I Š
M � I such that F jM�fig D fi for i D 0; 1. Then contracting the pull-back F� of
the product Spin.7/–structure  D dt ^'C�' with @

@t
and restricting to the slices

M�ftg defines a homotopy between f �
0
' and f �

1
' . On the other hand, Proposition 6.3

shows that D.'; f �'/ does not depend upon the G2 –structure ' . Hence we obtain a
well-defined function

DM W z�0Diff.M /! Z; Œf � 7!DM .f / WDD.'; f �'/;

where z�0Diff.M / denotes the group of pseudoisotopy classes of spin diffeomorphisms
of M .
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The integer DM .f / measures the translation action of f on the set of homotopy
classes of G2 –structures. Next we show how to calculate DM .f / using the mapping
torus of f :

Tf WD .M � Œ0; 1�/=.x; 0/� .f .x/; 1/:
Since f is a spin diffeomorphism the closed 8–manifold Tf admits a spin structure.
We choose a spin structure and let Tf to denote the corresponding 8–dimensional spin
manifold: no confusion shall arise since we are interested only in the characteristic
number

p2.f / WD hp2
Tf
; ŒTf �i 2 Z;

which depends only on the oriented diffeomorphism type of Tf since 2pTf D p1.Tf /

and H 8.Tf /ŠZ (in fact pTf is independent of the choice of spin structure by Čadek,
Crabb and Vanžura [8, page 170]). Therefore p2.f / is an invariant of the pseudoisotopy
class of f and we define the function

p2W z�0Diff.M /! Z; Œf � 7! p2.f /:

The following proposition proves Proposition 1.10 and shows how the mapping torus
Tf can be used to compute the difference class D.'; f �'/.

Proposition 6.3 The function DM W z�0Diff.M /! Z is a homomorphism given by

D.'; f �'/D 3 �p2.f /

28
D 24 yA.Tf /:

Proof From the definition of D.'; '0/ in Section 3 it is clear that D.f �'; f �'0/D
D.'; '0/ for any spin diffeomorphism f and any pair of G2 –structures ' and '0 on
M . Now for two spin diffeomorphisms f0; f1W M ŠM , the affine property (5) of D

gives

D.'; .f1 ıf0/
�'/DD.'; f �0 '/CD.f �0 '; f

�
0 .f

�
1 '//DD.'; f �0 '/CD.'; f �1 '/:

This shows that DM is a homomorphism.

Turning to the mapping torus, we can use Lemma 1.5 to compute D.'; f �'/ by treating
the product M�Œ0; 1� together with the embeddings .Id; 0/ and .f; 1/W M ,!M�Œ0; 1�
as a Spin.7/–bordism Wf from .M; f �'/ to .M; '/. Clearly the manifold Wf

obtained by closing up the bordism as in (20) is nothing other than the mapping torus
Tf , so (6) gives

D.f �'; '/D�eC.Wf /D�eC.Tf /:
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By Proposition 2.4, eC.Tf /D 1
16
.4p2

Tf
� 4p2C 8e/ and using the signature theorem

to eliminate p2 from this equation we have

D.'; f �'/D eC.Tf /D
3p2

Tf

28
� 45�.Tf /

28
C �.Tf /

2
:

Since Tf is a mapping torus both �.Tf / and �.Tf / vanish which proves the first
equality of the proposition. Now the second equality follows from Corollary 2.5.

Since Proposition 6.3 determines DM in terms of p2 , the proofs of Theorems 1.11
and 1.12 are completed by quoting the following result. Here bM denotes the torsion
linking form on Tor H 4.M /.

Theorem 6.4 [11, Definition 4.4 and Corollary 4.17(iv)] For any spin 7–manifold
M , there is an r 2 f0; 1; 2g depending only on .H 4.M /; bM ;pM / such that

(30) p2.Diff.M //� lcm.224; 2r do.M //Z;

with equality if M is 2–connected.

The next subsection summarises some ingredients of the proof of this theorem. However,
before we do so let us prove an elementary special case of (30) in order to make the
appearance of do.M / less mysterious.

Lemma 6.5 Let M be a closed spin 7–manifold and f a spin diffeomorphism of M .
Then

(31) p2.f / 2 lcm.224; do.M //Z:

Proof First recall (8): For a closed 8–dimensional spin manifold X , combining the
definitions (16) of the L–genus and the yA–genus gives

p2
X � �.X /D 8 � 28 yA.X /:

Since the mapping torus Tf is a closed 8–dimensional spin manifold with �.Tf /D 0

we deduce that

(32) p2
Tf
2 8 � 28 �Z:

From the definition of do there is a positive integer m such that m2do divides mpM .
Applying Lemma 6.6 below with x DmpTf and s Dm2do.M / gives that m2do.M /

divides m2p2
Tf

and hence

p2
Tf
2 do.M / �Z:
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Lemma 6.6 Let Tf be the mapping torus of f W M Š M and i W M ! Tf the
inclusion. If x 2H 4.Tf / and s 2 Z divides i�x then s divides x2 2H 8.Tf /Š Z.

