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Symplectic and contact differential graded algebras

TOBIAS EKHOLM

ALEXANDRU OANCEA

We define Hamiltonian simplex differential graded algebras (DGA) with differentials
that deform the high-energy symplectic homology differential and wrapped Floer
homology differential in the cases of closed and open strings in a Liouville manifold
of finite type, respectively. The order-m term in the differential is induced by varying
natural degree-m coproducts over an .m�1/–simplex, where the operations near the
boundary of the simplex are trivial. We show that the Hamiltonian simplex DGA
is quasi-isomorphic to the (nonequivariant) contact homology algebra and to the
Legendrian homology algebra of the ideal boundary in the closed and open string
cases, respectively.

53D40, 53D42; 16E45, 18G55

1 Introduction

Let X be a Liouville manifold, and let L�X be an exact Lagrangian submanifold.
(We use the terminology of Cieliebak and Eliashberg [15] for Liouville manifolds,
cobordisms etc throughout the paper.) Assume that .X;L/ is cylindrical at infinity,
meaning that outside a compact set, .X;L/ looks like .Œ0;1/ � Y; Œ0;1/ � ƒ/,
where Y is a contact manifold, ƒ� Y a Legendrian submanifold, and the Liouville
form on Œ0;1/�Y is the symplectization form et˛ for ˛ a contact form on Y and t

the standard coordinate in Œ0;1/.

There are a number of Floer homological theories associated to this geometric situation.
For example, there is symplectic homology SH.X / which can be defined (see Bourgeois
and Oancea [11], Seidel [39] and Viterbo [42]) using a time-dependent Hamiltonian
H W X � I ! R, I D Œ0; 1�, which is a small perturbation of a time-independent
Hamiltonian that equals a small positive constant in the compact part of X and is
linearly increasing of certain slope in the coordinate r D et in the cylindrical end at
infinity, and then taking a certain limit over increasing slopes. The chain complex
underlying SH.X / is denoted by SC.X / and is generated by the 1–periodic orbits of the
Hamiltonian vector field XH of H , graded by their Conley–Zehnder indices. These fall
into two classes: low-energy orbits in the compact part of X and (reparametrizations of)
Reeb orbits of ˛ in the region in the end where H increases from a function that is
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close to zero to a function of linear growth. The differential counts Floer holomorphic
cylinders interpolating between the orbits. These are solutions uW R � S1 ! X ,
S1 D I=@I , of the Floer equation

(1-1) .du�XH ˝ dt/0;1 D 0;

where sC i t 2R�S1 is a standard complex coordinate and the complex antilinear
part is taken with respect to a chosen adapted almost complex structure J on X . The
1–periodic orbits of H are closed loops that are critical points of an action functional,
and cylinders solving (1-1) are similar to instantons that capture the effect of tunneling
between critical points. Because of this and analogies with (topological) string theory,
we say that symplectic homology is a theory of closed strings.

The open string analogue of SH.X / is a corresponding theory for paths with endpoints
in the Lagrangian submanifold L�X . It is called the wrapped Floer homology of L

and here denoted by SH.L/. Its underlying chain complex SC.L/ is generated by
Hamiltonian time-1 chords that begin and end on L, graded by a Maslov index. Again
these fall into two classes: high-energy chords that correspond to Reeb chords of the
ideal Legendrian boundary ƒ of L and low-energy chords that correspond to critical
points of H restricted to L. The differential on SC.L/ counts Floer holomorphic
strips with boundary on L interpolating between Hamiltonian chords, ie solutions

uW .R� I; @.R� I//! .X;L/

of (1-1).

We will also consider a mixed version of open and closed strings. The graded vector
space underlying the chain complex is simply SC.X;L/D SC.X /˚SC.L/, and the
differential d1W SC.X;L/! SC.X;L/ has the following matrix form with respect to
this decomposition (subscripts “c” and “o” refer to closed and open, respectively):

d1 D

�
dcc doc

0 doo

�
:

Here dcc and doo are the differentials on SC.X / and SC.L/, respectively, and
docW SC.L/ ! SC.X / is a chain map of degree �1. (There is also a closed-open
map dcoW SC.X /! SC.L/, but we will not use it here.) Each of these three maps
counts solutions of (1-1) on a Riemann surface with two punctures, one positive regarded
as input, and one negative regarded as output. For dcc the underlying Riemann surface
is the cylinder, for doo the underlying Riemann surface is the strip, and for doc the
underlying Riemann surface is the cylinder R � S1 with a slit at Œ0;1/ � f1g (or
equivalently, a disk with two boundary punctures, a sphere with two interior punctures,
and a disk with positive boundary puncture and negative interior puncture). We will
denote the corresponding homology by SH.X;L/.

Geometry & Topology, Volume 21 (2017)



Symplectic and contact differential graded algebras 2163

In order to count the curves in the differential over integers, we use index bundles to
orient solution spaces, and for that we assume that the pair .X;L/ is relatively spin; see
Fukaya, Oh, Ohta and Ono [26]. As the differential counts Floer-holomorphic curves,
it respects the energy filtration, and the subspace generated by the low-energy chords
and orbits is a subcomplex. We denote the corresponding high-energy quotient by
SCC.X;L/ and its homology by SHC.X;L/. We define similarly SCC.X /, SCC.L/,
SHC.X / and SHC.L/.

In the context of Floer homology, the cylinders and strips above are the most basic
Riemann surfaces, and it is well known that more complicated Riemann surfaces †
can be included in the theory as follows; see Ritter [36] and Seidel [39]. Pick a family
of 1–forms B with values in Hamiltonian vector fields on X over the appropriate
Deligne–Mumford space of domains and count rigid solutions of the Floer equation

(1-2) .du�B/0;1 D 0;

where B.s C i t/ D XHt
˝ dt in cylindrical coordinates s C i t near the punctures

of †. The resulting operation descends to homology as a consequence of gluing and
Gromov–Floer compactness. A key condition for solutions of (1-2) to have relevant
compactness properties is that B is required to be nonpositive in the following sense.
For each x 2 X , we get a 1–form B.x/D XHz

.x/˝ ˇ on † with values in TxX ,
where Hz W X !R is a family of Hamiltonian functions parametrized by z 2† and ˇ
is a 1–form on †. The nonpositivity condition is then that the 2–form d.Hz.x/ ˇ/

associated to B is a nonpositive multiple of the area form on † for each x 2X .

The most important such operations on SH.X / are the BV-operator and the pair-of-
pants product. The BV-operator corresponds to solutions of a parametrized Floer
equation analogous to (1-1) which twists the cylinder one full turn. The pair-of-pants
product corresponds to a sphere with two positive and one negative puncture and
restricts to the cup product on the ordinary cohomology of X , which here appears as
the low-energy part of SH.X /. Analogously on SH.L/, the product corresponding
to the disk with two positive and one negative boundary puncture restricts to the cup
product on the cohomology of L, and the disk with one positive interior puncture and
two boundary punctures of opposite signs expresses SH.L/ as a module over SH.X /.

The BV-operator and the pair-of-pants product are generally nontrivial operations. In
contrast, arguing along the lines of Seidel [39, Section 8a] and Ritter [36, Theorem 6.10],
one shows that the operations determined by Riemann surfaces with at least two negative
punctures are often trivial on SHC.X;L/. Basic examples of this phenomenon are
the operations Dm given by disks and spheres with one positive and m� 2 negative
punctures. By pinching the 1–form B in (1-2) in the cylindrical end at one of the m
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negative punctures, it follows that, up to homotopy, Dm factors through the low-energy
part of the complex SC.X;L/. In particular, on the high-energy quotient SCC.X;L/,
the operation is trivial if the 1–form is pinched near at least one negative puncture.

The starting point for this paper is to study operations dm that are associated to
natural families of forms B that interpolate between all ways of pinching near negative
punctures. More precisely, for disks and spheres with one positive and m negative
punctures, we take B in (1-2) to have the form BDXH ˝wj dt in the cylindrical end,
with coordinate sC i t in Œ0;1/� I for open strings and in Œ0;1/�S1 for closed
strings, near the j th puncture. Here wj is a positive function with a minimal value
called weight. By Stokes’ theorem, in order for B to satisfy the nonpositivity condition,
the sum of weights at the negative ends must be greater than the weight at the positive
end. Thus the choice of 1–form is effectively parametrized by an .m�1/–simplex
and the equation (1-2) associated to a form which lies in a small neighborhood of the
boundary of the simplex, where at least one weight is very small, has no solutions
with all negative punctures at high-energy chords or orbits. The operation dm is then
defined by counting rigid solutions of (1-2) where B varies over the simplex bundle.
Equivalently, we count solutions with only high-energy asymptotes in the class dual
to the fundamental class of the sphere bundle over Deligne–Mumford space obtained
as the quotient space after fiberwise identification of the boundary of the simplex to a
point. In particular, curves contributing to dm have formal dimension �.m� 1/.

Our first result says that the operations dm combine to give a DGA differential. The
Hamiltonian simplex DGA SCC.X;L/ is the unital algebra generated by the generators
of SCC.X;L/ with grading shifted down by 1, where orbits sign-commute with orbits
and chords but where chords do not commute. Let d W SCC.X;L/! SCC.X;L/ be
the map defined on generators b by

d b D d1bC d2bC � � �C dmbC � � � ;

and extend it by the Leibniz rule.

Theorem 1.1 The map d is a differential, d ı d D 0, and the homotopy type of
the Hamiltonian simplex DGA SCC.X;L/ depends only on .X;L/. Furthermore,
SCC.X;L/ is functorial in the following sense. If .X0;L0/D .X;L/, if .X10;L10/

is a Liouville cobordism with negative end .@X0; @L0/, and if .X1;L1/ denotes
the Liouville manifold obtained by gluing .X10;L10/ to .X0;L0/, then there is a
DGA map

ˆX10
W SCC.X1;L1/! SCC.X0;L0/;

and the homotopy class of this map is an invariant of .X10;L10/ up to Liouville
homotopy.
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If LD¿ in Theorem 1.1, then we get a Hamiltonian simplex DGA SCC.X / generated
by high-energy Hamiltonian orbits. This DGA is (graded) commutative. Also, the
quotient SCC.L/ of SCC.X;L/ by the ideal generated by orbits is a Hamiltonian
simplex DGA generated by high-energy chords of L. We write SHC.X;L/ for the
homology DGA of SCC.X;L/ and use the notation SHC.X / and SHC.L/ with
a similar meaning. If X is the cotangent bundle of a manifold X D T �M , then
SH.X / is isomorphic to the homology of the free loop space of M (see Abbondandolo
and Schwarz [2], Abouzaid [3], Salamon and Weber [38] and Viterbo [41]), and the
counterpart of d2 in string topology is nontrivial (see Goresky and Hingston [27]). Also,
if b is a generator of SCC.X1;L1/, then with ˆDˆX10

the DGA map in Theorem 1.1,
ˆ.b/ can be expanded as ˆ.b/Dˆ1.b/Cˆ2.b/C � � � , where ˆm.b/ represents the
homogeneous component of monomials of degree m. The linear component ˆ1 in
this expansion induces the Viterbo functoriality map SCC.X1;L1/! SCC.X0;L0/;
see Cieliebak and Oancea [17] and Viterbo [42].

Our second result expresses SCC.X;L/ in terms of the ideal boundary .Y; ƒ/ D

.@X; @L/. Recall that the usual contact homology DGA zA.Y; ƒ/ is generated by
closed Reeb orbits in Y and by Reeb chords with endpoints on ƒ; see Eliashberg,
Givental and Hofer [25]. Here we use the differential that is naturally augmented by
rigid once-punctured spheres in X and by rigid once-boundary punctured disks in X

with boundary in L. (In the terminology of Bourgeois, Ekholm and Eliashberg [7],
the differential counts anchored spheres and disks). In Bourgeois and Oancea [10],
a nonequivariant version of linearized orbit contact homology was introduced. In
Section 6, we extend this construction and define a nonequivariant DGA that we call
A.Y; ƒ/, which is generated by decorated Reeb orbits and by Reeb chords. We give two
definitions of the differential on A.Y; ƒ/, one using Morse–Bott curves and one using
curves holomorphic with respect to a domain dependent almost complex structure. In
analogy with the algebras considered above, we write A.Y / for the subalgebra generated
by decorated orbits and A.ƒ/ for the quotient by the ideal generated by decorated orbits.

In Sections 2.6 and 6.1, we introduce a continuous 1–parameter deformation of the sim-
plex family of 1–forms B that turns off the Hamiltonian term in (1-2) by sliding its sup-
port to the negative end in the domains of the curves and that leads to the following result.

Theorem 1.2 The deformation that turns the Hamiltonian term off gives rise to a
DGA map

ˆW A.Y; ƒ/! SCC.X;L/:

The map ˆ is a quasi-isomorphism that takes the orbit subalgebra A.Y / quasi-
isomorphically to the orbit subalgebra SCC.X /. Furthermore, it descends to the
quotient A.ƒ/ and maps it to SCC.L/ as a quasi-isomorphism.
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The usual (equivariant) contact homology DGA zA.Y; ƒ/ is also quasi-isomorphic to
a Hamiltonian simplex DGA that corresponds to a version of symplectic homology
defined by a time-independent Hamiltonian; see Theorem 6.5. For the corresponding
result on the linear level see Bourgeois and Oancea [12].

