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Fuchsian groups, circularly ordered groups and dense
invariant laminations on the circle

HYUNGRYUL BAIK

We propose a program to study groups acting faithfully on S1 in terms of numbers
of pairwise transverse dense invariant laminations. We give some examples of groups
that admit a small number of invariant laminations as an introduction to such groups.
The main focus of the present paper is to characterize Fuchsian groups in this scheme.
We prove a group acting on S1 is conjugate to a Fuchsian group if and only if it
admits three very full laminations with a variation on the transversality condition.
Some partial results toward a similar characterization of hyperbolic 3–manifold
groups that fiber over the circle have been obtained. This work was motivated by
the universal circle theory for tautly foliated 3–manifolds developed by Thurston,
Calegari and Dunfield.
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This paper is dedicated to the memory of William Thurston (1946–2012)

1 Introduction

We say a group is CO if it is circularly orderable. See Calegari [2] for general
background for circular ordering of groups. It is well known that a group is CO if and
only if it acts faithfully on S1 . In this paper, we only talk about circularly ordered
groups. More precisely, a group G comes with an injective homomorphism from
G to HomeoC.S1/, where HomeoC.S1/ is the group of all orientation-preserving
homeomorphisms of S1 . Abusing notation, we identify G with its image under
this representation and regard it as a subgroup of HomeoC.S1/, ie we consider the
subgroups of HomeoC.S1/. There is a reason why we emphasize this: the properties
we will define may depend on the circular order on a group. So, if we just talk about an
abstract group which is circularly orderable without specifying the actual circular order,
there is a possible ambiguity. Since we care only about topological dynamics, the groups
are considered up to topological conjugacy, ie conjugacy by elements of HomeoC.S1/.

Circularly orderable groups arise naturally in low-dimensional topology. Thurston
showed that for a 3–manifold M admitting a taut foliation, �1.M / admits a faithful
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action on the circle (which is now called a universal circle) in his unfinished manu-
script [14]. In [4], Calegari and Dunfield completed the construction and generalized
this to 3–manifolds admitting essential laminations with solid torus guts. Universal
circles from taut foliations come with a pair of transverse dense invariant laminations.
This provides a motivation to study those groups acting on S1 with some invariant
laminations. We suggest a new classification of the subgroups of HomeoC.S1/ in
terms of the number of dense invariant laminations they admit. In this paper, we mainly
focus on the case of groups acting faithfully on S1 with two or three different very full
invariant laminations. We also give motivation for this classification by demonstrating
interesting examples and questions.

By a Fuchsian group, we mean a torsion-free discrete subgroup of PSL2.R/ (up to
conjugacy by an element of HomeoC.S1/). Recall that PSL2.R/ is naturally identified
with the group of orientation-preserving isometries of the hyperbolic plane H2 . For a
collection C of G –invariant laminations, being pants-like means that a pair of leaves
from two different laminations in C share a common endpoint if and only if the shared
endpoint is the fixed point of a parabolic element of G . For other terminologies, see
Section 2.

Main theorem Let G be a torsion-free discrete subgroup of HomeoC.S1/. Then G

is a Fuchsian group such that H2=G is not the thrice-punctured sphere if and only if G

admits a pants-like collection fƒ1; ƒ2; ƒ3g of three very full G –invariant laminations.

As we pointed out earlier, saying a group G is Fuchsian means G is conjugate to a
group G0 � PSL2.R/ by an element of HomeoC.S1/, and H2=G in the statement
of the theorem should be understood as H2=G0 . The theorem provides an alternative
characterization of Fuchsian groups in terms of invariant laminations. Note that we do
not assume that G is finitely generated. The following is an immediate corollary of the
Main theorem.

Corollary Let G be a torsion-free discrete subgroup of HomeoC.S1/. Then G is
a Fuchsian group such that H2=G has no cusps if and only if G admits a collection
fƒ1; ƒ2; ƒ3g of three very full G –invariant laminations such that no leaf of ƒi has a
common endpoint of a leaf of ƒj for i ¤ j .

In Section 3, we present some explicit examples of groups acting on the circle with a
specified number of dense invariant laminations. The most interesting case is when
a group has exactly two dense invariant laminations. A class of examples will be
constructed by considering pseudo-Anosov homeomorphisms of hyperbolic surfaces.
One should note that those examples are not Fuchsian groups. In some sense, the
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Main theorem shows that there are clear differences between having two invariant
laminations and having three invariant laminations as long as the structure of the
invariant laminations is restricted enough.

Nevertheless, groups admitting a pant-like collection of two very full laminations are
already interesting. We study those groups in Section 8 and the following theorem is a
summary of the results.

Theorem Let G be a torsion-free discrete subgroup of HomeoC.S1/. Suppose G

admits a pants-like collection of two very full laminations fƒ1; ƒ2g. Then an element
of G either behaves like a parabolic or hyperbolic isometry of H2 or has even number
of fixed points alternating between attracting and repelling. In the latter case, one
lamination contains the boundary leaves of the convex hull of the attracting fixed points
and the other lamination contains the boundary leaves of the convex hull of the repelling
fixed points. If we further assume that G has no element with a single fixed point, then
G acts faithfully on S2 by orientation-preserving homeomorphisms and each element
of G has two fixed points on S2 .
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Joel Hass, John Hubbard, Michael Kapovich and Dylan Thurston for many fruitful
conversations. I would like to especially thank William Thurston for suggesting the
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to Eugene Oh and I greatly appreciate them. I also thank the department of Mathematics
at UC Davis for the hospitality in 2012–13. The author finally thanks the referees
for careful reading and useful comments and corrections, and for contributing some
clarification to the proofs. This work is part of the author’s PhD thesis at Cornell
University. The research was partially supported by William Thurston’s NSF grant
DMS-0910516.

2 Definitions and set-up

In the present paper, a group is always assumed to be countable. A faithful (orientation-
preserving) action of a group G on the circle is an injective homomorphism

�W G! HomeoC.S1/:

Once we fix the action, we often identify G with its image under � . For general
background on group actions on the circle, we suggest reading Ghys [9].

The ideal boundary of the hyperbolic plane H2 is topologically a circle. A geodesic
lamination of H2 is a disjoint union of geodesics which is a closed subset of H2 . If
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Figure 1: On the left, a geodesic lamination on H2 with four leaves. On the
right, one can see the corresponding lamination of the circle after removing
the geodesics and leaving only the endpoints.

one forgets about actual geodesics of a geodesic lamination of H2 and considers only
the endpoints of geodesics on the ideal boundary, one gets a set of pairs of points of
the circle. A lamination on the circle is defined as a set of pairs of points of the circle
to capture this endpoint data of a geodesic lamination of H2 (see Figure 1).

Two pairs .p1;p2/, .q1; q2/ of unordered two distinct points of S1 are called linked
if the chord joining p1 to p2 crosses the chord joining q1 to q2 in the interior of
the disk bounded by S1 . The space of all unordered pairs of two distinct points of
S1 is ..S1 � S1/ n �/=.x;y/ � .y;x/, where � D f.x;x/ 2 S1 � S1g. This is
homeomorphic to an open Möbius band and we will denote this space by M. A group
action on S1 induces an action on M in the obvious way; this action is not minimal
in our examples, since otherwise there could not be any invariant laminations.

A lamination on S1 is a set of unordered and unlinked pairs of two distinct points of
S1 which is a closed subset of M. The elements of a lamination (which are pairs of
points of S1 ) are called leaves of the lamination. If a leaf is the pair of points .p; q/,
then the points p; q are called ends or endpoints of the leaf. For a lamination ƒ, let
Eƒ or E.ƒ/ denote the set of all ends of leaves of ƒ. We also use M to denote the
closed Möbius band and the points on @M WDM nM are called degenerate leaves,
which are single points of S1 .

Alternatively, one can identify the circle with the ideal boundary of H2 and consider
only the ends of leaves of some geodesic lamination of H2 . Every lamination on S1 is
of this form. Even though the group action on S1 does not extend to the interior of the
disk, it is usually better to picture a lamination of S1 as a geodesic lamination of H2 .
Consider a connected component of the complement of the lamination in the open
disk. Its closure in the closed disk is called a gap or a complementary region of the
lamination. In other words, a gap of a lamination ƒ of S1 is the metric completion of
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a connected component of the complement of the corresponding lamination in D with
respect to the path metric. We will use D to denote the open disk bounded by S1 where
the groups we consider act. The disk D will be freely identified with the Poincaré disk
model of H2 , often without mention if there is no confusion.

Once a group G acts on S1 by homeomorphisms, there is a diagonal action on M. A
lamination ƒ of S1 is said to be G –invariant if it is an invariant subset of M under
this induced action of G .

We give names to some properties of laminations.

Definition 2.1 Let G be a group acting on S1 faithfully. A G –invariant lamination
ƒ is called

� dense if the endpoints of the leaves of ƒ form a dense subset of S1 ,

� very full if all the gaps of ƒ are finite-sided ideal polygons,

� minimal if the orbit closure of any leaf of ƒ is the whole ƒ,

� totally disconnected if no open subset of D is foliated by ƒ,

� solenoidal if it is totally disconnected and has no isolated leaves,

� boundary-full if the closure of the lamination in M contains the entire @M.