Proof Consider the following fragment of the long exact cohomology sequence for
the mapping torus Tf with Zs coefficients:

H 3.M IZs/
Id�f �����!H 3.M IZs/

@�!H 4.Tf IZs/
i��!H 4.M IZs/

Id�f �����!H 4.M IZs/:

For a space X , let �sW H�.X /!H�.X IZs/ denote reduction mod s . By assumption
i��s.x/D 0 and so �s.x/ lies in the image of @. But the cup-product

H 4.Tf IZs/�H 4.Tf IZs/! Zs

vanishes on Im.@/. Hence �s.x/
2D�s.x

2/D 02H 8.Tf IZs/ and so s divides x2 .

6.3 Diffeomorphisms of spin 7–manifolds

We shall now summarise the main ideas of the proof of Theorem 6.4 from [11]. For
this recall that an almost-diffeomorphism is a homeomorphism that is smooth away
from a finite set of points, and we denote the group of almost-diffeomorphisms of
a spin manifold M that preserve the spin structure by ADiff.M /. Below we recall
the technical notion of a Gauss refinement from [11, Section 2.5] and how it detects
aspects of the action of diffeomorphisms and almost-diffeomorphisms. This leads to a
generalisation of the Eells–Kuiper invariant [11, Section 2.6], and in the next subsection
we use these ideas in the general definition of the �–invariant of a G2 –structure.

Let M be a closed spin 7–manifold as usual. We can associate to it the invariants
pM , bM and qı

M
, where bM is the torsion linking form on Tor H 4.M /, and qı

M
is

a “family of quadratic refinements” of bM [11, Section 2.4]. Group isomorphisms
F act naturally on these objects by pull-backs, eg F #pM is simply F�1.pM /. For
any spin diffeomorphism f of M , the induced action f � on H 4.M / preserves these
invariants, ie

.f �/#pM D pM ; .f �/#bM D bM ; .f �/#qıM D qıM I
in fact, this remains true even if f is merely an almost-diffeomorphism or even a
homeomorphism [11, Theorem 1.2]. We define a function

P W Aut.H 4.M /; bM ;pM /! Z=2d�.M /Z

as follows [11, (39)]. Let

(33) Sd� WD fk 2H 4.M / j pM � d�k is torsiong:
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For F 2 Aut.H 4.M /; bM ;pM /, pick k 2 Sd� , let t WD F.k/� k , and

P .F / WD d2
�bM .t; t/� 2d�bM .pM�d�k; t/ mod 2d�.M /Z:

Then [11, Proposition 4.16] states that

(34) p2.f /D P .f �/ mod 2d�.M /:

Meanwhile [11, (42)] states that

(35) Im P D 2r do.M /Z=2d�.M /Z

for some r.H 4.M /; bM ;pM / 2 f0; 1; 2g, and r D 1 unless H 4.M / has 2–torsion.
Combined with (32) this implies (30), and hence Theorem 1.11.

Further, if M is 2–connected then [11, Proposition 3.10] states that there exist f 2
ADiff.M / with f �D Id on H 4.M / and p2.f /D2 zd�n for any n2Z; as in Section 1,
zd� WD lcm.4; d�/. It is well known that f is pseudoisotopic to a diffeomorphism if
p2.f / is divisible by 224 [11, Lemma 3.7(iii)], so one can find f 2 Diff.M / such
that p2.f /D lcm.224; 2 zd�/. Hence equality holds in (30), completing the proof of
Theorem 6.4 (and hence Theorem 1.12).

A key step in the above argument is that p2.f / mod 2d� can be determined purely al-
gebraically, from the action f � on H 4.M /. A related fact is that p2.f / mod 2 zd� can
be determined by the action of f � on Gauss refinements associated to spin coboundaries
of M . A Gauss refinement of the quadratic linking family qı

M
of M is a function

gW Sd� !Q=1
4
d�Z

whose mod Z reduction is determined by qı
M

, and which satisfies

g.kC t/�g.k/D d2
�bM .t; t/� 2d�bM .pM�d�k; t/

8
mod 1

4
d�Z:

For our present purposes the significance of these conditions is that the difference
between two Gauss refinements is just a constant in Z=1

4
d�Z, and if f 2 ADiff.M /

then

(36) g� .f �/#g D p2.f /

8
mod 1

4
zd� ;

where F #g WD g ıF for any isomorphism F of H 4.M /.