Remark 1.3 As is well known, the constructions of the DGAs zA.Y; ƒ/ and A.Y; ƒ/,
of the orbit augmentation induced by X , and of symplectic homology for time-
independent Hamiltonians with time-independent almost complex structures, require the
use of abstract perturbations for the pseudoholomorphic curve equation in a manifold
with cylindrical end. This is an area where much current research is being done and
there are several approaches, some of an analytical character (see eg Hofer, Wysocki and
Zehnder [29; 30]), others of more algebraic topological flavor (see eg Pardon [35]), and
others of more geometric flavor (see eg Fukaya, Oh, Ohta and Ono [26]). Here we will
not enter into the details of this problem but merely assume such a perturbation scheme
has been fixed. More precisely, the proofs that the differential in the definition of the
Hamiltonian simplex DGA squares to zero and that the maps induced by cobordisms
are chain maps of DGAs do not require the use of any abstract perturbation scheme;
standard transversality arguments suffice. On the other hand, our proof of invariance
of the Hamiltonian simplex DGA in Section 5.4 does use an abstract perturbation
scheme (in its simplest version: to count rigid curves over the rationals). Also, it gives
equivalences of DGAs under deformations as in the original version of symplectic field
theory; see Eliashberg, Givental and Hofer [25] and compare the discussion in Pardon
[34, Remark 1.3].

Theorem 1.2 relates symplectic field theory (SFT) and Hamiltonian Floer theory. On the
linear level the relation is rather direct (see Bourgeois and Oancea [10]), but not for the
SFT DGA. The first candidate for a counterpart on the Hamiltonian Floer side collects
the standard coproducts to a DGA differential, but that DGA is trivial by pinching. To
see that, recall the sphere bundle over Deligne–Mumford space obtained by identifying
the boundary points in each fiber of the simplex bundle. The coproduct DGA then
corresponds to counting curves lying over the homology class of a point in each fiber,
but that point can be chosen as the base point where all operations are trivial. The
object that is actually isomorphic to the SFT DGA is the Hamiltonian simplex DGA
related to the fundamental class of the spherization of the simplex bundle.

In light of this, the following picture of the relation between Hamiltonian Floer theory
and SFT emerges. The Hamiltonian Floer theory holomorphic curves solve a Cauchy–
Riemann equation with Hamiltonian 0–order term chosen consistently over Deligne–
Mumford space. These curves are less symmetric than their counterparts in SFT,
which are defined without additional 0–order term. Accordingly, the moduli spaces
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of Hamiltonian Floer theory have more structure and admit natural deformations and
actions, eg parametrized by simplices which control deformations of the weights at
the negative punctures and an action of the framed little disk operad; see Section 7.
The SFT moduli spaces are, in a sense, homotopic to certain essential strata inside
the Hamiltonian Floer theory moduli spaces (see also Remark 6.4), and the structure
and operations that they carry are intimately related to the natural actions mentioned.
From this perspective, this paper studies the most basic operations, ie the higher
coproducts, determined by simplices parametrizing weights at the negative punctures;
see Section 2.3.

We end the introduction by a comparison between our constructions and other well-
known constructions in Floer theory. In the case of open strings, the differential
d D

P1
jD1 dj can be thought of as a sequence of operations .d1; d2; : : : ; dm; : : : / on

the vector space SCC.L/. These operations define the structure of an 1–coalgebra
on SCC.L/ (with grading shifted down by one) and SC.L/C is the cobar construction
for this 1–coalgebra. This point of view is dual to that of the Fukaya category, in
which the primary objects of interest are 1–algebras. In the Fukaya category setting,
algebraic invariants are obtained by applying (variants of) the Hochschild homology
functor. In the DGA setting, invariants are obtained more directly as the homology of
the Hamiltonian simplex DGA.
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2 Simplex bundles over Deligne–Mumford space,
splitting compatibility and 1–forms

The Floer theories we study use holomorphic maps of disks and spheres with one positive
and several negative punctures. Configuration spaces for such maps naturally fiber over
the corresponding Deligne–Mumford space that parametrizes their domains. In this
section we endow the Deligne–Mumford space with additional structure needed to define
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the relevant solution spaces. More precisely, we parametrize 1–forms with nonpositive
exterior derivative by a simplex bundle over Deligne–Mumford space that respects
certain restriction maps at several level curves in the boundary. We then combine
these forms with a certain type of Hamiltonian to get nonpositive forms with values
in Hamiltonian vector fields, suitable as 0–order perturbations in the Floer equation.

2.1 Asymptotic markers and cylindrical ends

We will use punctured disks and spheres with a fixed choice of cylindrical end at
each puncture. Here, a cylindrical end at a puncture is defined to be a biholomorphic
identification of a neighborhood of that puncture with one of the following punctured
model Riemann surfaces:
� Negative interior puncture:

Z� D .�1; 0/�S1
�D2

n f0g;

where D2 �C is the unit disk in the complex plane.
� Positive interior puncture:

ZC D .0;1/�S1
�C n xD2:

� Negative boundary puncture:

†� D .�1; 0/� Œ0; 1�� .D2
n f0g/\H;

where H �C denotes the closed upper half plane.
� Positive boundary puncture:

†C D .0;1/� Œ0; 1�� .C n xD2/\H:

Each of the above model surfaces has a canonical complex coordinate of the form
z D sC i t . Here s 2 R at all punctures, with s > 0 or s < 0 according to whether
the puncture is positive or negative. At interior punctures, t 2 S1, and at boundary
punctures, t 2 Œ0; 1�.

The automorphism group of the cylindrical end at a boundary puncture is R and the
end is thus well defined up to a contractible choice of automorphisms. For a positive
or negative interior puncture, the corresponding automorphism group is R�S1 . Thus
the cylindrical end is well defined up to a choice of automorphism in a space homotopy
equivalent to S1 . To remove the S1 –ambiguity, we fix an asymptotic marker at
the puncture, ie a tangent half-line at the puncture, and require that it corresponds to
.0;1/�f1g or to .�1; 0/�f1g, 12S1 , at positive or negative punctures, respectively.
The cylindrical end at an interior puncture with asymptotic marker is then well defined
up to contractible choice.
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Figure 1: Inducing markers at negative interior punctures

We next consider various ways to induce asymptotic markers at interior punctures that
we will eventually assemble into a coherent choice of asymptotic markers over the space
of punctured spheres and disks. Consider first a disk D with interior punctures and
with a distinguished boundary puncture p . Then p determines an asymptotic marker
at any interior puncture q as follows. There is a unique holomorphic diffeomorphism
 W D!D2 �C with  .q/D 0 and  .p/D 1. Define the asymptotic marker at q

in D to correspond to the direction of the real line at 0 2D2 , ie the direction given by
the vector d �1.0/ � 1. See Figure 1.

Similarly, on a sphere S , a distinguished interior puncture p with asymptotic marker
determines an asymptotic marker at any other interior puncture q as follows. There is a
holomorphic map  W S!R�S1 taking p to1, q to �1 and the asymptotic marker
to the tangent vector of R� f1g. We take the asymptotic marker at q to correspond to
the tangent vector of R� f1g at �1 under  . See Figure 1.

For a more unified notation below we use the following somewhat involved convention
for our spaces of disks and spheres. Let h 2 f0; 1g. For h D 1 and m; k � 0,
let D0hIhm;k D D01Im;k denote the moduli space of disks with one positive boundary
puncture, m� 0 negative boundary punctures and k negative interior punctures. For
hD 0 and k � 0, let D0hIhm;k D D00I0;k denote the moduli space of spheres with one
positive interior puncture with asymptotic marker and k negative interior punctures.

As explained above there are then, for both h D 0 and h D 1, induced asymptotic
markers at all the interior negative punctures of any element in D0hIhm;k . The space
D0hIhm;k admits a natural compactification that consists of several level disks and
spheres; see [8, Section 4] and also [31]. We introduce the following notation to
describe the boundary. Consider a several-level curve. We associate to it a downwards
oriented rooted tree � with one vertex for the positive puncture of each component
of the several-level curve and one edge for each one of the negative punctures of the
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Figure 2: A curve in the main stratum of D0hIhm;k with hmC k D 3 (left)
and a 2–level curve in the boundary of D0hIhm;k with hmC k D 5 (right)

components of the several-level curves. See Figure 2 for examples. Here the root of
the tree is the positive puncture of the top-level curve and the edges attached to it are
the edges of the negative punctures in the top level oriented away from the root. The
definition of � is inductive: the vertex of the positive puncture of a curve C in the j th

level is attached to the edge of the negative puncture of a curve in the .j�1/st level
where it is attached. All edges of negative punctures of C are attached to the vertex
of the positive puncture of C and oriented away from it. Then the boundary strata
of D0hIhm;k are in one-to-one correspondence with such graphs � and the components
of the several-level curve are in one-to-one correspondence with downwards oriented
subtrees consisting of one vertex and all edges emanating from it. For example the
graph of a curve lying in the interior of D0hIhmIk is simply a vertex with hmCk edges
attached and oriented away from the vertex. To distinguish the edges of such graphs � ,
we call an edge a gluing edge if it is attached to two vertices and free if it is attached
only to one vertex.

Note next that the induced asymptotic markers are compatible with the level structure
in the boundary of D0hIhm;k in the sense that they vary continuously with the domain
inside the compactification. To see this, note that in a boundary stratum corresponding
to a graph � , it is sufficient to study neck stretching for cylinders corresponding to
linear subgraphs of � , and here the compatibility of asymptotic markers with the level
structure is obvious.

Consider the bundle C0hIhm;k ! D0hIhm;k , with h 2 f0; 1g and m; k � 0, of disks or
spheres with punctures with cylindrical ends compatible with the markers. The fiber of
this bundle is contractible so there exists a section. We next show that there is also a
section over the compactification of D0hIhm;k . The proof is by induction on hmCk � 3.
We first choose cylindrical ends for disks and spheres with three punctures. Gluing
these we get cylindrical ends in a neighborhood of the boundary of the moduli space of
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disks and spheres with four punctures. Since the fiber of C0hIhmIk is contractible, this
choice can be extended continuously over the whole space of disks and spheres with
four punctures. Assume by induction that cylindrical ends for disks and spheres with
less than hmC k negative punctures have been chosen to be splitting compatible; ie
in such a way that near the boundary of any moduli space of disks and spheres with
hm0C k 0 < hmC k negative punctures, the cylindrical ends are induced via gluing
from the moduli spaces of disks and spheres with less than hm0Ck 0 negative punctures.
We claim that such a choice that is splitting compatible determines a well-defined
splitting compatible section of the bundle C0hIhm;k ! D0hIhm;k near its boundary via
gluing. Indeed, given a stratum in the boundary corresponding to a graph � as above,
the gluing construction determines a section on the intersection between D0hIhm;k and
some open neighborhood of that stratum in the compactification of D0hIhm;k . Splitting
compatibility ensures that local sections determined by different strata in the boundary
coincide on overlaps; see [40, Lemma 9.3]. Finally, to complete the induction, note
that the resulting section defined in a neighborhood of the boundary extends to a global
section because the fiber of the bundle C0hIhm;k ! D0hIhm;k is contractible.

Let fDhIhm;kgh2f0;1g;k;m�0 , DhIhm;k W D0hIhm;k! C0hIhm;k denote a system of sections
as in the inductive construction above, with DhIhm;k defined over the compactification
of D0hIhm;k . We say that

DD
[

h2f0;1gIm;k�0

DhIhm;k

is a system of cylindrical ends that is compatible with breaking.

We identify DhIhm;k with its graph and think of it as a subset of C0hIhm;k . The projection
of DhIhm;k onto D0hIhm;k is a homeomorphism and, after using smooth approximation,
a diffeomorphism with respect to the natural stratification of the space determined by
several-level curves. Via this projection we endow DhIhm;k with the structure of a set
consisting of (several-level) curves with additional data corresponding to a choice of a
cylindrical end neighborhood at each puncture.