In fact, all properties above except the minimality are independent on the group action.
Hence we use those notions for laminations on S1 even when we do not have a group
action in consideration. In this paper, very full laminations are of a particular interest.
See Figure 2 for an example.1

Figure 2: The Farey diagram is a famous example of very full laminations.

1This figure is borrowed from Lars Madsen at Aarhus University.
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A continuous map f from S1 to itself of degree 1 is called a monotone map if the
pre-image of each point in the range under f is connected. Let �1W G!HomeoC.S1/

and �2W G! HomeoC.S1/ be faithful group actions on S1 . We say that �1 is semi-
conjugate to �2 if there exists a monotone map f W S1! S1 such that f ı �1.g/D

�2.g/ ıf for all g 2G . If f could be taken to be a homeomorphism, then �1 is said
to be conjugate to �2 . Note that a semi-conjugacy (or rather a monotone map) gives a
map from M to M. For general background on the laminations on S1 and monotone
maps, we highly recommend Calegari [3, Chapter 2].

A group G is said to act minimally on S1 if all orbits are dense. One immediate
consequence of an action being minimal is that the only non-empty closed G –invariant
subset of S1 is the entire S1 . Note that the minimality of an action of a group G is
not equivalent to the minimality of a G –invariant lamination.

Some elements of HomeoC.S1/ are particularly interesting to us.

Definition 2.2 For g2HomeoC.S1/, let Fixg be the fixed-point set fx2S1Wg.x/Dxg.
An element g of HomeoC.S1/ is said to be:

� Elliptic if jFixgj D 0.

� Parabolic if jFixgj D 1.

� Hyperbolic if jFixgjD2 and one fixed point is attracting and the other is repelling.

� Pseudo-Anosov-like if there exists m> 0 such that jFixgm j D 2n for some n> 1

and the elements of Fixgm alternate between attracting and repelling fixed points
along S1 .

Once a group G �HomeoC.S1/ is given, a point p on S1 is called a cusp point if p

is the fixed point of a parabolic element of G .

Once we consider more than one lamination at the same time, we need some more
definitions.

Definition 2.3 Two laminations ƒ1; ƒ2 of S1 are transverse if they have no leaf in
common, ie ƒ1\ƒ2 D∅ as subsets of M. They are said to be strongly transverse if
no leaf of ƒ1 shares any endpoints with a leaf of ƒ2 , ie E.ƒ1/\E.ƒ2/D∅.

For a collection of very full laminations, each of which is invariant under some group
G , one can define a notion that lies between pairwise transversality and pairwise
strong-transversality. The motivation of the following definition will be explained later.
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Definition 2.4 Let G be a group acting on S1 faithfully and let C D fƒ˛g˛2J be a
collection of G–invariant very full laminations, where J is an index set. Then C is
called pants-like if the laminations in C are pairwise transverse, and each point p 2 S1

is either fixed by a parabolic element of G or an endpoint of a leaf of at most one
lamination ƒ˛ . In other words, for ˛¤ˇ 2J , E.ƒ˛/\E.ƒˇ/Dfcusp points of Gg.

For a group G � HomeoC.S1/, we say G is COLn for some n 2 N if it admits n

pairwise transverse dense invariant laminations. We use COL1 to denote the groups
which admit an infinite collection of transverse dense invariant laminations.

By definition, we have the inclusions

COL1 � COL2 � COL3 � � � � :

We say a group is strictly COLn if it is COLn but not COLnC1 . A COLn group G is
said to be pants-like COLn if the collection of n pairwise transverse dense G –invariant
laminations could be chosen to be pants-like.

For an abstract group G and an injective homomorphism �W G! HomeoC.S1/, � is
called a COLn –representation if �.G/ is a COLn group. One of our aims is to deduce
interesting properties of a COLn group from the dynamical and geometric data of its
invariant laminations.

We will consider the following natural questions.

Question 2.5 Is the set of COLi groups strictly bigger than the set of COLiC1 groups
for any i ? Can one characterize those groups in an interesting way?

Question 2.6 Is COLn nonempty for all n?

We will get partial answers to Question 2.5 and provide an affirmative answer to
Question 2.6. Our main result of the present paper is to show that pants-like COL3

groups are Fuchsian.

3 Groups with specified number of invariant laminations

3.1 Strictly COL1 groups

In this section, we construct an example of a strictly COL1 group. Let R be a rigid
rotation by an irrational angle and pick a point p 2 S1 . Let Op be the orbit of p

under the forward and backward iterates of R. Then it is a countable dense subset
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of S1 . Let pi D Ri.p/, where Ri is the i th iterate of R. We blow up all points
in Op and replace them by intervals. More precisely, replace pj by an interval of
length 1=2jj j , and call this interval Ij . Since the sum of the lengths of the Ij is finite,
we get, again, a circle. The action of R on the new circle is the same as in the original
circle in the complements of the Ij and R.Ij /D IjC1 is defined as a unique affine
homeomorphism between closed intervals for all j . This type of process is called a
Denjoy blow-up (for instance, see [3, Construction 2.45]). We use zR to denote the new
action obtained from R as above.

Now consider this circle as @H2 . For each j , connect the endpoints of Ij by a geodesic
of H2 . Then we get a lamination, and call it ƒR , which is invariant under the cyclic
group GR generated by zR. Let PR be the unique complementary region of ƒR which
does not contain any open arc of S1 . Then the following lemma holds.

Lemma 3.1 No GR –invariant lamination meets the interior of PR .

Proof Let l be a leaf intersecting the interior of PR . The GR –action is semi-conjugate
to R via the monotone map f W S1! S1 that collapses each Ij , reversing the process
of a Denjoy blow-up. If the orbit closure of l under the GR –action gives a GR –
invariant lamination, then so does the orbit closure of f .l/ under R–action. Since l

intersects the interior of PR , f .l/ is not degenerate. But R cannot have any invariant
lamination, since an irrational rotation maps any pair to a linked pair under some power
of R, a contradiction. Hence the orbit closure of l under the GR –action cannot be a
lamination. This implies that no invariant lamination of GR has a leaf intersecting the
interior of PR .

ƒR is not a dense lamination. We can fix this by putting infinitely many copies of ƒR

together in a nice way.

Pick a leaf l of ƒR and consider a larger group: the maximal orientation-preserving
subgroup G of the group G0D h zR; r.l/i generated by zR and the reflection r.l/ along
the leaf l . Note that G is simply G0 \HomeoC.S1/. We claim that G is strictly
COL1 . The orbit closure of l under the G0–action is a dense lamination, call it ƒ.R/.
The images of PR under the elements of G0 tessellate the open disk.

Suppose there exists another G–invariant lamination yƒ and let L be a leaf of yƒ
that is not contained in ƒ.R/. Then L must intersect the interior of some gap P .
But the action of Stab.P / is like the one of GR by construction where Stab.P / D
f
 2 G W 
 .P / D Pg. By Lemma 3.1, the Stab.P /–orbit of L has linked elements
so yƒ cannot be a lamination. Hence ƒ.R/ is the only invariant lamination of G0 .
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There are some questions we can ask. If we take a rotation R0 by a different irrational
angle, are the ƒ.R/ topologically conjugate to ƒ.R0/? What can we say about the
structure of the group G? It would be very interesting to know what makes the
difference between strictly COL1 and COL2 .

3.2 Strictly COL2 groups

We shall now construct an example of a strictly COL2 group. Let S be a closed
orientable surface with genus g � 2. Thus it admits H2 as its universal cover. Let
�W S ! S be a pseudo-Anosov homeomorphism from S to itself. Since H2 is
simply connected, � lifts to z�W H2 ! H2 . Since z� is a quasi-isometry, it extends
continuously to @H2 . The restriction of this extension to the boundary circle gives
a homeomorphism �W S1 ! S1 , where S1 D @H2 . Let G� be the infinite cyclic
subgroup of HomeoC.S1/ generated by � .

It is well known that any pseudo-Anosov homeomorphism of a hyperbolic surface has
a pair of transverse invariant laminations, the stable and unstable laminations. One
can obtain them as limits of images of a simple closed curve under the forward and
backward iterates of the pseudo-Anosov map. Let ƒ˙ denote those two laminations
on S invariant under � . Then these laminations lift to laminations zƒ˙ in H2 invariant
under z� . Then the endpoints of the leaves of zƒ˙ form laminations ƒ˙ in S1 invariant
under � .

Lemma 3.2 ƒ˙ are dense in S1 .

Proof It suffices to show that the endpoints of the lifts of any leaf of ƒ˙ are dense
in S1 . This is obvious from the following easy observation. Let 
 be any leaf of ƒ˙ .
For arbitrary geodesic l of H2 and for a half-space H bounded by l , some fundamental
domain of S should intersect H . Hence one of the lifts of 
 intersects H and then one
end hits the arc of @1H2 bounded by the endpoints of l , on the same side as H . This
shows that for arbitrary open interval of S1 , some leaf has one endpoint in there.

Proposition 3.3 The G WD �1.S/Ì h�i–action on @1H2 is strictly COL2 .