Let W be a 3–connected coboundary of M , and j W H 4.W /!H 4.M / the restriction
map. We can associate a Gauss refinement gW to W by setting

gW .j n/ WD .pW � d�n/2� �.W /

8
mod 1

4
d�Z
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for any n 2H 4.W / such that j n 2 Sd� (then the image of pW �d�n in H 4.W IQ/
is supported away from the boundary, so its cup-square in H 8.W ;M IQ/ŠQ is well-
defined) [11, (18)]. The key property of gW is that if f W M!M 0 is a diffeomorphism
and W 0 is another 3–connected coboundary of M 0 then

(37) gW 0 � .f �/#gW D
p2

X
� �.X /

8
D 28 yA.X / mod 1

4
d�Z;

where X is the closed spin manifold .�M /[f M 0 [11, (24)]. In particular, the mod
28 reduction of gW is independent of the choice of spin coboundary W . This defines
a generalisation of the Eells–Kuiper invariant,

�M W Sd� !Q= gcd.28; 1
4
d�Z/Z;

which distinguishes between gcd.28;Num.2r do=8// different smooth structures on
the topological manifold underlying M [11, Corollary 4.14]. Together with the homeo-
morphism invariants .H 4.M /; qı

M
;pM /, it classifies 2–connected 7–manifolds up to

diffeomorphism.

Theorem 6.7 [11, Theorem 1.3] For a pair of closed 2–connected 7–manifolds
M0 and M1 and an isomorphism F W H 4.M1/!H 4.M0/, there is a diffeomorphism
f W M0ŠM1 such that FDf � if and only if .qı

M1
; �M1

;pM1
/DF #.qı

M0
; �M0

;pM0
/.

6.4 The � –invariant

We now give the definition of the � –invariant of a G2 –structure ' , which is a function
�.'/W Sd� ! Q=3 zd�Z (with Sd� as in (33)). We also explain how the pair .�; �/
distinguishes between 24Num.2r do.M /=224/ deformation equivalence classes of G2 –
structures on a spin 7–manifold M . This entails Theorem 1.11, and when M is
2–connected combining with Theorem 1.12 implies Theorem 1.17, that .�; �/ is a
complete invariant of �0G2.M /.

Definition 6.8 Let ' be a G2 –structure on a closed 7–manifold with Spin.7/–co-
boundary W . The �–invariant of ' is the function

�.'/ WD 7.�.W /� 3�.W //C 12gW W Sd� !Q=3 zd�Z:

Combining (2) and (37) shows that �.'/ is diffeomorphism-invariant (and in particular
independent of the choice of W ): if f W M 0!M is a diffeomorphism then

.f �/#.�.f �'//D �.'/:
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The relations

2D.'; '0/D �.'0/� �.'/ mod 48;

14D.'; '0/D �.'0/� �.'/ mod 3 zd�

for G2 –structures ' and '0 on the same manifold M mean that .�; �/ determine
D mod lcm.24;Num.3 zd�=14//. Moreover, these relations help us see that precisely
lcm.24;Num.3 zd�=14//D 24Num.d�=112/ pairs .�; �/ are realised, namely the ones
satisfying

� D �Q.M / mod 2;(38a)

� � 7�

12
D �M mod gcd.28; 1

4
d�Z/:(38b)

However, this does not mean that there are 24 Num.d�=112/ different deformation
equivalence classes, as one has to take into account that f 2Diff.M / acts nontrivially
on Gauss refinements and hence on � : (36) implies

�.f �'/� �.'/D 3
2
p2.f / mod 3 zd� :

Using Theorem 6.4, the mod 2r�13do.M / reductions of � of deformation equivalent
G2 –structures on M must still be equal. Hence we can use .�; �/ to distinguish
between at least

lcm
�
24;Num

�2r�13do.M /

14

��
D 24 Num

�2r do.M /

224

�
deformation equivalence classes. For 2–connected M this is precisely the number of
deformation equivalence classes on M according to Theorem 1.12, so .�; �/ distin-
guishes between all the classes, completing the proof of Theorem 1.17.

Given a G2 –structure, we can use (38b) to recover the Eells–Kuiper invariant of the
underlying smooth manifold from .�; �/. Hence Theorem 6.7 implies that we can
classify closed 2–connected manifolds with homotopy classes of G2 –structures using
the quintuple .H 4.M /; qı

M
;pM ; �; �/.

Theorem 6.9 Let Mi be closed 2–connected 7–manifolds, and 'i G2 –structures
on Mi . Given an isomorphism F W H 4.M1/!H 4.M0/, there is a diffeomorphism
f W M0 Š M1 such that F D f � and f �'1 is homotopic to f �'0 if and only if
�.'0/D �.'1/ and F #.pM0

; qı
M0
; �.'0//D .pM1

; qı
M1
; �.'1//.
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