A neighborhood of a several-level curve S 2DhIhm;k can then be described as follows.
Consider the graph � determined by S . Let V .�/ D fv0; v1; : : : ; vr g denote the
vertices of � with v0 the top vertex, and let Eg.�/D fe1; : : : ; esg denote the gluing
edges of � . Let Uj be neighborhoods in Dhj Ihjmj ;kj of the component corresponding
to vj . Then a neighborhood U of S is given by

(2-1) U D

� Y
vj2V .�/

Uj

�
�

� Y
el2Eg.�/

.�0Il ;1/

�
;

where �0Il � 0 for 1 � j � s . Here the gluing parameters �l 2 .�0Il ;1/ measure
the length of the breaking cylinder or strip corresponding to the gluing edge el . More
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Figure 3: Gluing of a nodal curve in cylindrical coordinates

precisely, assume that el connects vi and vj and corresponds to the curve Sj of vj
attached at its positive puncture pj to a negative puncture qi of the curve Si of vi .
Then, given the cylindrical ends .�1; 0� � S1 (interior case) or .�1; 0� � Œ0; 1�
(boundary case) for qi , respectively Œ0;1/ � S1 (interior case) or Œ0;1/ � Œ0; 1�
(boundary case) for pj , the glued curve corresponding to the parameter �l 2 .�0Il ;1/

is obtained via the gluing operation on these cylindrical ends defined by cutting out�
�1; �1

2
�l

�
�S1 or

�
�1;�1

2
�l

�
� Œ0; 1� from the cylindrical end of qi , cutting out�

1
2
�l ;1

�
� S1 or

�
1
2
�l ;1

�
� Œ0; 1� from the cylindrical end of pj , and gluing the

remaining compact domains in the cylindrical ends by identifying
˚
�

1
2
�l

	
�S1 with˚

1
2
�l

	
�S1, respectively

˚
�

1
2
�l

	
� Œ0; 1� with

˚
1
2
�l

	
� Œ0; 1�. We refer to the resulting

compact domain as the breaking cylinder or strip, and we refer to
˚
�

1
2
�l

	
� S1 �˚

1
2
�l

	
�S1 or

˚
�

1
2
�l

	
� Œ0; 1��

˚
1
2
�l

	
� Œ0; 1� as its middle circle or segment. Given

a several-level curve S in this neighborhood we write xSj for the closures of the
components that remain if the middle circle or segment in each breaking cylinder or
strip is removed, and that correspond to subsets of the levels Sj of the broken curve.
See Figure 3.

2.2 Almost complex structures

We next introduce splitting compatible families of almost complex structures over D .
Let J .X / denote the space of almost complex structures on X compatible with !
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and adapted to the contact form ˛ in the cylindrical end; ie if J 2 J then in the
cylindrical end J preserves the contact planes and takes the vertical direction to the
Reeb direction. Our construction of a family of almost complex structures is inductive.
We start with strips, cylinders and cylinders with slits with coordinates sC i t . Here
we require that J D Jt depends only on the I or I=@I coordinate. Assume that
we have defined a family of almost complex structures Jz for all curves DhIhm;k ,
hmC k � p which have the form above in every cylindrical end and which commute
with restriction to components for several-level curves. By gluing we then have a
field of almost complex structures in a neighborhood of the boundary of DhIhm;k for
hmC k D pC 1. Since J is contractible, it is easy to see that we can extend this
family to all of DhIhm;k . We call the resulting family of almost complex structures
over the universal curve corresponding to D splitting compatible.

2.3 A simplex bundle

Consider the trivial bundle

EhmCk�1
D DhIhm;k ��

hmCk�1
! DhIhm;k

over DhIhm;k , with fiber the open .hmCk�1/–simplex

�hmCk�1
D
˚
.s1; : : : ; shmCk/ W

P
i si D 1; si > 0

	
:

Since the bundle is trivial, it extends as such over the compactification of DhIhm;k . We
think of the coordinates of a point .s1; : : : ; shmCk/ 2�

hmCk�1 over a disk or sphere
DhIhm;k 2 DhIhm;k as representing weights at its negative punctures, and we think of
the positive puncture as carrying the weight 1.

We next define restriction maps for EhmCk�1 over the boundary of DhIhm;k . Let
s D .s1; : : : ; shmCk/ 2 �

hmCk�1 denote the weights of a several-level curve S in
the boundary of DhIhm;k with graph � . Let Sj be a component of this building
corresponding to the vertex vj of � , with positive puncture q0 and negative punctures
q1; : : : ; qn . Define the weight w.ql/ at ql for l D 0; : : : ; n as follows. For l D 0,
w.q0/ equals the sum of all weights at negative punctures q of the total several-level
curve for which there exists a level-increasing path in � from vj to q . For l � 1,
if the edge of the negative puncture ql is free then w.ql/ equals the weight of the
puncture ql as a puncture of the total several-level curve, and if the edge is a gluing
edge connecting vj and vt , then w.ql/ equals the sum of all weights at negative
punctures q of the total several-level curve for which there exists a level-increasing
path in � from vt to q . Note that w.q0/D w.q1/C � � �Cw.qn/ by construction.
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Figure 4: Component restriction maps

The component restriction map rj then takes the point s2�hmCk�1 over S to the point

rj .s/D
1

w.q0/
.w.q1/; : : : ; w.qn// 2�

n�1

over Sj in En�1 . The component restriction map rj is defined on the restriction of
EhmCk�1 to the stratum that corresponds to � in the boundary of DhIhm;k .

2.4 Superharmonic functions and nonpositive 1–forms

Our main Floer homological constructions involve studying Floer holomorphic curves
parametrized by finite-dimensional families of 1–forms with values in Hamiltonian
vector fields. As discussed in Section 1, it is important that the 1–forms are nonpositive;
ie the associated 2–forms are nonpositive multiples of the area form. Furthermore, in or-
der to derive basic homological algebra equations, the 1–forms must be gluing/breaking
compatible on the boundary of Deligne–Mumford space. In this section we construct
a family of superharmonic functions parametrized by E that is compatible with the
component restriction maps at several-level curves. The differentials of these functions
multiplied by the complex unit i then give a family of 1–forms with nonpositive
exterior derivative that constitutes the basis for our construction of the 0–order term in
the Floer equation.
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Fix a smooth decreasing function �W .0; 1�! Œ0;1/ such that �.1/D 0 and

(2-2) lim
s!0C

�.s/DC1:

We will refer to � as a stretching profile.

We will construct a family of functions over curves in D parametrized by the bundle E
in the following sense. If e 2 E belongs to the fiber over a one-level curve DhIhm;k 2

DhIhm;k , then geW DhIhm;k ! R. If DhIhm;k is a several-level curve with graph �
and components Sj corresponding to its vertices vj for j D 0; : : : ; s , then ge is
the collection of functions gr0.e/; : : : ;grs.e/ on S0; : : : ;Ss , where rj denotes the
component restriction map to Sj . Our construction uses induction on the number of
negative punctures and on the number of levels.

In the first case, hmCkD 1, and the domain is the strip R� Œ0; 1�, the cylinder R�S1

or the cylinder with a slit (which we view as a subset of R�S1 ). Over these domains,
the fiber of E is a point e , and we take the function ge to be the projection to the
R–factor.

For hmCk>1, we specify properties of the functions separately for one-level curves in
the interior of DhIhm;k and for a neighborhood of several-level curves near the boundary.
We start with one-level curves. Let e be a section of E over one-level curves in the
interior VDhIhm;k . Let DhIhm;k 2

VDhIhm;k and write eD .w1; : : : ; whmCk/2�
hmCk�1 .

We say that a smooth family of functions ge over the interior satisfies the one-level
conditions if the following hold (we write � W E! D for the projection):

(I) There is a constant c0 D c0.�.e// such that in a neighborhood of infinity in the
cylindrical end at the positive puncture

(2-3) ge.sC i t/D c0C s;

where sC i t is the complex coordinate in the cylindrical end, ie in Œ0;1/�S1

for an interior puncture and in Œ0;1/ � Œ0; 1� for a boundary puncture; see
Section 2.1.

(II1) There are constants � D �.�.e// 2 Œ1; 2/, RD R.�.e// > 0, cj D cj .e/ and
c0j D c0j .e/ for j D 1; : : : ; hmCk , such that in a neighborhood of infinity in the
cylindrical end of the j th negative puncture of the form .�1; 0��S1 for interior
punctures or .�1; 0��Œ0; 1� for boundary punctures, we have ge.sCi t/Dge.s/,
where

(2-4) ge.s/D

�
c0j C �wj s for �R� s � �R� �.wj /;

cj C s for �R� �.wj /� 1� s > �1;
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is a concave function, g00e .s/ � 0, and where � is the stretching profile (2-2).
In particular, for each weight wj at a negative puncture there is a cylinder or
strip region of length at least �.wj / along which ge.sC i t/ D �sCC , with
0< � � 2wj .

(III) The function is superharmonic: �ge � 0 everywhere.

(IV) When hD 1 so that DhIhm;k is a disk, the derivative of ge in the direction of
the normal � of the boundary @DhIhm;k vanishes everywhere:

@ge

@�
D 0 along @DhIhm;k :

Remark 2.1 The reason for having ge.s/D cj C s rather than ge.s/D cj C �wj s

near infinity in (2-4) is to make the functions compatible with splitting. Indeed, the
weight equals 1 at the positive puncture of any domain.

Remark 2.2 For the boundary condition IV, note that for the cylinder with a slit, in
local coordinates uC iv , v � 0, at the end of the slit, the standard function looks like
ge.uC iv/D u2� v2 , and @ge=@v D 0.

Remark 2.3 The appearance of the “extra factor” � in (2-4) is to allow for a certain
interpolation below; see the proof of Lemma 2.4. As we shall see, we can take �
arbitrarily close to 1 on compact sets of VDhIhm;k . As mentioned in Section 1, one of
the main uses of weights is to force solutions to degenerate for small weights, and for
desired degenerations it is enough that � be uniformly bounded. At the opposite end
we find the following restriction on � : superharmonicity in the cylindrical end near
a negative puncture where the weight is wj implies that �wj � 1, and in particular
� ! 1 if wj ! 1. In general, superharmonicity of the function ge is equivalent to the
differential d.�i�dge/ being nonpositive with respect to the conformal area form on
the domain DhIhm;k . This is compatible with Stokes’ theorem, which givesZ

DhIhm;k

�d.i�dge/D 1� .hmC k/� 0:

We will next construct families of functions satisfying the one-level condition over any
compact subset of the interior of DhIhm;k . Later we will cover all of DhIhm;k with
a system of neighborhoods of the boundary where condition II1 above is somewhat
weakened but still strong enough to ensure degeneration for small weights.

Lemma 2.4 If eW VDhIhm;k ! E is a constant section, then over any compact subset
K � VDhIhm;k , there is a family of functions ge that satisfies the one-level conditions.
Moreover, we can take � in II1 arbitrarily close to 1.
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Proof For simpler notation, let DDDhIhm;k . Consider first the case when the positive
puncture p and all the negative punctures q1; : : : ; qk are interior. Fix an additional
marked point in the domain. For each qj , fix a conformal map to R � S1 which
takes the positive puncture to 1, the marked point to some point in f0g � S1 , and
the negative puncture to �1. Fix � 2 .1; 2/ and let g0j W D ! R be the function
g0j D

1
2
.1C �/wj sj C cj with sj the R–coordinate on R�S1 . Let gj be a concave

approximation of this function with second derivative nonzero only on two intervals
of finite length located near ˙1, linear of slope wj near C1 and linear of slope
�wj near �1; see Figure 5. Note in particular that since � > 1 the derivative of gj

will be strictly negative in both intervals. We will use these regions below. Consider
the function

g D

kX
jD1

gj :

Then g is superharmonic but it does not quite have the right behavior at the punc-
tures. Here however, the leading terms are correct and the errors are exponentially
small. To see this consider a negative puncture qj as a point in the cylinder R�S1

used to define gm for j ¤ m. Let s C i t 2 .�1; 0/ � S1 be the coordinates
of the cylindrical end near qj . The change of variables z D e2�.sCit/ defines a
complex coordinate centered at qj , with respect to which gm has a Taylor expan-
sion gm.z/ D am;0C am;1z C am;2z2C � � � around 0. We thus find gm.s C i t/ D

am;0C am;1e2�.sCit/C am;2e4�.sCit/C � � � , so that in the cylindrical end near qj ,

g.sC i t/D gj .sC i t/C
X
m¤j

am;0CO.e�2�jsj/:

Thus the error
g.sC i t/�gj .sC i t/� constDO.e�2�jsj/

is exponentially small. We turn off these exponentially small errors in a neighborhood
of qj in the region of support of the second derivative of gj so that g.s C i t/ D

gj .sC i t/C const in a neighborhood of infinity as desired.

We can arrange the parameters so that the resulting function satisfies (2-3) near the
positive puncture, and it satisfies the top equation in the right-hand side of (2-4) in some
neighborhood of qj . In order to achieve the bottom equation in a neighborhood of qj

we use �wj � 1 and simply replace the linear function of slope �wj by a concave
function that interpolates between it and the linear function of slope 1. The fact that
we can take � arbitrarily close to 1 follows from the construction.

The case of boundary punctures can be treated in exactly the same way. In case of a
positive boundary puncture and a negative interior puncture we replace the cylinder
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gj

d2

ds2
j

gj < 0

sj

g0j

Figure 5: A function gj that is strictly concave on the region of concavity
near C1

above with the cylinder with a slit along Œ0;1/� f1g and in case of both positive and
negative boundary punctures we use the cylinder with a slit all along R� f1g.

Remark 2.5 For future reference we call the regions in the cylindrical ends where
�ge < 0 regions of concavity.