Proof Let ƒ be an invariant lamination under G . Then, it projects down to a lam-
ination on S , which is invariant under � . However, ƒC or ƒ� are minimal and
filling (meaning that every simple closed curve on S intersects the lamination). Hence,
the projected lamination on S contains either ƒC or ƒ� as a sub-lamination. In
particular, ƒ cannot be transverse to both ƒC and ƒ� .
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We just saw that one can produce a large family of examples of strictly COL2 groups
via pseudo-Anosov surface homeomorphisms.

Note that we also saw that any group containing irrational rotations is an example of a
strictly COL0 group. The results of this section prove the following proposition.

Proposition 3.4 CO © COL1 © COL2 © COL3

3.3 COL1 groups

We have seen some examples of groups that have a very small number of invariant
laminations. In the other extreme, there are groups that admit infinitely many invariant
laminations.

Proposition 3.5 COL1 is nonempty.

Proof Let S be a closed hyperbolic surface. One can find infinitely many non-
homotopic simple closed curves. In the homotopy class of each simple closed curve,
there exists a unique simple closed geodesic. Identify the universal cover of S with H2 .
The lift of a simple closed geodesic becomes a geodesic lamination, that is invariant
under the action of �1.S/. By the same argument as in the proof of Lemma 3.2,
its endpoints form a dense subset of S1 . Now we found an infinite family of dense
invariant laminations of S1 where the action of �1.S/ is the restriction of the natural
extension of the deck transformation action on @1H2 . By construction, they are
obviously transverse to each other.

As we saw in the proof of above proposition, a surface group admits an infinite collection
of transverse dense invariant laminations. Hence they lie in COL1 . There are two
natural questions to ask.

Question 3.6 Is COL1 the same as
T
n

COLn ?

Question 3.7 Are there examples of COL1 other than surface groups?

For Question 3.6, if we add a condition to the definition of COLn that the n transverse
dense invariant laminations are minimal, then the answer is yes.

Proposition 3.8 Let G be COLn with minimal laminations for all n. Then G

is COL1 .
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Proof Pick an arbitrary n. Then G admits n transverse dense minimal invariant
laminations ƒ1; : : : ; ƒn . We will show that there exists a minimal dense G –invariant
lamination ƒnC1 that is transverse to each ƒi for i D 1; : : : ; n.

Note that a minimal G–invariant lamination ƒ is simply the orbit closure of an
arbitrary leaf of ƒ under the G –action. Hence, any two different minimal G –invariant
laminations are transverse to each other. Since G is COLnC1 , there must be a minimal
dense invariant lamination that is different from ƒ1; : : : ; ƒn . Thus, there exists a pair
l D .a; b/ of points of S1 that is not a leaf of any ƒi for i D 1; 2; : : : ; n, and the orbit
closure of l forms a minimal dense invariant lamination transverse to ƒ1; : : : ; ƒn .
This new lamination can be taken as ƒnC1 .

What we proved is that for any existing collection of pairwise minimal dense invariant
laminations of G , we can add an extra minimal dense G –invariant lamination so that
the new collection is still pairwise transverse. One obtains an infinite collection of
pairwise transverse minimal dense G –invariant laminations by performing this process
infinitely many times.

In the proof, we need the minimality of the laminations in order to add a lamination
to an existing collection. We suspect that Question 3.6 has an affirmative answer in
general, but could not prove it without the minimality assumption.

For Question 3.7, the answer is still yes. One can construct an example using Denjoy
blow-up. In the subsequent sections, however, we will see that the situation is very
different as long as one requires the invariant laminations to be very full.

4 Laminations on the hyperbolic surfaces

In this section, we will study the laminations on hyperbolic surfaces.

Definition 4.1 A surface S admitting a complete hyperbolic metric is called pants-
decomposable if there exists a non-empty multi-curve X on S consisting of simple
closed geodesics so that the closure of each connected component of the complement
of X is a pair of pants. The fundamental group of some pants-decomposable surface
is called a pants-decomposable surface group. The multi-curve X used in the pants-
decomposition of S will be called a pants-curve.

Note that all hyperbolic surfaces of finite area except the thrice-puncture sphere are
pants-decomposable. The thrice-puncture sphere is excluded by the definition, since
we required the existence of a “non-empty” pants-curve. For a hyperbolic surface with
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infinite area, we still have a similar decomposition but some component of complement
of the closure of a multi-curve could be a half-annulus or a half-plane. For the precise
statement, we refer to [10, Theorem 3.6.2].

Lemma 4.2 Let S be a hyperbolic surface of finite area which is not the thrice
punctured sphere. For any pseudo-Anosov homeomorphism f of S and two arbitrary
finite sets of simple closed curves F1;F2 , there exists a large enough n such that no
curve in F1 is homotopic to a curve in f n.F2/, where f n is the nth iterate of f .

Proof This is an immediate consequence of the fact that a pseudo-Anosov map has
no reducible power.

Proposition 4.3 Let S be a pants-decomposable surface. Then there exist pants-curves
X0;X1;X2 so that no curve in Xi is homotopic to a curve in Xj for all i ¤ j .

Proof Note that this claim is clear if S is of finite area. We take an arbitrary pants-
curve X0 and a pseudo-Anosov map f W S!S . Then by Lemma 4.2, there exist large
enough positive integers n1; n2 such that X0;X1D f

n1.X0/;X2D f
n2.X0/ are such

pants-curves. But we have no well-understood notion of pseudo-Anosov map for an
arbitrary surface of infinite area.

Let S be a pants-decomposable surface of infinite area.

First we take an arbitrary pants-curve X0 . Seeing X0 as some set of simple closed
geodesics, choose a subset B of X0 such that no two curves in B are boundary
components of a single pair of pants, and each connected component of S nB is a finite
union of pairs of pants, ie of finite area. Let .Si/i2N be the enumeration of the connected
components of S nB . For each i , choose a pseudo-Anosov map fi on Si rel @Si .
By Lemma 4.2, there exists ni ;mi 2N so that X0\Si ; f

ni .X0\Si/; f
mi .X0\Si/

are desired pants-curves on Si .

Let X1 WDB[ .
S

i2N f
ni

i .X0\Si//, X2 WDB[ .
S

i2N f
mi

i .X0\Si//. We are not
quite done yet, since all X0;X1;X2 contain B . For each curve 
 in B , we choose a
simple closed curve ı.
 / as in Figure 3. They show three different possibilities for 

as red, blue and green curves, and in each case, ı.
 / is drawn as the curve colored in
magenta. By definition of B , ı.
 / is disjoint from ı.
 0/ for 
 ¤ 
 0 2B . Let D be the
positive multi-twist along the multi-curve Y D[
2Bı.
 /. Let X 0

1
DD.X1/. A curve

in X1 that had zero geometric intersection number with Y remains unchanged, and
clearly it has no homotopic curves in X0 . A curve in X1 that had non-zero intersection
number with Y now has positive geometric intersection number with B . Since no
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(a) Boundary component
of a single pair of pants

(b) 1 of 2 shared boundary
components of two pants pairs

(c) Unique shared boundary
component of two pants pairs

Figure 3: This shows how to choose the multi-curve along which we will
perform the positive multi-twist to produce a new pants-curve.

curve in X0 has positive geometric intersection number with B , we are done for this
case too.

Changing X2 is a bit trickier. Let .bi/i2N be an enumeration of the curves in B . Let
Di be the positive Dehn twist along ı.bi/. One can take ki for each i so that each
curve in Dki

i .X2/ either is the image of a curve in X2 , which has zero geometric
intersection number with ı.bi/ (so remains unchanged), or has positive geometric
number with bi , which is strictly larger than 2. Since ı.bi/ are disjoint, the infinite
product D0 WD

Q
i2N Dki

i is well-defined. Define X 0
2

as X 0
2
DD0.X2/. Note that the

geometric intersection number between a curve 
 in X 0
1

and bi for some i is at most
2. Now it is clear that X0;X

0
1
;X 0

2
are desired pants-curves.

The next two lemmas are preparation to produce a pants-like collection of laminations
out of the pants-curve we produced above.

Lemma 4.4 Let G be a COL group with an invariant lamination ƒ and g 2G be a
hyperbolic element. If ƒ has leaf l , one end of which is fixed by g , then ƒ has a leaf
joining two fixed points of g .

Proof Either gn.l/ or g�n.l/ converges to the axis of g as n goes to 1.

Lemma 4.5 Let G be a COLn group for some n � 1 and let fƒ˛g be a collection
of n pairwise transverse dense invariant laminations of G . If x 2 S1 is a fixed point of
a hyperbolic element g of G , then there exists at most one lamination ƒ˛ that has a
leaf with x as an endpoint.

Proof This is a consequence of Lemma 4.4 and the transversality of the laminations.

Theorem 4.6 Any Fuchsian group G such that H2=G is not the thrice-punctured
sphere is a pants-like COL3 group.
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Proof We start with the case when G is the fundamental group of a pants-decompos-
able surface S . Let .Xi/iD0;1;2 be the pants-curves as in Proposition 4.3. For each i ,
let Li be the lamination on S obtained from Xi by decomposing the interior of each
pair of pants into two ideal triangles. It is possible to put a hyperbolic metric on S so
that Li is a geodesic lamination. Identify the universal cover of S with H2 . G acts
on the circle at infinity. Let ƒi be the lamination of the circle at infinity obtained by
lifting Li to H2 and taking the end-points data. Since all the complementary regions
are ideal triangles, it is very full.