We next want to define a corresponding notion for several-level curves. To this end we
consider nested neighborhoods

� � � �N `
�N `�1

�N `�2
� � � � �N 2;

where N j is a neighborhood of the subset Dj � D of j –level curves. Consider
constant sections e of EhmCk�1 over VDhIhm;k and let ge be a family of functions.
The `–level conditions are the same as the one-level conditions I , III and IV, and also
the following new condition:

.II`/ For curves in N `�N `�1 with eD .w1; : : : ; whmCk/ and any j , there is a strip
or cylinder region of length at least �..wj /

1=`/, where ge.sC i t/D �sCC for
0< � � 2.wj /

1=` .

Our next lemma shows that there is a family of functions ge that satisfies the `–level
condition and that is also compatible with splittings into several-level curves in the
following sense.

We say that a family of functions ge as above is splitting compatible if the following
holds. If S� 2 VDhIhm;k , �D 1; 2; 3; : : : , is a family of curves that converges as �!1
to an `–level curve with components S0; : : : ;Sm and if K� � S� is any compact
subset that converges to a compact subset Kj of Sj , then there is a sequence of
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constants c� such that the restriction gejK� C c� converges to grj .ej /jKj , where rj .e/

is the component restriction of e to Sj .

Lemma 2.6 There exists a system of neighborhoods

� � � �N `
�N `�1

�N `�2
� � � � �N 2;

and a splitting compatible family of functions ge parametrized by constant sections
of E that satisfies the `–level condition for all `� 1.

Proof The proof is inductive. In the first case hmC k D 2 there are only one-level
curves and we use the canonical functions ge discussed above. Consider next a gluing
compatible section e over DhIhm;k with hmC k D 3. This space is an interval and
the boundary points correspond to two-level curves S with both levels S0 and S1

in DhIhm;k , hmC k D 2. Consider a neighborhood of such a two-level curve in
DhIhm;k parametrized by a gluing parameter � 2 Œ0;1/; see (2-1). Assume that the
positive puncture of S1 is attached at a negative puncture of S0 . Write S.�/2DhIhm;k ,
hmC k D 3 for the resulting domain, and write Sj .�/ for the part of the curve S.�/

that is naturally a subset of Sj . Note that �!1 as we approach the boundary; see the
discussion in Section 2.1. Let gr0.e/ and gr1.e/ denote the functions of the component
restrictions of e to S0 and S1 . If we are sufficiently close to the boundary so that � is
sufficiently large, then there is a constant c.�/ such that

(2-5) c.�/D gr0.e/j@S0.�/�gr1.e/j@S1.�/:

We then define the function ge.�/W S.�/!R as

ge.�/D

�
gr0.e/ on S0.�/;

c.�/Cgr1.e/ on S1.�/:

Then ge.�/ is smooth, satisfies I , III and IV, and has the required properties for
restrictions to levels. Furthermore, the restriction of ge.�/ to S0.�/ satisfies (2-4)
with �wj replaced by �w.q0/, where w.q0/ is the weight of r0.e/ at the negative
puncture q0 of S0 where S1 is attached (except that the interval in the second equation
is not infinite but finite) and the restriction of ge.�/ to S1.�/ satisfies (2-4) with the
weights of r1.e/ at the negative ends of S1 . Let wj .r1.e// denote the weights at
the negative punctures qj of S which are negative punctures of S1 , seen as negative
punctures of S1 . Then by definition,

wj D w.q0/wj .r1.e//:

Since
.wj /

1=2
D
�
w.q0/wj .r1.e//

�1=2
�min

�
w.q0/; wj .r1.e//

�
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and

�..wj /
1=2/� �.min.w.q0/; wj .r1.e////Dmax

�
�.w.q0//; �.wj .r1.e///

�
;

we find that there exists a strip or cylinder region of length at least �..wj /
1=2/ where

ge.sC i t/D �sCC , with 0< � � 2.wj /
1=2 . Thus the two-level condition II2 holds.

We next want to extend the family of functions over all of DhIhm;k , hmC k D 3,
respecting condition II2 . To this end we consider a neighborhood N 20 of the broken
curves in the boundary where the glued functions described above are defined. Using
the gluing parameter this neighborhood can be identified with a half infinite interval
.�0;1/, where 1 corresponds to the broken curve. In some neighborhood .�1;1/

of 1 we use the glued functions above. As the gluing parameter decreases in .�0; �1/

we deform the derivative of the function as follows: we decrease it uniformly below the
gluing region and increase the length of the region near the negative puncture where
it is small, until we reach the one-level function. See Figure 6. For this family ge ,
conditions I , II2 , III and IV hold everywhere, and II1 holds in the compact subset of
VDhIhm;k which is the complement of a suitable subset N 2 �N 20 .

For more general two-level curves with hmC k > 3 lying in N2 �N3 , we argue in
exactly the same way using the gluing parameter to interpolate between the natural
gluing of the functions of the component restrictions of e and the function of e (see
Lemma 2.4) satisfying the one-level condition.

Consider next the general case. Assume that we have found a splitting compatible
family of functions ge , associated to a constant section e defined over the subset D`

consisting of all curves in D with at most ` levels, that satisfies conditions I , III
and IV everywhere, and assume that there are nested neighborhoods

N `
�N `�1

�N `�2
� � � � �N 2;

where N j is a neighborhood of Dj in D` such that condition IIj holds in N j�N j�1 .

Consider a curve S in the boundary of DhIhm;k with ` C 1 levels. Assume that
the top-level curve S0 of S has r negative punctures at which there are curves
S1; : : : ;Sr of levels � ` attached. Let rj .e/ denote the component restriction to Sj for
j D 0; 1; : : : ; r . Our inductive assumption gives a smooth splitting compatible family
of superharmonic functions with properties I , III and IV for curves in a neighborhood
of these broken configurations depending smoothly on rj .e/. Denote the corresponding
functions by gr.ej /W Sj ! R. Consider now a coordinate neighborhood U of the
form (2-1) around S :

U D U 0
�

rY
jD1

.�
j
0
;1/�U j :
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Let �D .�1; : : : ; �r /. For curves Sj 2 U j , write S.�/ for the curve that results from
gluing these according to � and in analogy with the two-level case, write Sj .�/ for
the part of S.�/ that is naturally a subset of Sj . Our inductive assumption then shows
that there are constants cj .r0.e/; rj .e/; �j / for j D 1; : : : ; r such that

(2-6) cj .r0.e/; rj .e/; �j /D g0
r0.e/
j@jS0.�/�grj .e/j@Sj .�/;

where @j S0.�/ is the boundary component of S0.�/ where Sj .�/ is attached. Define
the function ge.�/W S.�/!R as

ge.�/D

�
gr0.e/ on S0.�/;

grj .e/C cj .r0.e/; rj .e/; �j / on Sj .�/; j D 1; : : : ; r:

The splitting compatibility of the cylindrical ends (see Section 2.1) guarantees that
the cylindrical ends on the curves in a neighborhood of the .`C1/–level curve are
independent of breaking, ie independent of the way in which the curve is obtained by
gluing from some other curve with more levels. Since the shifting constants above are
defined in terms of gluing parameters in cylindrical ends, this splitting compatibility
then implies the splitting compatibility of the family of functions. It is immediate that
the function ge.�/ satisfies I , III and IV. We show that condition II`C1 holds. Let q

be a negative puncture in some Sj for j D 1; : : : ; r . Let

wj 0
q D w

0
j w

j
q ;

where w0
j is the weight of r0.e/ at the negative puncture of S0 where Sj is attached

and where wj
q is the weight of rj .e/ at the negative puncture q . Then wj 0

q w
j 0
q is the

weight of the puncture q seen as a negative puncture of S . Since

.wj 0
q /

1=.`C1/
D .w0

j w
j
q /

1=.`C1/
�min.w0

j ; .w
j
q /

1=`/

and

�..wj 0
q /

1=.`C1//� �.min.w0
j ; .w

j
q /

1=`//Dmax.�.w0
j /; �..w

j
q /

1=`//;

we deduce that condition II`C1 holds.

This defines ge.�/ in a collar neighborhood of the boundary of D`C1 . As in the two-
level case above we get a family g0e on the complement of half the collar neighborhood,
and then by interpolation we obtain a gluing compatible family over all of D`C1 that
satisfies conditions II` and II`C1 with respect to an appropriate neighborhood N `C1 ,
as required.

Using the splitting compatible family of subharmonic functions parametrized by E , we
define a family of nonpositive 1–forms on the domains in D , likewise parametrized
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increase the region
of small weight

dt
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dt dt
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w2dt

�.w1/
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(I)

(II)

Figure 6: The top picture shows a function that meets the one-level condition.
The size of the derivative of the function is indicated by the width of the strip.
The lower picture shows how the function changes in a neighborhood of the
boundary: very near to the broken curve, we simply glue the functions of the
pieces. Moving away from the boundary, we increase the region where the
slope is small as indicated and increase the length of the thin regions near
the negative puncture until they meet the one-level condition. Further in (not
shown in the picture), we interpolate to the one-level function.
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by E , as follows. Let i denote the complex structure on the domain DhIhm;k and define

(2-7) ˇe D�i�dge D
@ge

@�
d� �

@ge

@�
d�;

where � C i� is a complex coordinate on DhIhm;k . Then we find that

dˇe D .�ge/d� ^ d� � 0;

with strict inequality in regions of concavity.

2.5 Hamiltonians

We consider two types of Hamiltonians: one for defining the Hamiltonian simplex DGA
that we call one-step Hamiltonian and one for defining cobordism maps between DGAs
that we call two-step Hamiltonian. We use the following convention: if H W X!R is a
Hamiltonian function then we define the corresponding Hamiltonian vector field XH by

!.XH ; � /D�dH:

Let .X;L/ be a Liouville pair with end Œ0;1/�.Y; ƒ/, and recall our notation r D et ,
where t is the coordinate on the factor Œ0;1/. We first consider time-independent
one-step Hamiltonians H W X !R. Such a function has the following properties:

� For small � > 0, �
2
�H � � and H is a Morse function on the compact manifold

with boundary X n .0;1/�Y .

� On Œ0;1/ � Y , we have that H.r;y/ D h.r/ is a function of r only with
h0.r/ > 0 and h00.r/� 0 such that H.r/D arCb for r � 1, where a> 0 and b

are real constants. We require that a is distinct from the length of any closed
Reeb orbit or of any Reeb chord with endpoints on ƒ.

Note that in the symplectization part, where H D h.r/, the Hamiltonian vector field is
proportional to the Reeb vector field R of the contact form ˛ on Y :

XH D h0.r/R:

Consider the time-1 flow of the Hamiltonian vector field XH of H . Hamiltonian
chords and orbits then come in two classes. Low-energy orbits that correspond to
critical points of H that we take to lie off of L and low-energy chords that correspond
to critical points of H jL . The low-energy chords and orbits are generically transverse.
High-energy orbits and chords are reparametrizations of Reeb chords and orbits. The
chords are generically transverse but the orbits are generically transverse only in the
directions transverse to the orbit but not along the orbit. Following [16], we pick a small
positive time-dependent perturbation of H near each orbit based on a Morse function
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on the orbit that gives two orbits of the time-dependent Hamiltonian corresponding
to H . We call the resulting Hamiltonian a time-dependent one-step Hamiltonian.

Let .X0;L0/ be a Liouville pair with end Œ0;1/� .Y0; ƒ0/ and consider a symplec-
tic (Liouville) cobordism .X10;L10/ with negative end .Y0; ƒ0/ and positive end
.Y1; ƒ1/. Gluing .X10;L10/ to .X0;L0/, we build a new Liouville pair .X1;L1/

which contains the compact part of .X0;L0/, connected via Œ�R; 0�� .Y0; ƒ0/ to a
compact version .X 0

10
;L0

10
/ of the cobordism, and finally its cylindrical end. Con-

sider time-independent two-step Hamiltonians H W X1!R. Such functions have the
following properties:

� For small � > 0, we have that �
2
�H � � and that H is a Morse function on

X 0
0

, the complement of Œ�R; 0��Y0 in the compact part of X0 .

� On Œ�R;�1�� Y0 , we have that H.r;y/D h.r/ is a function of r only with
h0.r/ > 0 and h00.r/� 0 such that H.r/D arCb for r ��RC1, where a> 0

and b are real constants. We require that a is distinct from the length of any
closed Reeb orbit or Reeb chord with endpoints on ƒ0 in Y0 .

� h0.r/� 0 on Œ�1; 0��Y0 , and the function becomes constant near 0�Y0 .

� Over X 0
10

, the function is an approximately constant Morse function.

� Finally, in the positive end, the function has the standard affine form of a one-step
Hamiltonian.

Let H1 be a time-dependent one-step Hamiltonian on X1 and let H0 be a two-step
Hamiltonian on X1 with respect to the cobordism X01 such that H0 �H1 .

We consider chords and orbits of both Hamiltonians. The action of a chord or orbit
 W Œ0; 1�!X of Hj is

a. /D

Z 1

0

 ���

Z 1

0

Hj . .t// dt:

The nonpositivity of our 1–forms implies that, if we have D1Im;k 2 D1Im;k and
uW .D1Im;k ; @D1Im;k/ ! .X1;L1/ lies in the space of solutions of the Floer equa-
tion F.aIb;�/ as defined in Section 4.1 below, with a a chord, bD b1 � � � bm a word
in chords, and �D �1 � � � �k a word in periodic orbits, then

a.a/� .a.b1/C � � �C a.bm//� .a.�1/C � � �C a.�k//� 0:

Likewise if u 2 F.;�/ as defined in Section 4.1 below, with  a periodic orbit and
�D �1 � � � �k a word in periodic orbits, then

a. /� .a.�1/C � � �C a.�k//� 0:
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f0g �Y1f0g �Y0f�Rg �Y0
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Figure 7: Hamiltonians for the cobordism map

Lemma 2.7 The Hamiltonian chords and orbits of H1 decompose into the following
subsets:

� OX1
: the chords and orbits that correspond to critical points of H1 in X1 . If

 2OX1
, then a. /� 0.

� CX1
: Hamiltonian chords and orbits located near f0g�Y1 , and corresponding to

Reeb chord and orbits in .Y1; ˛1/. If  2 CX1
, then a. / > 0.

The Hamiltonian chords and orbits of H0 decompose into the following subsets:

� OX0
: the chords and orbits that correspond to critical points of H0 in X0 . If

 2OX0
, then a. /� 0.

� CX0
: Hamiltonian chords and orbits located near f�Rg �Y0 . If  2 CX0

, then
a. / > 0.

� C�
X0

: Hamiltonian chords and orbits located near f0g�Y0 . Given � > 0, if R is
chosen small enough, then every  2 C�

X0
has a. / < 0.

� OX01
: the chords and orbits that correspond to critical points of H0 in X01 . If

 2OX01
, then a. / < 0.

� C�
X1

: Hamiltonian chords or orbits located near f0g �Y1 . If a0 < �.1� e�R/,
then for any chord or orbit � 2 C�

X1
, we have a.�/ < 0.

Proof Straightforward calculation.
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2.6 Nonpositive 1–forms of Hamiltonian vector fields

Let H be a one-step time-independent Hamiltonian and Ht , t 2 Œ0; 1�, an associated
time-dependent one-step Hamiltonian on X . We will define nonpositive 1–forms
with values in Hamiltonian vector fields parametrized by splitting compatible constant
sections of E . As before, our construction is inductive. Before we enter the actual
construction, recall the notion of nonpositivity for 1–forms B on a Riemann surface †
with values in Hamiltonian vector fields on X ; see Section 1. Each x 2 X gives a
1–form on † with values in TxX , B.x/ D XHz

.x/˝ ˇ , where Hz W X ! R, is a
family of Hamiltonian functions parametrized by z 2 † and ˇ is a 1–form on †.
The nonpositivity condition is then that the 2–form associated to B , d.Hz.x/ ˇ/, is a
nonpositive multiple of the area form on † for each x 2X .

Let I D Œ0; 1� and S1 D I=@I . For cylinders, strips, and cylinders with a slit with
coordinates sC i t , s 2R, t 2 I or t 2 I=@I we use the time-dependent Hamiltonian
throughout and define

B DXHt
˝ dt:

For x 2X , the associated 2–form is d.Ht .x/ dt/D 0 and B is nonpositive.

Consider next disks and spheres in DhIhm;k with hmC k D 2. Fix a cut-off function
 W DhIhm;k ! Œ0; 1� which equals 0 outside the cylindrical ends, which equals 1 in
a neighborhood of each cylindrical end, and such that d has support in the regions
of concavity only. Furthermore, we take the cut-off function to depend on the first
coordinate only in the cylindrical end Œ0;1/�S1 or .�1; 0��S1 at interior punctures
and Œ0;1/� Œ0; 1� or .�1; 0�� Œ0; 1� at boundary punctures. Let Ht , t 2 I , denote
the time-dependent one-step Hamiltonian and H the time-independent one, chosen
such that Ht .x/�H.x/ for all .x; t/ 2X � I . Let H

 
t D .1� /H C Ht . Define

B DX
H
 
t

˝ˇ:

For x 2X the associated 2–form is as follows: in the complements of cylindrical ends
near the punctures it is given by

d.H
 
t .x/ˇ/DH.x/dˇ � 0;

since H.x/ � 0, and in the cylindrical ends near the punctures, with coordinates
sC i t , by

d.H
 
t .x/ˇ/D  

0.s/
�
Ht .x/�H.x/

�
ds ^ˇC

�
.1� /H C Ht

�
dˇ � 0;

where the last inequality holds provided Ht is sufficiently close to H , so that the
second term dominates when the first is nonvanishing. (Here we used that dt ^ˇ D 0
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in the cylindrical end.) We now extend this field of 1–forms with values in Hamiltonian
vector fields over all of D using induction. For one-level curves in the interior of
DhIhm;k , a straightforward extension of the above including more than two ends gives
a nonpositive form. For several-level curves, gluing the 1–forms of the components
define forms with desired properties in a neighborhood of the boundary of DhIhm;k .
Finally, we interpolate between the two fields of forms over a collar region near the
boundary using the interpolation of the form part ˇ ; see Lemma 2.6. We denote the
resulting form with nonpositive differential by B .

Consider next the case of two-step Hamiltonians. As for the one-level Hamiltonians we
insert a small time-dependent perturbation near all Reeb orbits of positive action and
we get a 0–order term B exactly as above, just replace the one-step Hamiltonian with
the two-step Hamiltonian everywhere. Note that, with this definition, the Hamiltonian
is time dependent near each puncture. We use this when relating the nonequivariant
contact homology to the Morse–Bott version of symplectic homology; see Section 6.

We will consider one further type of 1–form with values in Hamiltonian vector fields
that we use to interpolate between one-step and two-step Hamiltonians. Let H0 DH

be the two-step Hamiltonian above and let H1 be a one-step Hamiltonian on X1

with H1 � H0 everywhere. Let �W R! R be a smooth function with nonpositive
derivative supported in Œ�1; 1� such that � D 1 in .�1;�1� and � D 0 in Œ1;1/.
Let �T D �. � � T / for T 2 R so that �T has nonpositive derivative supported in
ŒT � 1;T C 1�, �T D 1 in .�1;T � 1�, and �T D 0 in ŒT C 1;1/. Recall the
superharmonic field of functions g D ge , e 2 E and let B0 and B1 be the fields of 1–
forms parametrized by E associated to H0 and H1 , respectively, constructed above. Fix
an orientation-reversing diffeomorphism T W .0; 1/!R. Then the interpolation form

(2-8) B� D .1��T .�/ ıg/B1C .�T .�/ ıg/B0

is a 1–form with values in Hamiltonian vector fields of the Hamiltonian

.1��T .�/ ıg/H1C .�T .�/ ıg/H0:

We check that it is nonpositive. For fixed x 2X1 , the associated 2–form is

dB� D d
�
.1��T ıg/H1.x/ˇC .�T ıg/H0.x/ˇ

�
D .1��T ıg/d.H1ˇ/C .�T ıg/d.H0ˇ/C�

0
T .g/

�
H0.x/�H1.x/

�
dg^ˇ

� 0;

where the inequality follows since the first term is a convex combination of nonpositive
forms and the second is nonpositive as well since ˇ D�i�dg and hence dg^ˇ � 0.
Note also that for � D 0 and � D 1, we have B� D B0 and B� D B1 , respectively.
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2.7 Determinant bundles and orientations

We use the field of 1–forms B parametrized by constant splitting compatible sections
of E and almost complex structures over D to define the Floer equation

x@F uD .du�B/0;1 D 0

for uW .DhIhm;k ; @DhIhm;k/! .X;L/. In order to study properties of the solution space
we will consider the corresponding linearized operator Lx@F which maps vector fields v
with one derivative in Lp into complex antilinear maps Lx@F .v/W TzDhIhm;k!Tu.z/X ,
in case of nonempty boundary the vector fields are tangent to L along the boundary.
The linearized operator is elliptic and it defines an index bundle over the space of maps.
This index bundle is orientable provided the Lagrangian L is relatively spin as was
shown in [26]. In this paper we will not use specifics of the index bundle beyond it
being orientable. We will however use it to orient solution spaces of the Floer equation.
For that purpose we fix capping operators for each Hamiltonian chord and orbit and
use linear gluing results to find a system of coherent orientations of the index bundle.
The main requirement here is that the positive and negative capping operator at each
chord or orbit glues to the operator on a disk or sphere which has a fixed orientation of
the index bundle over domains without punctures. The details of this linear analysis
are similar to [21] for chords and [25] for orbits. There is however one point where the
situation in this paper differs. Namely, our main equation depends on extra parameters
corresponding to the simplex and the orientations we use depend on this. In order to
get the right graded sign behavior for our Hamiltonian simplex DGA we will use the
following conventions.

The index bundle corresponding to the parametrized problem is naturally identified
with the index bundle for the unparametrized problem stabilized by the tangent space
of the simplex. Here we use the following orientation convention for the simplex. The
simplex is given by the equation

w1C � � �Cwm D 1;

and we think of its tangent space stably as the kernel-cokernel pair .Rm;R/. We use
the standard oriented basis @1; : : : ; @m of Rm and @0 of R. We then think of the
direction @j as a stabilization of the capping operator of the j th negative puncture and
of @0 as a stabilization of that at the positive puncture and get the induced orientation
of the index bundle over E by gluing these stabilized operators. Then the index
bundle orientations reflect Conley–Zehnder/Maslov grading in the DGA as usual.
We give a more detailed discussion of index bundles and sign rules in the DGA in
the appendix.
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3 Properties of Floer solutions

In this section we establish two basic results about Floer holomorphic curves. First
we prove that the R–factor of any Floer holomorphic curve in the cylindrical end of a
Liouville manifold satisfies a maximum principle. This result allows us to establish the
correct form of Gromov–Floer compactness for our theories. Second we establish an
elementary energy bound that ensures our Floer equations do not have any solutions
with only high-energy asymptotes near the boundary of the parametrizing simplex.

3.1 A maximum principle for solutions of Floer equations

Consider a 1–parameter family of fields of splitting compatible 1–forms B D B� ,
� 2 Œ0; 1�, parametrized by constant sections of E and constructed from one-step and
two-step Hamiltonians as in Section 2.6. (Fields of forms constructed only from a
one-step Hamiltonian appear here as special cases corresponding to constant � D 1.)
Let J be a splitting compatible field of almost complex structures over D . Recall that
this means in particular that if S DDhIhm;k 2 DhIhm;k , then Jz is an almost complex
structure on X for each z 2 S such that in any cylindrical end with coordinate sC i t ,
JsCit D Jt ; see Section 2.2.

We make the following nondegeneracy assumption. The one and two-step Hamiltonians
are both linear at infinity H.r;y/D h.r/D arCb for real constants a> 0 and b . We
assume that the length ` of any Reeb orbit or Reeb chord satisfies

(3-1) `¤ a:

Note that the set of Reeb chord and orbit lengths is discrete and hence the condition on
the Hamiltonians holds generically.

Consider now a solution uW S !X of the Floer equation

.du�B/0;1 D 0;

where the complex antilinear component of the map .du�B/W TzS!Tu.z/X is taken
with respect to the almost complex structures Jz on X and j on S .

Lemma 3.1 If the nondegeneracy condition at punctures (3-1) is satisfied, then u.S/

is contained in the compact subset fr � 1g.

Proof Assume that there exists z 2 S such that

(3-2) r.z/D r.u.z// > 1:

Following [4, Section 7], we show that (3-2) leads to a contradiction. Fix a regular
value r 0 > 1 of the smooth function r ıu such that

S 0 D fz 2 S W r ıu.z/� r 0g ¤¿:
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Then S 0 is a Riemann surface with boundary with corners and its boundary can be
decomposed as @S 0 D @r 0S

0 [ @LS 0 , where u.@r 0S
0/ � fr D r 0g and u.@LS 0/ � L.

Here both @r 0S
0 and @LS 0 are finite unions of circles and closed intervals. The intervals

in @r 0S
0 and @LS 0 intersect at their endpoints that are the corners of @S 0 .