Also any leaf of Li is either a simple closed geodesic, or it is an infinite geodesic,
each of whose ends either accumulates to a simple closed geodesic or escape to a cusp.
Hence each end is a fixed point of some parabolic or hyperbolic element of G . Now the
pants-like property follows from Lemma 4.4 and the transversality of the laminations.

We would like to get the same conclusion as before in the general case if G is a
Fuchsian group but its quotient surface H2=G is neither a thrice-punctured sphere nor
pants-decomposable.

(a) The case when the quotient surface
is an infinite annulus

(b) The case when there exists an annulus
component glued to a pair of pants

Figure 4: Indeed one can put arbitrarily many pairwise transverse very full
laminations on the annulus components in this way.

Let us first deal with the half-annulus components. Suppose that X is a multi-curve on
the quotient surface S such that S nX consists of pairs of pants and half-annuli. If
two half-annuli are glued along a simple closed geodesic, our surface is actually an
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annulus and the lamination could be taken as in Figure 4(a). Since we can take the
ends of such a lamination arbitrarily, it is obvious that there are arbitrarily many such
invariant laminations that are pairwise transverse. If the surface is not an annulus, a
half-annulus component needs to be attached to a pair of pants. Let X0 be the collection
of simple closed geodesics obtained from the X by removing those boundaries of
half-annulus components. Let S 0 be the complement of the half-annuli. As in the proof
of Proposition 4.3, we can find other pants-curves X1;X2 on S 0 so that X0;X1;X2

are disjoint in the curve complex of S 0 . Now we decompose the interior of each pair
of pants into two ideal triangles as before.

We need to put more leaves on each component of S nXi for any i that is the union of
one half-annulus and one pair of pants glued along a cuff. We construct a lamination
inside such a component as in Figure 4(b). Again, we can put an arbitrary lamination
on the ideal boundary part of the half-annulus. Note that we construct each lamination
so that all gaps are finite-sided, thus we are done.

 ✁

✂

A B

C

Figure 5: An example of the subsurface that we consider in the proof of
Theorem 4.6. One can choose the endpoints of the leaves on the ideal
boundary arbitrarily so that we can put as many pairwise transverse very
full laminations on such a subsurface as we want. Look at the part where
the red circle is. Here a pair of pants is attached as in the figure below. The
boundary component labeled by “C” is not included in X0 but those labeled
by “A” and “B” are. The boundary curves A and B could be cusps or glued
along each other.
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Now we consider the case where S has even half-plane components. In [10, The-
orem 3.6.2], it is also shown that if Z denotes the set of points of a pants-curve
X , then components of Z nZ are simple infinite geodesics bounding half-planes,
ie we know exactly how the half-plane components arise in the decomposition of a
complete hyperbolic surface. Let X be a multi-curve and let Z be the set of points
of simple closed curves in X such that S nZ consists of pairs of pants, half-annuli,
and half-planes, and the boundaries of half-plane components form the set Z nZ .
We will define X0 by removing some geodesics from X . As before, we remove all
the boundary curves of half-annulus components. Observe that there is a part of a
surface that is homeomorphic to a half-plane with families of cusps and geodesic
boundaries that converge to the ideal boundary (see [10, Figure 3.6.3 on page 86] for
example). On this subsurface, there are infinitely many components of Z so that this
subsurface is decomposed into pairs of pants and some half-planes. We remove all
the components of X appear on this type of subsurface. Again, X0 is a pants-curve
of a pants-decomposable subsurface S 0 of S with geodesic boundaries. On S 0 , we
construct X1;X2 as before. Among the connected components of S n S 0 , the one
containing a half-annulus can be laminated as we explained in the previous paragraph.
In the connected component that is homeomorphic to an open disk with punctures, we
can do this as in Figure 5. Once again, since the ideal boundary part is invariant, we
can put an arbitrary lamination there. It is also obvious that the way we construct a
lamination gives a very full lamination.

Remark 4.7 We constructed a pants-like collection of laminations for Fuchsian groups
using pants-decompositions in the proof of Theorem 4.6. This is where the name “pants-
like” comes from.

We would like to see if the converse of Theorem 4.6 is also true. In order to answer
that question, one needs to analyze the properties of pants-like COL3 groups.

5 Rainbows in very full laminations

Before we move on, we would like to understand better the structure of very full
laminations. Recall that M is the set of all pairs of two distinct points of S1 , which is
homeomorphic to an open Möbius band.

Let p 2 S1 and ƒ be a dense lamination on S1 . Suppose that there is a sequence of
leaves of ƒ, both of whose ends converge to p but from opposite sides. We call such a
sequence a rainbow at p . Imagine the upper half-plane model of H2 and that we stand
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p

Figure 6: This is a schematic picture of a rainbow at p

at x in the real line, which is not an endpoint of a lamination. The name “rainbow”
would make sense in this picture. See Figure 6.

The following lemma is more or less an observation.

Lemma 5.1 Let ƒ be a very full lamination of S1 . Then ƒ is dense. Further, for any
gap P of ƒ, if x 2 S1\P , then x is an endpoint of some leaf of ƒ.

Proof Suppose ƒ is not dense. Then we can take an open connected arc I of S1

where the leaves of ƒ have no endpoints. Let l be a geodesic connecting the endpoints
of I . ƒ has no leaf intersecting l . Take a point p on l . Clearly the gap containing p

cannot be a finite-sided ideal polygon. Suppose P is a gap of ƒ and x 2 S1 \P .
Since P is a finite-sided ideal polygon, it intersects S1 only at points to which two
sides of P converges. Hence x is an endpoint of some leaf.

The proof of the following lemma is easily provided from basic facts of hyperbolic
geometry.

Lemma 5.2 Consider a very full lamination ƒ of S1 . Let x 2D . For p 2 S1 , a gap
of ƒ containing x contains p if and only if there is no leaf of ƒ crossing the geodesic
ray from x to p .

Recall that for a lamination ƒ on S1 , Eƒ denotes the set of endpoints of the leaves
of ƒ. There is a nice dichotomy.

Theorem 5.3 (There are enough rainbows) Let ƒ be a very full lamination of S1 .
For p 2S1 , either p is in Eƒ or p has a rainbow. These two possibilities are mutually
exclusive.

Proof It is clear that if p2Eƒ , there is no rainbow. Suppose there is no rainbow for p .
Then p has a neighborhood U so that if a leaf of ƒ has both endpoints in U , then both
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endpoints are contained in the same connected component of U n fpg. Replacing U

by a smaller neighborhood, we may assume that no leaf connects the endpoints of U .

Identify S1 with the boundary of the hyperbolic plane D and realize ƒ as a geodesic
lamination on D . Let q1 be a point on the geodesic connecting the endpoints of U .
We may assume that there is no leaf passing through q1 . The only way of not having
such a point is that the entire D is foliated and p is an endpoint of one of the leaves.
Let L be the geodesic passing through q1 and ending at p (see Figure 7). We denote
the part of L between a point x on L and p by Lx . Note that any leaf of ƒ crossing
Lq1

has one end in U so that the other end must be outside U by the assumption on
U .

If there is no leaf of ƒ intersecting Lq1
, then the gap containing q1 contains p by

Lemma 5.2. Hence p must be an endpoint of a leaf by Lemma 5.1 and we are done.
Suppose there is a leaf l1 which crosses Lq1

at x . Then let q2 be a point in Lx so
that there is no leaf of ƒ passing through it. If there were no such q2 , there is a leaf
passing through each point of Lx , so there must be a leaf ending at p whose other
end is necessarily outside U . So, we may assume that such a q2 exists.

If there is no leaf of ƒ crossing Lq2
, then the gap containing q2 contains p , and we

are done. Otherwise, a leaf, say l2 , crosses Lq2
at x2 . Repeat the process until we

obtain an infinite sequence .qi/ on L which converges to p . This is possible, since
otherwise we must have some x on L such that no leaf of ƒ crosses Lx . Since .qi/

converges to p , the endpoints of the sequence .li/ of leaves in U form a sequence
converging to p , and the other endpoints are all outside U . By the compactness of
S1 , we can take a convergent subsequence so that p is an endpoint of the limiting leaf.
In any case, p must be an endpoint of a leaf.

Therefore, p 2Eƒ if and only if p has no rainbow.

l1
l2

q1

q2

L

Figure 7: A situation where we have no rainbow for p

Corollary 5.4 Let G be a group acting on S1 and ƒ be a G–invariant very full
lamination. For x 2 S1 , which is the fixed point of a parabolic element g of G , there
exist infinitely many leaves which have x as an endpoint.
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Proof Let x 2 S1 be the fixed point of a parabolic element g of G and pick ƒ˛ .
By Theorem 5.3, if x is not an endpoint of a leaf of ƒ˛ , then x has a rainbow. But
any leaf whose ends are all not x must be contained in a single fundamental domain
of g to stay unlinked under the iterates of g (here, a fundamental domain is the arc
connecting y and g.y/ in S1 for some y different from x ). Then the existence of a
rainbow would imply that g is a constant map whose image is x but it is impossible
since g is a homeomorphism. Hence x is an endpoint of some leaf l of ƒ˛ . Then
the .gn.l//n2Z are infinitely many distinct leaves of ƒ˛ , all of which have x as an
endpoint.

Corollary 5.5 (Boundary-full laminations) Suppose a group G acts on S1 faithfully
and minimally. Let ƒ be a lamination of S1 invariant under the G–action. If ƒ is
very full and totally disconnected, then ƒ is boundary-full.

Proof The minimality of the action implies that once the closure of the lamination in
M contains at least one point in @M, then it contains @M and thus the lamination is
very full (this is a simple diagonalization argument).

Let l1 be any leaf of ƒ. Due to the minimality, some element of G maps one of the
ends of l1 somewhere in the middle of the shortest two arcs joining the endpoints of l .
Let l2 be the image of l1 under the action of this element. Again due to the minimality,
one can find an element of G which maps one of the ends of l2 somewhere in the
middle of the shortest arcs in the complement of the endpoints of l1 and l2 in S1 .
Let l3 be the image of l2 under that element. Repeating this procedure, one gets a
sequence .ln/ of leaves for which the distance between their endpoints tends to zero,
hence giving a desired point in @M .

In fact, the laminations we constructed for pants-decomposable surface groups satisfy
the hypotheses of Corollary 5.5. Hence all of them are boundary-full laminations.

6 Classification of elements of pants-like COL3 groups

Any element of a Fuchsian group has at most two fixed points on @1H2 . Hence, it
might be useful to check how many fixed points an element of a pants-like COL3 group
can have.

Lemma 6.1 Let f be a non-identity orientation-preserving homeomorphism of S1

with 3 � jFixf j. Then any very full lamination ƒ invariant under f has a leaf
connecting two fixed point of f . Moreover, for any connected component I of
S1 nFixf with endpoints a and b , at least one of a and b is an endpoint of a leaf of ƒ.
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Proof Let I be a connected component of S1 nFixf with endpoints a and b . Since
Fixf has at least three points, one can take c 2 Fixf nfa; bg. Relabeling a and b if
necessary, we may assume that the triple a; b; c are counterclockwise oriented.

Suppose a is not an endpoint of a leaf of ƒ. Then there exists a rainbow in ƒ at a by
Theorem 5.3. In particular, there exists a leaf l such that one end of l lies in I and
the other end lies outside I ; call the second one d . If d is a fixed point of f , then
replace c by d . Otherwise, we may assume that a; c; d are counterclockwise-oriented
and there is no fixed point of f between c and d after replacing c by another fixed
point if necessary. Clearly, either f n.l/ or f �n.l/ converges to the leaf connecting b

and c (this may not be the same c as the c at the beginning).

This proves the lemma.

Corollary 6.2 Let G be a pants-like COL3 group. Then for any g 2 G , one must
have jFixgj � 2.

Proof Let fƒ1; ƒ2; ƒ3g be a pants-like collection of G –invariant laminations. Sup-
pose that there exists an element g of G which has at least three fixed points on S1 .
Let I be a connected component of S1 n Fixg with endpoints a and b . Then by
Lemma 6.1, each of a and b is an endpoint of a leaf of some ƒi . Hence, if none
of a; b is the fixed point of a parabolic element of G , we get a contradiction to the
pants-like property.

Suppose a is the fixed point of a parabolic element h 2G . By Corollary 5.4 (or rather
the proof of it), there must be a leaf l of ƒi for any choice of i such that one end of
l is a and the other end lies in I . Then either gn.l/ or g�n.l/ converges to the leaf
connecting a and b as n increases. Hence each ƒi must have the leaf connecting a

and b , contradicting to the transversality. Similarly b cannot be a cusp point either.
This completes the proof.

Lemma 6.3 Let G be a group acting on S1 and ƒ be a very full G–invariant
lamination. For each hyperbolic element g 2G with fixed points a and b , if ƒ does
not have .a; b/ as a leaf, there must be a leaf l of ƒ˛ that separates a; b (ie not both
endpoints of l lies in the same connected component of S1 n fa; bg).

Proof This is just an observation using the existence of a rainbow.

Lemma 6.4 Let G be a pants-like COL3 group. If f 2G is parabolic, then its fixed
point is a parabolic fixed point, ie the fixed point behaves as a sink on one side and as
a source on the other side. If f is hyperbolic, it has one attracting and one repelling
fixed point, ie it has North–South pole dynamics.

Geometry & Topology, Volume 19 (2015)



Fuchsian groups, circularly ordered groups and dense invariant laminations 2101

Proof For the parabolic case, it is an obvious observation. Suppose f is hyperbolic.
If there are no North–South pole dynamics, then both fixed points are parabolic fixed
points. But we have G –invariant laminations with no leaves connecting the fixed points
of g (by the transversality, all but at most one lamination are like that; see Lemma 4.5).
For each of those laminations, there must be a leaf connecting two components of the
complement of the fixed points by Lemma 6.3. They cannot stay unlinked under f if
both fixed points are parabolic.

Lemma 6.5 Let G be a pants-like COL3 group. Any elliptic element of G is of finite
order.

Proof Let f 2G be an elliptic element. If its rotation number is rational, then some
power f n of f must have fixed points. By Corollary 6.2, Fixf n has either one or
two points unless f n is identity. Suppose first f n has only one fixed point. Then f
must have one fixed point too, contradicting to the assumption. Thus f n has two fixed
points. But since f has no fixed points, both fixed points must be parabolic fixed
points, which contradicts Lemma 6.4. Hence the only possibility is f n D Id, so f is
of finite order.

Suppose f has irrational rotation number. It cannot be conjugate to a rigid rotation
with irrational angle, since any irrational rotation has no invariant lamination at all as
we observed before. So f must be semiconjugate to a irrational rotation, say R. We
may assume that the action of f on S1 is obtained by Denjoy blow-up for one or
several orbits under R. Any invariant lamination should be supported by the blown-up
orbit. But such a lamination cannot be very full. Hence f cannot have an irrational
rotation number.

Theorem 6.6 Suppose G � HomeoC.S1/ is a pants-like COL3 group. Then each
element of G is either a torsion, parabolic, or hyperbolic element.

Proof This follows from Corollary 6.2, Lemma 6.4 and Lemma 6.5.

Theorem 6.6 provides a classification of elements of pants-like COL3 groups just like
the one for Fuchsian groups. In fact, this is not a coincidence. It is hard in general
to extend the action to the interior of D . Instead, we will try to show that pants-like
COL3 groups are convergence groups. The convergence group theorem says that a
group acting faithfully on the circle is a convergence group if and only if it is a Fuchsian
group (this theorem was proved for a large class of groups in [15], and in full generality
in [8] and [7]). For the general background for convergence groups, see [15].
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7 Pants-like COL3 groups are Fuchsian groups

For general reference, we state the following well-known lemma without proof.

Lemma 7.1 Let G be a group acting on a space X . Let K be a compact subset of
X such that g.K/ \K ¤ ∅ for infinitely many gi . Then there exists a sequence
.xi/ in K converging to x and a sequence of the set f.gi/g, also called .gi/ (abusing
notation), such that gi.xi/ converges to a point x0 in K .

Let G be a discrete subgroup of HomeoC.S1/. Then a sequence .gi/ of elements
of G is said to have the convergence property if there exist two points a; b 2 S1

(not necessarily distinct) and a subsequence .gij / of .gi/ so that gij converges to a

uniformly on compacts subsets of S1 n fbg. If every sequence of elements of G has
the convergence property, then we say G is a convergence group.

Let T be the space of ordered triples of three distinct elements of S1 . By [15,
Theorem 4.A], a group G � Homeo.S1/ is a convergence group if and only if it acts
on T properly discontinuously. If one looks at the proof of this theorem, we do not
really use the group operation. Hence we get the following statement from the exact
same proof.

Proposition 7.2 Let C be a set of homeomorphisms of S1 . C has the convergence
property if and only if C acts on T properly discontinuously.

We can define the limit set of a pants-like COL3 group G in a way similar to that for
the case of Fuchsian groups. Let �.G/ be the set of points of S1 where G acts discon-
tinuously, ie �.G/D fx 2 S1 W there exists a neighborhood U of x such that g.U /\

U D∅ for all but finitely many g 2Gg and call it domain of discontinuity of G . Let
L.G/D S1 n�.G/ and call it the limit set of G . For our conjecture to have a chance
to be true, �.G/ and L.G/ have the same properties as those for Fuchsian groups.

For the rest of this section, we fix a torsion-free pants-like COL3 group G with a
pants-like collection fƒ1; ƒ2; ƒ3g of G –invariant laminations. Let F.G/ be the set of
all fixed points of elements of G , ie F.G/D[g2G Fixg . We do not need the following
lemma but it shows another similarity of pants-like COL3 groups with Fuchsian groups.