Define the energy of uW S !X to be

E.u/D
1

2

Z
S

kdu�Bk2;

where we measure the norm with respect to the metric !. � ;Jz � /. A straightforward
computation shows that

E.u/D

Z
S

u�! �u�dHz ^ˇ:

Recall the family of 2–forms �.x/D d.Hz.x/ˇ/ associated to the one form B with
values in Hamiltonian vector fields parametrized by x 2X , and recall the nonpositivity
condition for B which says that �.x/ is a nonpositive 2–form for each x 2 X ; see
Section 1. Consider the energy of S 0 :

E.ujS 0/D

Z
S 0

u�! �u�dHz ^ˇ

�

Z
S 0

u�! �u�dHz ^ˇ� �.u.z//

D

Z
@S 0

u� r˛�Hz.u.z//ˇ:

Since ˛jL D 0 and ˇj@S D 0, and since Hz.r;y/ D ar C b in the region fr � 1g

where b < 0 for a> 0 sufficiently large, the last integral satisfiesZ
@S 0

u� r˛�Hz.u.z//ˇ D

Z
@r 0S

0

u� r˛� a u�r ˇ� bˇ

D

Z
@r 0S

0

u� r˛� a u�r ˇ� b

Z
S 0

dˇ

�

Z
@r 0S

0

u� r˛� a u�r ˇ

D r 0
Z
@r 0S

0

˛ ı .du�XH ˝ˇ/

D r 0
Z
@r 0S

0

˛ ıJz ı .du�XH ˝ˇ/ ı .�i/� 0;

where i is the complex structure on S . Here we use the identities ˛ ı Jz D dr and
dr.XHz

/ D 0. The last inequality uses that u.S 0/ is contained in fr � r 0g. Indeed,
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if v is a positively oriented tangent vector to @r 0S
0 , then �iv points outwards, and

therefore d.r ıu/.�iv/� 0.

We find that E.ujS 0/ � 0, which implies that u satisfies du�XH ˝ ˇ D 0 on S 0 .
Since u intersects the level r D r 0 , it then follows that the image of any connected
component of S 0 under u is contained in the image of a Reeb orbit or chord in this
level set. Note that this conclusion is independent of the choice of regular level set
r 0 > 1 such that S 0 D u�1.fr � r 0g/¤¿. Since such regular level sets exist (and are
actually dense) in the interior of the original interval .1; r 0/, we get a contradiction.

3.2 An action bound

In this section we establish an elementary action bound that we will use to show that
our E –families of Floer equations have no solutions with only high-energy asymptotes
near the boundary of the fiber simplex. Consider a Liouville manifold with an exact
Lagrangian submanifold .X;L/ and let Ht be a one or two-step time-dependent
Hamiltonian as above and let �0 > 0 denote the smallest value of the action

(3-3) a. /D

Z


��Ht dt

of a Hamiltonian chord or orbit  corresponding to a Reeb chord or orbit. Then any
high-energy chord or orbit has action at least �0 .

Let uW S !X for S DDhIhm;k be a solution of the Floer equation

.du�B/0;1 D 0;

asymptotic at the positive puncture to a periodic orbit or chord  .

Lemma 3.2 There are constants L; � > 0 such that the following holds for any
L0 � L and 0 < �0 � � . If there is a strip region V D Œ0;L0�� I or cylinder region
V D Œ0;L0� � S1 in S of length L0 that separates a negative puncture q from the
positive puncture p and such that B DXH ˝�dt , in standard coordinates sC i t in V ,
where H does not depend on sC i t , then q maps to a low-energy chord or orbit.

Remark 3.3 As will be seen from the proof, the constant L > 0 depends only
on �0 , the action EC of the Hamiltonian chord or orbit at p , M Dmaxfr�1gH and
C Dmaxfr�1g k�k, where � is the Liouville form, while the constant � > 0 depends
also on F Dmaxfr�1g kXH k.
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Proof We use notation as in the proof of Lemma 3.1 and Remark 3.3. Consider
the energy

E D

Z
S

kdu�Bk2 D

Z
S

u�! �u�dHz ^ˇ

�

Z
S

u�! �u�dHz ^ˇ� �.u.z//

DEC�

hmCkX
iD1

Ei;� ;

where EC is the action at the positive puncture and Ei;� , i D 1; : : : ; hmC k are the
actions at the negative punctures. In particular, the action Ei;� at any of the negative
punctures satisfies

(3-4) Ei;� �EC:

Also, because each of the actions Ei;� is positive, we have

E �EC:

Consider now the contribution to the energy from the strip or cylinder region V . Fix
�> 0 and note that, in the strip case, the measure of the set of points s 2 Œ0;L� such thatZ

fsg�Œ0;1�

k@tu� �XH k
2 dt � �

is bounded by E=� (similarly for the integral over fsg �S1 in the cylinder case). In
particular if L>E=� we have that there are slices  0Dfs0g� Œ0; 1� in the strip case or
 0Dfs0g�S1 in the cylinder case for which k@tu.s0; � /��XH k

2
L2 ��, which implies

k@tu.s0; � /kL2 �
p
�C �F:

We obtain for the action of  0 the estimateˇ̌̌̌Z
 0
�� �H dt

ˇ̌̌̌
� Ck@tu.s0; � /kL1 C �M

� C
p
�C �.CF CM /:

Applying Stokes’ theorem to the energy integral of the part S 0 of S containing  0 and
the negative puncture q then shows as in (3-4) that the energy of the chord or orbit
at q is < �0 , provided �DE=L and � are sufficiently small.

Geometry & Topology, Volume 21 (2017)



Symplectic and contact differential graded algebras 2193

4 Properties of spaces of Floer solutions

Let .X;L/ be a Liouville pair as before. Consider an E –family B� , � 2 Œ0; 1�, of
interpolation splitting compatible 1–forms over D with values in Hamiltonian vector
fields (see Section 2.6), and a field of domain dependent almost complex structures (see
Section 2.2) where the Hamiltonians satisfy the nondegeneracy condition at infinity.
Here we think of .X;L/D .X1;L1/ constructed from a cobordism if � 2 Œ0; 1/, and
if � D 1 we also allow standard Liouville pairs.

This data allows us to study the Floer equation

(4-1) .du�B� /
0;1
D 0

for uW .DhIhm;k ; @DhIhm;k/! .X;L/. We will refer to solutions of (4-1) as Floer
holomorphic curves.

4.1 Transversality and dimension

In order to express the dimensions of moduli spaces of Floer holomorphic curves,
we use Conley–Zehnder indices for chords and orbits (with conventions as in [13,
Appendix A.1]). They are defined as follows. If  is a Hamiltonian orbit, then fix a
disk D (recall that we assume �1.X /D 1) that bounds  and a trivialization of the
tangent bundle TX over D . The Conley–Zehnder index CZ. /2Z of a Hamiltonian
orbit is then defined using the path of linear symplectic matrices that arises as the
linearization of the Hamiltonian flow along  in this trivialization; see [37]. Then
CZ. / is independent of the choice of trivialization since c1.X /D 0.

If c is a Hamiltonian chord, we pick a capping disk Dc mapping the unit disk into X

as follows. Pick a base point in each component of the Lagrangian L. Fix paths
connecting base points in different components and along these paths fix paths of
Lagrangian tangent planes connecting the tangent planes of the Lagrangian L at the
base points. (We use the constant path with the constant tangent plane at the base point
connecting the base point in a given component to itself.) In the disk Dc we map
the boundary arc @D�c between �1 and 1 to the Hamiltonian chord, and we map the
boundary arc @DCc between 1 and �1 as follows: the boundary arc between 1 and
e� i=4 is mapped to the component of L that contains the Hamiltonian chord endpoint,
and connects the latter to the base point; the arc between e�i=4 and e3� i=4 follows
the path between base points; finally, the arc between e3�i=4 and �1 is mapped to
the connected component of L that contains the Hamiltonian chord start point, and
connects the base point to the Hamiltonian chord start point. This then gives the
following loop �c of Lagrangian planes: along @DCc we follow first the tangent planes
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of L starting at the endpoint of the chord and ending at the base point, then the planes
along the path connecting base points, then again planes tangent to L from the base
point to the start point of the chord; along @D�c we transport the tangent plane of
the Lagrangian at the chord start point by the linearization of the Hamiltonian flow
along the chord, and finally we close up by a rotation along the complex angle in the
positive direction connecting the transported Lagrangian plane to the tangent plane at
the endpoint of the chord. We define

CZ.c/D �.�c/;

where � denotes the Maslov index of �c read in a trivialization of TX over @Dc that
extends over Dc . This is then well defined since c1.X / D 0 and since the Maslov
class of L vanishes.

Remark 4.1 The Conley–Zehnder index CZ.c/ of a Reeb chord c with both endpoints
in one component of the Lagrangian submanifold is independent of all choices. For
chords with endpoints in distinct components CZ is independent up to an over all shift
that depends on the choice of tangent planes along the path connecting base points.

We also define positive and negative capping operators. For chords c these operators
o˙.c/ are defined using capping disks. This capping operator is a linearized Floer-
operator on a once boundary-punctured disk, with Lagrangian boundary condition
given by the tangent planes along the capping path oriented from the endpoint of the
chord to the start point for the positive capping operator oC.c/ and with the reverse
path for the negative capping operator o�.c/. We assume (as is true for generic data)
that the image of the Lagrangian tangent plane at the start point of the chord under the
linearized flow is transverse to the tangent plane at the endpoint. For orbits, the capping
operators o˙. / are operators on punctured spheres with positive or negative puncture
with asymptotic behavior determined by the linearized Hamiltonian flow along the
orbit  . More precisely, the capping operators are then x@–operators perturbed by a
0–order term acting on the Sobolev space of vector fields v on the punctured sphere S

or disk D that in the latter case are tangent to the Lagrangian along @D with one
derivative in Lp , p > 2.

We find that the chord capping operators are Fredholm and their index is given by the
formula [32; 22]

index.oC.c//D nC .CZ.c/� n/D CZ.c/; index.o�.c//D n�CZ.c/:

The orbit capping operators have index [3; 13]

index.oC. //D nCCZ. /; index.o�. //D n�CZ. /:
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Let a be a Hamiltonian chord,  a Hamiltonian orbit, b D b1 � � � bm a word of
Hamiltonian chords and � D �1 � � � �k a word of Hamiltonian orbits. Let � 2 E be
a splitting compatible constant section over D , which takes values in the simplex
�hmCk�1 over the interior of DhIhm;k .

When the number of boundary components of the source curve is hD 1, we consider
the moduli space F �� .aIb;�/ of solutions

uW .D1Im;k ; @D1Im;k/! .X;L/; D1Im;k 2 D1Im;k ;

of the Floer equation

.du�B�� /
0;1
D 0:

Here B�� is the 1–form with values in Hamiltonian vector fields determined by � 2 E .
The map u converges at the positive puncture to a, and at the negative punctures to
b1; : : : ; bm; �1; : : : ; �k . Note that if � ¤ 1, then a is a chord of the Hamiltonian H0

and bj and �l chords and orbits of H1 . The interior negative punctures are endowed
with asymptotic markers induced from the positive boundary puncture as in Section 2.1.
We write

F� .aIb;�/D
[

�2�hmCk�1

F �� .aIb;�/:

(Recall that the family B� depends smoothly on � .) We also write

FR.aIb;�/D
[

�2.0;1/

F� .aIb;�/; F �R.aIb;�/D
[

�2.0;1/

F �� .aIb;�/:

In the case that the domain is a cylinder or strip we will discuss the definition of the
moduli space FR with more details in Remark 4.3. (Intuitively, the parameter � moves
the interpolation region along the domain, but in these domains we also divide by
the natural R–translation. This then together has the same effect as simply fixing the
location of the interpolation region.)

When the number of boundary components of the source curve is hD 0, we similarly
consider the moduli space F �� . I�/ of solutions

uW D0I0;k !X; D0I0;k 2 D0I0;k ;

of the Floer equation

.du�B�� /
0;1
D 0;
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converging at the positive puncture to  , and at the negative punctures to �1; : : : ; �k .
Again, if � ¤ 1, then  is an orbit of the Hamiltonian H0 and the �l orbits of H1 .
Here the positive puncture has a varying asymptotic marker, which induces asymptotic
markers at all the negative punctures as described in Section 2.1. We write

F� . I�/D
[

�2�k�1

F �� . I�/

and

FR. I�/D
[

�2.0;1/

F� . I�/; F �R. I�/D
[

�2.0;1/

F �� . I�/:

Remark 4.2 Floer equations corresponding to one-step Hamiltonians are a special
case of the above, corresponding to � D 1. We sometimes use a simpler notation for
such spaces: we drop the � D 1 subscript and write F � D F �

1
and F D F1 .

Remark 4.3 More precise definitions of the moduli space FR in the case that the do-
main is a strip or a cylinder are as follows: For a given Hamiltonian H the moduli space
F DF1 is the space of solutions of the Floer equation .du�XH ˝ dt/0;1 D 0 modulo
the R–action by translations in the source. This interpretation of F is compatible with
breaking.