Lemma 7.3 F.G/ is either a finite subset of at most 2 points or an infinite set. When
F.G/ is infinite, it is either the entire S1 or a perfect nowhere-dense subset of S1 .
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Proof When all the elements of G share fixed points, then jF.G/j � 2 as jFixgj � 2

for all g 2 G . If that is not the case, then say we have g; h 2 G whose fixed point
sets are distinct. Then for x 2 Fixh nFixg , the gn.x/ are all distinct for n 2 Z and
gn.x/ is a fixed point of gnhg�n , hence F.G/ is infinite. Note that F.G/ is a closed
minimal G –invariant subset of S1 . An infinite minimal set under the group action on
the circle has no isolated points. Thus F.G/ is a perfect set.

The next lemma will itself not be used to prove our main theorem, but the proof is
important.

Lemma 7.4 L.G/D F.G/

Proof Since F.G/ is a minimal closed G–invariant subset of S1 , it is obvious
that F.G/�L.G/.

For the converse, we use laminations. Let x 2 L.G/. If x is the fixed point of a
parabolic element, then we are done. Hence we may assume that it is not the case and
take ƒ˛ such that x 62Eƒ˛ . Let .li/ be a sequence of leaves which forms a rainbow
for x (such a sequence exists by Theorem 5.3) and let .Ii/ be a sequence of open arcs
in S1 such that each Ii is the component of the complement of the endpoints of li
containing x . Since G does not act discontinuously at x , we can choose gi 2G such
that gi.Ii/ intersects Ii nontrivially. This cannot happen arbitrarily, but one must have
either gi.Ii/� Ii , Ii � gi.Ii/ or Ii [gi.Ii/D S1 , since the endpoints of Ii form a
leaf.

In the former two cases, an application of Brouwer’s fixed point theorem implies the
existence of a fixed point in Ii . In the latter one, take any point in F.G/: either it
belongs to Ii , or its image under g�1

i does (see Figure 8 for possible configurations,
and the reason why our situation is restricted to these cases is described in Figure 9).
Since Ii shrinks to x , this implies that x is a limit point of fixed points of .gi/.

Lemma 7.5 Suppose .gi/ is a sequence of elements of G and x 2 S1 such that for
any neighborhood U of x , gi.U / intersects U nontrivially for all i large enough.
Then x is a limit point of the fixed points of gi in the sense that there exists a choice of
a fixed point ai of gi for all i such that the sequence .ai/ converges to x .

Proof If we can find ƒ˛ such that x 62 Eƒ˛ , then we are done by the proof of
Lemma 7.4. Suppose that is not the case, ie x is the fixed point of a parabolic
element h. The key point here is to figure out how to construct Ii for x in order to
mimic the proof of Lemma 7.4. Take arbitrary invariant lamination ƒ. There exists a
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Ii

gi.Ii/

Ii

gi.Ii/

(a) gi.Ii/ is completely contained in Ii (b) gi.Ii/ completely contains Ii

Ii

gi.Ii/

Ii

gi.Ii/

(c) gi.Ii/ is completely contained in
Ii but one endpoint of Ii is fixed

(d) The union of Ii and gi.Ii/ is the
whole circle

Figure 8: Possibilities of the image of Ii under gi . Ii is the red arc (inside
the disc) and gi.Ii/ is the blue arc (outside the disc) in each figure.

Ii gi.Ii/

Figure 9: This case is excluded, since the leaf connecting the endpoints of Ii

is linked with its image under gi .

aiC1 gi.aiC1/ biC1 gi.biC1/ ai aiC1 gi.ai/ biC1 gi.biC1/ bi

gi.bi/gi.aiC1/

(a) Both gi.IiC1/nIiC1 and IiC1ngi.IiC1/

could be non-empty in this case.
(b) But even in case (a), there is no such
problem for Ii and gi.Ii/ .

Figure 10: The nested intervals for a cusp point need more care. (a) shows
that it might have a problematic intersection, but (b) shows we can take a
one-step bigger intervals to avoid that. The endpoints of Ii are marked as
ai ; bi and the endpoints of IiC1 are marked as aiC1; biC1 .
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leaf l that has x as an endpoint. Then the hn.l/ form an infinite family of such leaves.
For all i 2 N , let ai be the other endpoint of hi.l/ and bi be the other endpoint of
h�i.l/. Let In be an open interval containing x with endpoints an; bn for each n 2N .
Now we have a sequence of intervals shrinking to x . Take a subsequence of .gi/, with
the sequence of Ij already given (including IiC1 ) so that gi.IiC1/\ IiC1 ¤ ∅ for
all i .

Note that it is possible that neither gi.IiC1/� IiC1 nor IiC1 � gi.IiC1/ holds (see
Figure 10(a)), but one must have either gi.Ii/� Ii or Ii � gi.Ii/ to avoid having any
linked leaves (see Figure 10(b)). Now the same argument shows that x is a limit point
of fixed points of gi .

Proposition 7.6 Suppose we have a sequence .xi/ of points in S1 that converges to
x 2 S1 and a sequence .gi/ of elements of G such that gi.xi/ converges to x0 2 S1 .

Then either x or x0 lies in the limit set L.G/. In fact, by passing to a subsequence
if necessary, either x is an accumulation point of the fixed points of the sequence
.g�1

iC1
ıgi/ or x0 is an accumulation point of the fixed points of the sequence .giıg

�1
iC1

/.

Moreover, one can apply this to multiple sequences. More precisely, suppose we also
have a sequence .yi/ of points in S1 such that .yi/ converges to y 2 S1 and gi.yi/

converges to y0 2 S1 . Then one can pass to a subsequence such that the conclusion
for x;x0 is also true for y;y0 , ie either y is an accumulation point of the fixed points
of the sequence .g�1

iC1
ı gi/ or y0 is an accumulation point of the fixed points of the

sequence .gi ıg�1
iC1

/.

Proof Taking a subsequence of xi , we may assume that .xi/ converges to x monoton-
ically. Take any neighborhood U of x0 . Then for large enough N , we have gi.xi/2U

for all i �N . We show there is a dichotomy here: either the preimages of U shrink
to a point, and we are done quickly, or by passing to a subsequence we can assume all
of them to be large.

Suppose g�1
i .U / does not contain any xj with j ¤ i for each i �N . But g�1

i .U /

contains xi and the sequence .xi/ converges to x . Hence g�1
i .U / for i �N form a

sequence of disjoint open intervals shrinking to x , implying that g�1
i .x0/ converges to

x . Now let V be a neighborhood of x . Replacing N by a larger number if necessary,
g�1

i .x0/ lies in V for all i � N . Then .g�1
iC1
ı gi/.V / intersects nontrivially V for

all i �N .

Now suppose such a U does not exist. Take an arbitrary neighborhood U of x0 . As
gi.xi/! x0 for all large enough i , one has gi.xi/2U . By the assumption, for each i ,
there exists ni ¤ i such that xni

2 g�1
i .U /. Thus we are allowed to assume that either
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ni D i C 1 or ni D i � 1 for all i . In the former case, giC1 ı g�1
i .U / intersects U

nontrivially for each i , and in the latter case, gi ıg�1
iC1

does the same thing (note that
gi ıg�1

iC1
and giC1 ıg�1

i have the same fixed points).

Now we are in the assumptions of Lemma 7.5. Hence, either x is an accumulation
point of the fixed points of the sequence .g�1

iC1
ıgi/ or x0 is an accumulation point of

the fixed points of the sequence .gi ıg�1
iC1

/.

To see the last paragraph of the statement, one can first construct a subsequence for x;x0 ,
and then apply the same argument to this sequence to obtain a further subsequence for
y;y0 . This can be done because the argument above only depends on the existence of
a neighborhood U with monotonically shrinking preimages g�1

i .U / that is preserved
under taking a subsequence.

Lemma 7.7 Let G be a torsion-free discrete Möbius-like subgroup of HomeoC.S1/.
Suppose x;x0; z; z0 are four points of S1 such that x ¤ z , x0 ¤ z0 , .hi/ is a sequence
of elements of G , .ai/; .zi/; .xi/ are sequences of points in S1 and they satisfy all of
the following:

(1) .xi/ converges to x , and both .zi/ and .ai/ converge to z .

(2) .hi.ai// converges to x0 .

(3) .hi.zi// converges to z0 .

(4) .hi.xi// converges to x0 .

Further assume that G has a very full invariant lamination ƒ such that each of x0 and z

either has a rainbow in ƒ or is a cusp point of G . Then the sequence .hi/ has the
convergence property.

Proof Figure 11 illustrates the sequences of points concerned here. We want to have
a strictly decreasing sequence of nested intervals for each of x0; z . Suppose for now
that none of x0; z is a cusp point. In this case, we have a rainbow for each of x0; z and
take intervals as in the proof of Lemma 7.4. For p 2 fx0; zg, let .Ip

i / be the sequence
of nested decreasing intervals containing p . In Figure 11, two leaves of the lamination
are drawn: one connecting endpoints of Ix0

i and one connecting endpoints of I z
i .

By taking subsequences, we may assume that for each i , we have ai ; zi 2I z
i but xi 62I z

i

and hi.xi/; hi.ai/ 2 Ix0

i . Then, in particular, hi.I
z
i / intersects Ix0

i non-trivially. But
since hi is a homeomorphism and hi.xi/ 2 Ix0

i , it is impossible to have hi.I
z
i /� Ix0

i .
Hence there are two possibilities: either hi.I

z
i /� Ix0

i or I z
i is expanded by hi so that

hi.I
z
i /[ Ix0

i D S1 .
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x0 z

z0 x

hi.xi/
hiC1.xiC1/

hiC1.aiC1/
hi.ai/

hi.zi/
hiC1.ziC1/

xiC1

xi

ai

aiC1

ziC1
zi

Figure 11: The sequences considered in Lemma 7.7

The former cannot happen for all large i , since zi 2 I z
i and hi.zi/! z0 62 Ix0

i . Hence,
the latter case should happen infinitely often. Then S1 n I z

i is mapped completely into
Ix0

i by hi . This shows that the sequence hi has the convergence property with the two
points z;x0 .

If some of them are cusp points, we take intervals as in the proof of Lemma 7.5. As we
saw, one needs to be slightly more careful to choose .Ix0

i /; .I
z
i / so that the case where

hi.I
x0

i / 6� I z
i , hi.I

x0

i / 6� I z
i and hi.I

x0

i /[ I z
i ¤ S1 does not happen; one can avoid

this as we did in the proof of Lemma 7.5 (recall Figure 8). Then the same argument
goes through.

We are ready to prove the main theorem of the paper.

Theorem 7.8 Let G be a torsion-free discrete subgroup HomeoC.S1/. If G admits
a pants-like collection of very full invariant laminations fƒ1; ƒ2; ƒ3g, then G is a
Fuchsian group.

Proof By the convergence group theorem, it suffices to prove that G is a convergence
group. Suppose not. Then there exists a sequence .gi/ of distinct elements of G

that does not have the convergence property. This implies that this sequence, as a set,
acts on T not properly discontinuously. Then we have three sequences .xi/; .yi/; .zi/

converging to x;y; z and a sequence .hi/ of the set fgig such that hi.xi/ ! x0 ,
hi.yi/! y0 , hi.zi/! z0 where x;y; z are all distinct and x0;y0; z0 are all distinct.
Note that the sequence .hi/ could have been taken as a subsequence of .gi/, so let us
assume that.
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The strategy of the proof is as follows: we are going to find subsequences of the
sequences .hi/; .xi/; .zi/, and a new sequence .ai/ that all together satisfy the as-
sumptions of Lemma 7.7. Since we assume that .gi/ does not have the convergence
property, this leads us to a contradiction.

From Proposition 7.6, we can take a subsequence of .hi/ (call it again .hi/, abusing
the notation) such that either two of x;y; z are accumulation points of the fixed points
h�1

iC1
ı hi or two of x0;y0; z0 are accumulation points of fixed points of hi ı h�1

iC1
.

Without loss of generality, suppose x0;y0 are accumulation points of fixed points
of hi ı h�1

iC1
.

We would like to pass to subsequences so that the fixed points of the sequence h�1
iC1
ıhi

(or hi ı h�1
iC1

) have at most two accumulation points. But this cannot be done directly,
since a subsequence of .h�1

iC1
ıhi/ is not from a subsequence of .hi/ in general. Instead,

we proceed as follows.

Take a subsequence .h�1
ijC1
ıhij / of .h�1

iC1
ıhi/ such that there are at most two points

where the fixed points of .h�1
ijC1
ı hij / accumulate (Such a subsequence exists due to

Corollary 6.2 and the compactness of S1 ). Similarly, let .h�1
i0
jC1
ı hi0

j
/ be a further

subsequence of .h�1
ijC1
ı hij / such that there are at most two points where the fixed

points of .hi0
j
ı h�1

i0
jC1

/ accumulate.

Since x0;y0 are accumulation points of fixed points of hi ıh
�1
iC1

, they are accumulation
points of fixed points of .hi0

j
ı h�1

i0
jC1

/. But the fixed points of .hi0
j
ı h�1

i0
jC1

/ have at
most two accumulation points and x0;y0; z0 are three distinct points, so that z0 cannot
be an accumulation point of fixed points of .hi0

j
ı h�1

i0
jC1

/. This also implies that z0

is not an accumulation point of fixed points of .hi ı h�1
iC1

/. By our choice of .hi/,
this implies that z must be an accumulation fixed points of .h�1

iC1
ı hi/ (so it is an

accumulation point of fixed points of .h�1
i0
jC1
ı hi0

j
/).

Let .ai/ be such a sequence, ie a sequence of fixed points of .h�1
iC1
ıhi/ that converges

to z . Now we consider a further subsequence such that .hi00
j
.ai00

j
// converges to a

point, say a. Note that for each i , we have .hi ı h�1
iC1

/.hi.ai//D hi.ai/. Hence, the
hi00

j
.ai00

j
/ are fixed points of a subsequence of .hi00

j
ı h�1

i00
j
/, so that a must be x0

or y0 . Without loss of generality, let us assume that aD x0 .

Then we have the following:

(1) .ai00
j
/ converges to z , since ai converges to z .

(2) .hi00
j
.ai00

j
// converges to x0 .

(3) .hi00
j
.zi00

j
// converges to z0 , since hi.zi/ converges to z0 .

(4) .hi00
j
.xi00

j
// converges to x0 , since hi.xi/ converges to x0 .
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It is now evident that the sequences .hi00
j
/; .ai00

j
/; .zi00

j
/; .xi00

j
/ satisfy the assumptions

of Lemma 7.7. This implies the sequence .hi/ has the convergence property, hence so
does the sequence .gi/. Now the result follows.

Remark 7.9 In the proof of Theorem 7.8, the consequence of the pants-like property
that we needed is that for arbitrary pair of points p; q 2 S1 that are not fixed by some
parabolic elements, there exists an invariant lamination so that neither of p; q is an
endpoint of the leaf of that lamination.

Corollary 7.10 (Main theorem) Let G be a torsion-free discrete subgroup of
HomeoC.S1/. Then G is a pants-like COL3 group if and only if G is a Fuchsian
group whose quotient is not the thrice-punctured sphere.

Proof This is a direct consequence of Theorem 4.6 and Theorem 7.8.

Corollary 7.11 Let G be a torsion-free discrete subgroup of HomeoC.S1/. Then G

admits three pairwise strongly transverse very full invariant laminations if and only if
G is a Fuchsian group whose quotient has no cusps.

Proof Replacing the pants-like property by pairwise strong transversality is equivalent
to saying that there are no parabolic elements. Hence, this is an immediate corollary of
the main theorem (Corollary 7.10).

Corollary 7.12 Let G be a torsion-free discrete pants-like COL3 group. Then the
G –action on S1 is minimal if and only if G is a pants-decomposable surface group.

Proof One direction is clear from the observation that the fundamental group of a pants-
decomposable surface acts minimally on @1H2 . Suppose G is a pants-like COL3

group. By Theorem 7.8, G is a Fuchsian group. Let S be the quotient surface H2=G .
Note that S is not the thrice-punctured sphere, since it has infinitely many transverse
laminations. If S is not pants-decomposable, then there still exists a multi-curve which
decomposes S into pairs of pants, half-annuli and half-planes [10, Theorem 3.6.2].
Thus any fundamental domain of the G–action on H2 contains some open arcs in
S1D @1H2 . Let I be a proper closed sub-arc of such an open arc. Since it is taken as
a subset of a fundamental domain, the orbit closure of I is a closed invariant subset of
S1 that has non-empty interior and is not the whole S1 . This contradicts the minimality
of the G –action.
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Corollary 7.13 Let M be a oriented hyperbolic 3–manifold whose fundamental
group is finitely generated. If �1.M / admits a pants-like COL3 –representation into
HomeoC.S1/, then M is homeomorphic to S �R for some surface S . If we further
assume that M has no cusps and is geometrically finite, then M is either quasi-Fuchsian
or Schottky.

Proof The existence of a pants-like COL3 –representation into HomeoC.S1/ implies
that �1.M / is isomorphic to �1.S/ for a hyperbolic surface S . The result is now a
consequence of the tameness theorem (independently proved by Agol [1], and Calegari
and Gabai [5]).

Remark 7.14 There is an analogy between the cardinality of the set of ends of
groups and the cardinality of the paths-like collection of laminations that subgroups of
HomeoC.S1/ can have. In Theorem 4.6, one can work harder to show that Fuchsian
groups are in fact pants-like COL1 groups. The result of Section 3 says there are pants-
like COL2 groups that are not pants-like COL3 groups (we will see the distinction
in more detail in the next section). Hence, any torsion-free discrete subgroup of
HomeoC.S1/ is a pants-like COLn group where n is either 0, 1, 2 or infinity, while
the cardinality of the set of ends of a group has the same possibilities.

Remark 7.15 In Theorem 7.8, it is easy to see that the torsion-free assumption is
not necessary. We conjecture that the main theorem (Corollary 7.10) could be stated
without the torsion-free assumption. To show that, one needs to construct a pants-like
collection of three very full laminations on hyperbolic orbifolds. It is not too clear how
to do so with simple geodesics.

8 Pants-like COL2 groups and some conjectures

We saw that being torsion-free discrete pants-like COL3 is equivalent to being Fuchsian.
In this section, we will try to see what is still true if we have one less lamination. For
the rest of this section, we fix a pants-like COL2 group G with a pants-like collection
fƒ1; ƒ2g of G –invariant laminations. For the sake of simplicity, we also assume that
jFixgj<1 for each g 2G .