When we interpolate between two Hamiltonians, we define the moduli space FR as the
space of solutions F�0

, �0 2 .0; 1/, for a fixed value � D �0 2 .0; 1/. This interpretation
of FR is compatible with breaking as follows. Consider a one-step Hamiltonian H1

and a two-step Hamiltonian H0 � H1 , and a fixed �0 2 .0; 1/ such that FR D F�0

for cylinders and strips, where F�0
is the space of solutions of the Floer continuation

equation

.du�X.1��T .�0/
.s//H1C�T .�0/

.s/H0
˝ dt/0;1 D 0;

where �T is the function used in (2-8) in order to define the 1–form

B� DX.1��T .�/.s//H1C�T .�/.s/H0
˝ dt:

If a strip splits off from such a domain and if the interpolation region (the support of
the derivative of �T ) lies in this strip, then since the functions �T are defined as shifts
�T .s/D �.s�T / of a given function � (see the discussion preceding (2-8)), there is a
unique translation of the parametrization of the domain of the split-off strip or cylinder
such that we get a solution in F�0

D FR .
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Theorem 4.4 Assume hmCk � 2. For generic families of almost complex structures
and Hamiltonians, the moduli spaces F� .;�/, F� .aIb;�/, FR. I�/ and FR.aIb;�/

are manifolds of dimensions

dimF� . I�/D dimFR. I�/� 1

D .CZ. /C .n� 3//�

kX
jD1

.CZ.�j /C .n� 3//� 1;

dimF� .aIb;�/D dimFR.aIb;�/� 1

D .CZ.a/� 2/�

mX
jD1

.CZ.bj /� 2/�

kX
jD1

.CZ.�j /C .n� 3//� 1:

For generic fixed � 2 �hmCk�1 , the corresponding moduli spaces F � . I�/ and
F � .aIb;�/ are manifolds of dimensions

dimF �� . I�/D dimF �R. I�/� 1

D .CZ. /C .n� 2//�

kX
jD1

.CZ.�j /C .n� 2//� 1;

dimF �� .aIb;�/D dimF �R.aIb;�/� 1

D .CZ.a/� 1/�

mX
jD1

.CZ.bj /� 1/�

kX
jD1

.CZ.�j /C .n� 2//� 1:

Furthermore, for generic data, the projection of the moduli spaces FR and F �R to
the line R (interpolating between the Hamiltonians) is a Morse function with distinct
critical values.

Remark 4.5 In the case where hmC k D 1, ie the domain is a strip or a cylinder,
the parameter � is irrelevant since the simplex consists of a single point, and the
dimensions of the relevant moduli spaces are

dimF1. I �/D CZ. /�CZ.�/� 1; dimFR. I �/D CZ. /�CZ.�/;

dimF1.aI b/D CZ.a/�CZ.b/� 1; dimFR.aI b/D CZ.a/�CZ.b/:

Proof of Theorem 4.4 To see this we first note that the operator we study is Fredholm.
The expected dimension of the moduli space is then given by the sum of the index of
the operator acting on a fixed surface and the dimension of auxiliary parameter spaces
(ie the space of conformal structures on the domain and the space which parametrizes
the choice of 1–forms).
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Consider first the case when hD 1. We denote the index of the operator on the fixed
surface by index.aIb;�/. To compute it, we glue on capping operators at all punctures.
Additivity of the index under gluing at a nondegenerate chord or orbit together with
the Riemann–Roch formula then gives

nD index.aIb;�/C n�CZ.a/C
mX

jD1

CZ.bj /C

kX
jD1

.CZ.�j /C n/:

The dimension is then obtained by adding the dimension of the space of conformal
structures and that of the space of 1–forms:

dimF.aIb;�/D index.aIb;�/C .m� 2/C 2kC .mC k � 1/:

When the form B� is fixed, we simply subtract mC k � 1, the dimension of the
simplex. The calculation in the case hDmD 0 is similar and gives

dimF. I�/D .CZ. /C n/�

kX
jD1

.CZ.�j /C n/C 2k � 3C .k � 1/;

where 2k � 3 is the dimension of the space of conformal structures on the sphere with
kC1 punctures where there is a varying asymptotic marker at one of the punctures. In
the case where the form B� is fixed we subtract the dimension of the simplex, k � 1.

Finally, to see that these are manifolds, we need to establish surjectivity of the linearized
operator for generic data. This is well known in the current setup and follows from
the unique continuation property of pseudoholomorphic curves in combination with
an application of the Sard–Smale theorem. The key points are that J (and H ) are
allowed to depend on all parameters and that .X;L/ is exact so that no bubbling of
pseudoholomorphic spheres or disks occurs; see eg [6, Appendix] and [32, Section 9.2].

The last statement is a straightforward consequence of the Sard–Smale theorem.

Remark 4.6 Note that letting the markers at the negative ends be determined by that
at the positive end is compatible with splitting, which is essential for the description of
moduli space boundaries. Also, in the case that the domain is a cylinder our moduli
spaces are the same as the usual moduli spaces of Floer cylinders defined by the fixed
domain R�S1 with the distinguished line R� f1g.

We next show that there are no solutions of the Floer equation with only high-energy
asymptotes if the 0–order term corresponds to a constant section of E that lies suffi-
ciently close the boundary of the simplex.
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Lemma 4.7 For any E > 0, there exists � > 0 such that if � is a constant section
of E that lies in an � neighborhood of the boundary of the simplex, and if a.a/ < E

and a. / < E , then for any nontrivial words b and � of high-energy chords and
orbits, respectively, and for any � 2 Œ0; 1�, the moduli spaces F �� .aIb;�/ and F �� . I�/
are empty.

Proof This is an immediate consequence of the `–level condition on the nonnegative
1–form ˇ and Lemma 3.2.

4.2 Compactness and gluing

For simpler notation, we write F� , F �� , FR and F �R with unspecified punctures as
common notation for either type of moduli space (corresponding to either hD 0 or
hD 1) in Theorem 4.4. We also write FC� and FCR for components of F� and FR

where all asymptotic chords and orbits are of high energy. Recall that, if B� is a
splitting compatible field of 1–forms determined by a constant splitting compatible
section � of E then, over a several-level curve, B� determines 1–forms depending on
constant sections over its pieces.

Theorem 4.8 The spaces F �� and FC� admit compactifications as manifolds with
boundary with corners, where the boundary corresponds to several-level curves in F ��
and FC� respectively, joined at Hamiltonian chords or orbits.

Proof The fact that any sequence of curves in F �� has a subsequence that converges to
a several-level curve is a well-known form of Gromov–Floer compactness for .X;L/
exact. In order to find a neighborhood of the several-level curves in the boundary of
the moduli space we use Floer gluing. That the Floer equation is compatible with
degeneration in the moduli space of curves is a consequence of the gluing compatibility
condition for the family of 1–forms B� , � 2 E . Both compactness and gluing are
treated in [32, Chapters 4 and 10] and in [40, Chapter 9]; see also eg [24, Appendix A]
for a treatment of family gluing.

For FC� , by Lemma 4.7 note that there are no solutions near the boundary of the
simplex so the only possible boundary are broken curves joined at high-energy chords
or orbits.

We next consider compactifications of moduli spaces FCR which consist of solutions
of the Floer equation with the interpolation form B� as � varies over .0; 1/. Similar
results hold for moduli spaces F �R , but we focus on the high-energy case since that is
all we use later and since we then need not involve any low-energy chords and orbits.
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Theorem 4.9 The moduli spaces FCR admit compactifications as manifolds with
boundary with corners, where the boundary corresponds to several-level curves joined
at Hamiltonian chords and orbits of the following form:

� Exactly one level S (possibly of several components) lies in FCR .

� At the positive punctures of S are attached several-level curves in FC
1

in X1

that solve the Floer equation

.du�B1/
0;1
D 0:

� At the negative punctures of S are attached several-level curves in FC
0

in X1

corresponding to the Floer equation

.du�B0/
0;1
D 0:

In fact, the curves in FC
0

in X1 can be canonically identified with the curves
in FC in X0 that solve the Floer equation with B0 constructed from the
Hamiltonian that equals H0 on X0 that continues to grow linearly over the
end of X0 . (Note for this identification that all chords and orbits have positive
action; compare the definition of the map in Section 5.2.)

Proof The proof is a repetition of the proof of Theorem 4.8, except for the last
statement. The last statement follows from Lemma 3.1 which shows that a curve with
positive puncture at a chord or orbit in CX0

(notation as in Lemma 2.7) lies inside
fr � 1g, where r D et is the coordinate in the symplectization end of X0 .

5 Definition of the Hamiltonian simplex DGA

In this section we define the Hamiltonian simplex DGA. In order to simplify grading
and dimension questions we assume that �1.X /D 0, c1.X /D 0 and that the Maslov
class �L of the Lagrangian submanifold L vanishes; see Section 7 for a discussion of
the general case.

5.1 DGA for fixed Hamiltonian

Let H be a one-step time-independent Hamiltonian, let Ht an associated time-
dependent perturbation of it, let B be an E –family of 1–forms associated to H

and fix a family of almost complex structures; see Section 2.6.

Define the algebra SCC.X;LIH / to be the algebra generated by high-energy Hamil-
tonian chords c of H , graded by

jcj D CZ.c/� 2;
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and by high-energy 1–periodic orbits  of H , graded by

j j D CZ. /C .n� 3/:

We impose the condition that orbits sign-commute with chords and that orbits sign-
commute with orbits. See also Remark A.2.

Define the map

ıW SCC.X;LIH /! SCC.X;LIH /; ı D ı1C ı2C � � �C ımC � � � ;

to satisfy the graded Leibniz rule and as follows on generators. For a Hamiltonian
chord a,

ır .a/D
X

jaj�jbj�j�jD1

1

k!
jFC.aIb;�/j�b;

where the sum ranges over all words b D b1 � � � bm and � D �1 � � � �k which satisfy
the grading condition and are such that mC k D r . Here jFCj denotes the algebraic
number of elements in the oriented 0–dimensional manifold FC . Similarly, for a
Hamiltonian orbit  ,

ır . /D
X

j j�j�jD1

1

r !
jFC. I�/j�;

where the sum ranges over all words �D �1 � � � �r which satisfy the grading condition.

Remark 5.1 For r D 1 above, the map ı1 counts elements in the moduli spaces
of strips or cylinders which means that it counts solutions modulo R–translations in
the source; see Remark 4.3. In particular ı1 is exactly the usual differential on the
high-energy part of symplectic homology SHC.X;L/.

Lemma 5.2 The map ıW SCC.X;LIH /! SCC.X;LIH / has degree �1 and is a
differential, ie ı ı ı D 0.

Proof This is a consequence of Theorem 4.8: the terms in ı ı ı are in bijective
sign-preserving correspondence with the boundary components of the (oriented) 1–
dimensional compactified moduli spaces FC .

Remark 5.3 Repeating the above constructions replacing the moduli spaces FC

with F � for some generic constant splitting compatible section of E , we get a
differential on the DGA SCC.X;LIH / with grading shifted up by 1, denoted by
SCC.X;LIH /Œ�1�. This differential can be homotoped to a differential without higher-
degree terms by taking � sufficiently close to the boundary of the simplex.
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5.2 Cobordism maps for fixed Hamiltonians

Consider a symplectic cobordism .X10;L10/, and fix a two-step Hamiltonian H0 and
a one-step Hamiltonian H1 . As in Theorem 4.9, we think of H0 also as a Hamiltonian
on X0 only (basically removing the second step making it a one-step Hamiltonian).

Define the map

(5-1) ˆW SCC.X1;L1IH1/! SCC.X0;L0IH0/; ˆDˆ1Cˆ2C � � � ;

as the algebra map given by the following count on generators. (In the right-hand side,
we use the identification above and think of .X1;L1/ with H0 as being .X0;L0/ with
the corresponding one-step H0 .)
� For chords a,

ˆr .a/D
X

jaj�jbj�j�jD0

1

k!
jFCR .aIb;�/j�b;

where the sum ranges over all bD b1 � � � bm and �D �1 � � � �k with mCk D r .
� For orbits  ,

ˆr . /D
X

j j�j�jD0

1

r !
jFCR . I�/j�:

Remark 5.4 As a consequence of Lemma 3.1, the target SCC.X0;L0IH0/ of the
cobordism map ˆ can be interpreted as the quotient of SC.X1;L1IH0/ by the ideal
generated by chords and/or orbits which have negative action. Accordingly, one can
factor ˆ as a composition

SCC.X1;L1IH1/! SCC.X1;L1IH0/! SCC.X0;L0IH0/;

in which the second map is the projection and the first map is defined by the same
formulas as ˆ in which we replace the moduli spaces FCR by FR .

Remark 5.5 In the definition of the moduli space FCR in case the curve is a cylinder
or a strip we are interpolating between Hamiltonians in a fixed region around s D 0 in
the cylinder or strip; see Remark 4.3. Thus ˆ1 induces the usual Viterbo transfer map
on symplectic or wrapped Floer homology. Indeed, the Viterbo transfer map is just a
continuation map.

Theorem 5.6 The map ˆW SCC.X1;L1IH1/! SCC.X0;L0IH0/ is a chain map;
ie ıˆDˆı .