Proposition 8.1 Let g be a non-parabolic element of G . Then g has no parabolic
fixed point. Hence either g is elliptic or g has even number of fixed points that alternate
between attracting fixed points and repelling fixed points along S1 .
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Proof Suppose Fixg ¤ ∅. Let I be a connected component of S1 n Fixg with
endpoints a and b . In the previous section, we saw that for each i , either a 2 Eƒi

or b 2Eƒi
. We also know that none of a and b can be the fixed point of a parabolic

element (see the second half of the proof of Corollary 6.2). Hence the pants-like
property implies that there is no i such that both a and b are in Eƒi

. In particular,
this implies that for each p 2 Fixg , there exists i 2 f1; 2g so that p is not in Eƒi

. But
this implies that there is a rainbow in ƒi at p . But a parabolic fixed point cannot have
a rainbow. This proves the claim.

Corollary 8.2 Each elliptic element of G is either of finite order or pseudo-Anosov-
like.

Proof This is a consequence of Lemma 6.5 and Proposition 8.1.

We have proved the following.

Theorem 8.3 (Classification of elements of pants-like COL2 groups) Let G be as
defined at the beginning of the section. The elements of G are either torsion, parabolic,
hyperbolic or pseudo-Anosov-like.

Conjecture 8.4 Suppose G is torsion-free discrete and jFixgj � 2 for each g 2 G .
Then G is Fuchsian.

For each pseudo-Anosov-like element g of G , let nD n.g/ be the smallest positive
number such that gn has fixed points. The boundary leaves of the convex hull of the
attracting fixed points form an ideal polygon; we call it the attracting polygon of g .
The repelling polygon of g is defined similarly.

Theorem 8.5 Let G; ƒ1; ƒ2 be as defined at the beginning of the section. Suppose
that there exists g 2 G that has more than two fixed points (so there are at least 4

fixed points). Then each ƒi contains either the attracting polygon of g or the repelling
polygon of g .

Proof Say FixgDfp1; : : : ;png such that if we walk from pi along S1 counterclock-
wise, then the first element of Fixg we meet is piC1 (indexes are modulo n). Suppose
p1 2Eƒ1

. Then by the argument in the proof of Proposition 8.1, both p2 and pn are
not in Eƒ1

. If we apply this consecutively, one can easily see that pi 2Eƒ1
if and

only if i is odd.

Let j be any even number. Since pj is not in Eƒ1
, there exists a rainbow at j . In

particular, there exists a leaf l in ƒ1 so that one end of l lies between pj and pjC1 ,
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and the other end lies between pj and pj�1 . Hence either gn.l/ or g�n.l/ converges
to the leaf .pj�1;pjC1/ as n increases. So, the leaf .pj�1;pjC1/ should be contained
in ƒ1 . Since j was an arbitrary even number, this shows that ƒ1 contains the boundary
leaves of the convex hull of the fixed points of g with odd indices. Similarly, one can
see that ƒ2 must contain the boundary leaves of the convex hull of the fixed points
of g with even indices. Since the fixed points of g alternate between attracting and
repelling fixed points along S1 , the results follows.

This shows that not only the pseudo-Anosov-like elements resemble the dynamics of
pseudo-Anosov homeomorphisms but also their invariant laminations are like stable
and unstable laminations of pseudo-Anosov homeomorphisms.

We introduce a following useful theorem of Moore [13] and an application in our
context.

Theorem 8.6 (Moore) Let G be an upper semicontinuous decomposition of S2 such
that each element of G is compact and nonseparating. Then S2=G is homeomorphic
to S2 .

A decomposition of a Hausdorff space X is upper semicontinuous if and only if the set
of pairs .x;y/ for which x and y belong to the same decomposition element is closed
in X �X . A lamination ƒ of S1 is called loose if no point on S1 is an endpoint of
two leaves of ƒ that are not edges of a single gap of ƒ.

Theorem 8.7 Let G; ƒ1; ƒ2 be as defined at the beginning of the section. We fur-
ther assume that G is torsion free and each ƒi is loose. Then G acts on S2 by
homeomorphisms such that jFixg.S

2/ WD fp 2 S2 W g.p/D pgj � 2 for each g 2G .

Proof Let D1 and D2 be disks glued along their boundaries, and consider this
boundary as the circle where G acts. We then get a 2–sphere, call it S1 , such that G

acts on its equatorial circle. Put ƒi on Di for each i D 1; 2. One can first define a
relation on S1 so that two points are related if they are on the same leaf or the same
complementary region of ƒi for some i . Let � be the closed equivalence relation
generated by the relation we just defined.

It is fairly straightforward to see that � satisfies the condition of Moore’s theorem
from the looseness. Looseness, in particular, implies that each equivalence class of �
has at most finitely many points in S1 .

This demonstrates that S2 WD S1=� is homeomorphic to a 2–sphere, and let pW S1!

S2 be the corresponding quotient map. Clearly, p is surjective even after being
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restricted to the equatorial circle, call the restriction p again. Now we have a quotient
map pW S1! S2 D S2 , hence G has an induced action on S2 by homeomorphisms.
Note that jFixg.S

1/j � jFixg.S
2/j for each g 2 G . But we know that if g 2 G has

more than two fixed points on S1 , its attracting fixed points are mapped to a single
point by p by Theorem 8.5. Similarly, the repelling fixed points are mapped to a single
point too. Hence, g can have at most two fixed points in any case.

The assumption that G does not have parabolic elements seems unnecessary, but it is
probably much trickier to prove that each equivalence class of � is non-separating
under the existence of parabolic elements. It is also not so clear if the action on S2 we
obtained in the above theorem is always a convergence group action.

From what we have seen, it is conceivable that G contains a subgroup of the form
H Ì Z where H is a pants-like COL3 group and Z is generated by a pseudo-Anosov-
like element (unless G itself is a pants-like COL3 group). Maybe one can hope the
following conjecture to be true (possibly modulo Cannon’s conjecture [6]).

Conjecture 8.8 Let G be a finitely generated torsion-free discrete subgroup of
HomeoC.S1/. Then G is virtually a pants-like COL2 group with loose laminations if
and only if G is virtually a hyperbolic 3–manifold group.

If G is a hyperbolic 3–manifold group, then Agol’s virtual fibering theorem in [11]
says that G has a subgroup of finite index that fibers over the circle. Hence the result
of Section 3 implies that such a subgroup is COL2 . The laminations we have are stable
and unstable laminations of a pseudo-Anosov map of a hyperbolic surface, hence they
form a pants-like collection of two very full laminations. This proves one direction of
the conjecture. Cannon’s conjecture says that if a word-hyperbolic group with ideal
boundary homeomorphic to S2 acts on its boundary faithfully, then the group is a
Kleinian group. To prove the converse of Conjecture 8.8 requires one to show that a
pants-like COL2 group has a subgroup of finite index that is word-hyperbolic and acts
on S2 as a convergence group.

9 Future directions

We have seen that having two or three very full laminations restricts the dynamics of
the group action quite effectively. One can still study what we can conclude about the
group when we have mere dense laminations (not necessarily very full). In any case,
the most interesting question is about the difference between having two laminations
and three laminations. Thurston conjectured that tautly foliated 3–manifold groups are
strictly COL2 (we know that they are COL2 ). Hence, one can ask following questions:

Geometry & Topology, Volume 19 (2015)



2114 Hyungryul Baik

Question 9.1 What algebraic properties of a group G we could deduce from the
assumption that G is strictly COL2 , ie COL2 but not COL3 ?

Question 9.2 Precisely which 3–manifold groups are strictly COL2 ?

More ambitiously, one may ask:

Question 9.3 Can one construct an interesting geometric object like a taut foliation
or an essential lamination in a 3–manifold M if we know �1.M / is strictly COL2 ?

It would be also interesting if one can characterize the difference between strictly COL1

groups and COL2 groups. The example of a strictly COL1 group we constructed
suggests that in order to be COL2 , a group should not have too many homeomorphisms
with irrational rotation number. It is conceivable that the way the example is constructed
is essentially the only way to get the strictly COL1 property.

Another important direction would be to classify all possible COLn –representations of
an abstract group G . This is related to the classification of all circular orderings on G .
The author is preparing a paper about the action of the automorphisms of G on the
space of all circular orderings which G can admit. For example, Aut.G/ acts faithfully
on the space of circular orderings of G if G is residually torsion-free nilpotent.

We also remark that the virtual fibering theorem of Agol and the universal circle theorem
for the fibering case together imply that the following conjecture holds if Cannon’s
conjecture holds.

Conjecture 9.4 Let G be a word-hyperbolic group whose ideal boundary is homeo-
morphic to a 2–sphere, and suppose that G acts faithfully on its boundary. Then G is
virtually COL2 .

At the end of the last section, we formulated a conjecture about being virtually a 3–
manifold group that fibers over S1 . In the view of Vlad Markovic’s recent work [12],
pants-like COL3 subgroups of a pants-like COL2 word-hyperbolic group G are good
candidates for quasi-convex codimension-1 subgroups whose limit sets separate pairs
of points in the boundary of G .
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