Proof By Theorems 4.4 and 4.9, contributions to ˆı�ıˆ correspond to the boundary
of an oriented 1–dimensional moduli space.
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5.3 The Hamiltonian simplex DGA

In order for the DGA introduced above to capture all aspects of the Reeb dynamics at
the boundary of the Liouville pair .X;L/ we need to successively increase the slope of
the Hamiltonian. Consider a family of one-level Hamiltonians Ha where Ha1

>Ha0

if a1 > a0 and Ha.r;y/D arCb in the cylindrical end Œ0;1/�Y . Inserting a trivial
cobordism, we change Ha1

to a two-step Hamiltonian H 0a1
with the slope a1 at the

end of the trivial cobordism as well. Then H 0a1
> Ha0

. We define the Hamiltonian
simplex DGA

SCC.X;L/D lim
�!

a!1 SCC.X;LIHa/;

where the direct limit is taken with respect to the directed system given by the cobor-
dism maps

ˆW SCC.X;LIHa0
/! SCC.X;LIH 0a1

/D SCC.X;LIHa1
/:

See Sections 4.2 and 5.4 for the last equality. Its homology is

SHC.X;L/D lim
�!

a!1H.SCC.X;LIHa//:

Remark 5.7 One can alternatively define the Hamiltonian simplex DGA SCC.X;L/
as the homotopy limit of the directed system fSCC.X;LIHa/g, obtained by the
algebraic mapping telescope construction as in [4, Section 3g]; see also [28, Chapter 3,
page 312].

5.4 Homotopies of cobordism maps

In this subsection, we study invariance properties of the cobordism maps defined in
Section 5.2. As a consequence we find that the homotopy type of the Hamiltonian
simplex DGA is independent of Hamiltonian, 0–order perturbation term and field of
almost complex structure, and depends only on the underlying Liouville pair .X;L/.

Let .X10;L10/ be a cobordism of pairs and consider a 1–parameter deformation of
the data used to define the cobordism map parametrized by s 2 I . We denote the
corresponding cobordism maps by

ˆsW SCC.X1;L1/! SCC.X0;L0/; s 2 I:

Here we take the deformation of the data to be supported in the middle region of the
cobordism. In other words the symplectic form, the field of almost complex structures,
and the Hamiltonians and associated 0–order terms in the Floer equation vary in the
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compact region in the cobordism between 0�Y0 and 0�Y1 but are left unchanged
inside 0�Y0 and outside 0�Y1 ; see Figure 7.

For fixed s 2 I we get an interpolation form Bs
� , � 2 I , and moduli spaces F s

R , as in
Section 4.2. Exactly as there, we suppress from the notation the punctures, and also the
constant section � on which Bs

� depends. We write the corresponding parametrized
moduli spaces as

F I
R D

[
s2I

F s
R:

We will show below that the chain maps ˆ0 and ˆ1 are chain homotopic. The proof
is however rather involved. To explain why we start with a general discussion pointing
out the main obstruction to a simple proof. The chain maps ˆ0 and ˆ1 are defined
by counting .�1/–disks in R–families of Floer equations, or in other words rigid
0–dimensional curves in F 0

R and F 1
R , respectively. A standard transversality argument

shows that for generic 1–parameter families s 2 I , the 0–dimensional components
of the moduli spaces F I

R constitute a transversely cut out oriented 0–manifold. From
the point of view of parametrized Floer equations this 0–manifold consists of isolated
.�2/–disks, where one parameter is � 2 I and the other is s 2 I .

Remark 5.8 In our notation below we always include the simplex parameters in the
dimension counts but view both the interpolation parameter � 2 I and the deformation
parameter s 2 I as extra parameters. With this convention we call a curve of formal
dimension d a .d/–curve.

In analogy with the definition of the chain maps induced by cobordisms, counting .�2/–
curves during a generic deformation of cobordism data should give a chain homotopy
between the chain maps ˆ0 and ˆ1 at the ends of the deformation interval I . However,
counting .�2/–curves is not entirely straightforward in the present setup because of the
following transversality problem: since the curves considered may have several negative
punctures mapping to the same Hamiltonian chord or orbit, an isolated .�2/–curve can
be glued to the negative ends of a .d/–curve (asymptotic to Reeb chords or orbits of the
Hamiltonian H1 in X1 ), d > 0 a number of .d C 1/ times, resulting in a several-level
curve of formal dimension

d C .d C 1/.�2C 1/D�1;

on the boundary of the space of .�1/–curves but not accounted for in the chain
homotopy equation. In order for the boundary of the space of .�1/–curves to be
compatible with the chain homotopy equation, the .�2/–curve should appear only
once in combination with the .0/–curve that gives the differentials.
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To resolve this problem, we restrict attention to a small time interval around the critical
.�2/–curve moment and “time-order” the negative ends of the curves in the moduli
space of Floer holomorphic curves in the positive end, ie Floer holomorphic curves
in X1 with respect to the Hamiltonian H1 . Similar arguments are used in eg [18; 4]. In
these constructions there are differences between interior and boundary punctures. In
case the positive puncture of the .�2/–curve is a chord (boundary puncture) the time
ordering argument is simpler since there is a natural order of the boundary punctures
in the disks where the .�2/–curve can be attached, and that ordering can be used in
building the perturbation scheme. In the orbit case (interior puncture) there is no natural
ordering and we are forced to add a homotopy of homotopies argument on top of the
ordering perturbation. We sketch these constructions below but point out that actual
details do depend on the existence of a suitable perturbation scheme that will not be
discussed here; see Remark 1.3.

We now turn to the proof that ˆ0 and ˆ1 are chain homotopic. Consider first the case in
which there are no .�2/–curve instances in the interval Œ0; 1�. Then the 1–dimensional
component of F I

R gives an oriented cobordism between the 0–dimensional moduli
spaces used to define the cobordism maps and hence ˆ0 Dˆ1 . A general deformation
can be perturbed slightly into general position and then it contains only a finite number
of transverse .�2/–curve instances. By subdividing the family it is then sufficient to
show that ˆ0 and ˆ1 are homotopic for deformation intervals that contain exactly one
such transverse .�2/–curve. The following result expresses the effect of a .�2/–curve
algebraically. The proof is rather involved and occupies the rest of this section.

Lemma 5.9 Assume that the deformation interval contains exactly one .�2/–curve.
Then the DGA maps ˆ0 and ˆ1 are chain homotopic; ie there exists a degree-.C1/

map KW SCC.X1;L1/! SCC.X0;L0/ such that

(5-2) ˆ1 Dˆ0e.Kıd1�d0ıK /;

where d1 and d0 are the differentials on SCC.X1;L1/ and SCC.X0;L0/, respectively.

Remark 5.10 The exponential in (5-2) is the usual power series of operators.

Remark 5.11 For the chord algebra SCC.L/, Lemma 5.9 follows from an extended
version of [18, Lemma B.15] (that takes orientations of the moduli spaces into account),
which is stated in somewhat different terminology. In the proof below, we will adapt
the terminology used there to the current setup so as to include (parametrized) orbits as
well. Here, it should be mentioned that [18, Lemma B.15], and consequently also the
current result, depend on a perturbation scheme for so-called M-polyfolds (the most

Geometry & Topology, Volume 21 (2017)



2206 Tobias Ekholm and Alexandru Oancea

basic level of polyfolds), the details of which are not yet worked out, and hence it
should be viewed as a proof strategy rather than a proof in the strict sense.

We prove Lemma 5.9 in two steps. In the first step we relate ˆ0 and ˆ1 using an
abstract perturbation that time orders the negative punctures in all moduli spaces of
curves with punctures at chords and orbits in CX1

. In the case that there are only chords
there is a natural order of the negative punctures given by the boundary orientation of
the disk and in that case the relation between ˆ0 and ˆ1 derived using the natural
ordering perturbation can be turned into an algebraic relation. In the case that there are
also orbits there is no natural ordering and to derive an algebraic formula we use all
possible orderings and study homotopies relating different ordering perturbations.

Consider the first step. We construct a perturbation that orders the negative punctures of
any curve in F I

1
(which is just a product with F s

1
�I for any fixed s 2 I ) with negative

punctures at chords or orbits in CX1
. We choose this ordering so that when restricted

to the boundary punctures of any disk it respects the ordering of the negative punctures
induced by the orientation of the boundary of the disk and the positive puncture. We
need to carry out this perturbation energy level by energy level. Consider first the lowest
action generator  of H1 with action bigger than the chord or orbit at the positive
puncture of the .�2/–curve. We perturb curves with positive puncture at  and with
negative punctures at generators in CX1

by abstractly perturbing the Floer equation

.du�B1/
0;1
D 0

near the negative punctures. Near chords and orbits in CX1
the data of the Floer equation

is independent of both the R–parameter and of s 2 I . (Recall that the deformations are
supported in the compact cobordism.) Thus, if the abstract time ordering perturbation
is chosen sufficiently small then there are no .d/–curves for d < 0 after perturbation
and the moduli space of .d/–curves for d � 0 after abstract perturbation is canonically
isomorphic to the corresponding moduli space before abstract perturbation. Assume
that such a perturbation is fixed.

Let G.X1;L1/ denote the set of generators of SCC.X1;L1/. For  2 G.X1;L1/ we
write d"1 for the sum of monomials that contribute to the differential of  , ie sum
over I –components of the moduli spaces in F I

1
, equipped with the additional structure

of ordering of the generators as dictated by ".

Lemma 5.12 There is a map K"W GC.X1;L1/ ! SCC.X0;L0/ such that for any
generator  (chord or orbit),

(5-3) ˆ1. /�ˆ0. /D�
"
K"
.d"1 /C d0�

"
K"
. /:
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Here, �"K" acts on monomials with an extra ordering of generators. For a monomial of
chords and orbits ˇ D ˇ1 � � �ˇk we have

�
"
K"
.ˇ/D

kX
jD1

.�1/�jˆ�.1;j/.ˇ1/ � � �ˆ�.j�1;j/. ǰ�1/K". ǰ /ˆ�.jC1;j/. ǰC1/ � � �ˆ�.k;j/.ˇk/;

where �j Djˇ1jC� � �Cj ǰ�1j, �.i; j /D1 if ˇi is before ǰ in the order perturbation "
and �.i; j /D 0 if ˇi is after ǰ .

Proof Consider the parametrized moduli space

F I
R. Iˇ/

as above. Recall that SCC.Xj ;Lj / is defined as a direct limit using the action filtration
corresponding to increasing slopes of Hamiltonians. We work below a fixed energy
level with a fixed slope of our Hamiltonians and assume that the unique .�2/–curve
forms a transversely cut-out 0–manifold.

We use the .�2/–curve to construct a chain homotopy. To this end we next extend
the ordering perturbation " to all curves in F I

R. Iˇ/. Before we start the actual
construction, we point out that our perturbation starts from the very degenerate situation
where all negative punctures lie at the same time. Thus one cannot avoid that new
.�2/–curves arise when the perturbation is turned on. Gluing these to the perturbed
moduli space of curves with negative asymptotes in CX1

then gives new .�1/–curves
with positive puncture at  . We next show how to take these .�1/–curves into account.

We now turn to the description of the perturbation scheme. It is organized energy level
by energy level in such a way that the size of the time separation of negative punctures
of curves with positive and negative punctures in CX1

is determined by the action
of the Reeb chord at the positive puncture. In particular the time distances between
positive punctures of the newly created .�2/–curves at a given energy level are of the
size of the time separation at this energy level. As we move to the next energy level,
the time separation is a magnitude larger, so that the following holds. Consider a curve
on the new energy level with a negative puncture q followed in the order by a negative
puncture q0 . Then q passes all the positive punctures of the .�2/–curves created on
lower energy levels before q0 enters the region where .�2/–curves exist. Consequently,
only one lower energy .�2/–curve at a time can be attached to a curve on the next
energy level. As the energy level is given by the action at the positive puncture and the
action at any negative puncture is smaller than that at the positive puncture, the energy
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level E0 of any .�2/–curve attached at a negative puncture to a curve at energy level E

satisfies E0 <E . Consequently, there is only one .�2/–curve attached to any curve.

Consider the parametrized 1–dimensional moduli space F I
R. Iˇ/ of .�1/–curves

defined using the perturbation scheme just described. The boundary of F I
R. Iˇ/ then

consists of the 0–manifolds F 0
R. Iˇ/ and F 1

R. Iˇ/ as well as broken curves that
consist of one .�2/–curve at some s 2 I and several .�1/–curves with a .0/–curve
in the upper or lower end attached. For a generator  , let K�. / denote the count of
.�2/–curves after the ordering perturbation scheme described above is turned on:

K�. /D
X

j j�jˇjD�1

1

m.ˇ/!
jF I

R. Iˇ/jˇ;

where m.ˇ/ is the number of orbit generators in the monomial ˇ . To finish the proof we
check that the .�2/–curves in the ordering perturbation scheme accurately accounts for
the broken curves at the ends of the 1–dimensional moduli space. By construction, the
separation of negative ends increases by a magnitude when we increase the energy level,
and only one negative puncture of a curve in F I

1
can pass a .�2/–curve moment at a

time. At the punctures which are ahead of this puncture with respect to ", curves in ˆ1

are attached, and at punctures which are behind it, curves in ˆ0 are attached. Thus,
counting the boundary points of oriented 1–manifolds we conclude that (5-3) holds.

Lemma 5.12 expresses ˆ1 in terms of ˆ0 in a way that depends on an ordering of the
negative asymptotics, Reeb chords and orbits. On the chord algebra SCC.L/ we use
the ordering naturally induced by the orientation of the boundary of the disk, which is
also part of the noncommutative structure of the underlying algebra, and the formula in
Lemma 5.12 is a chain homotopy of noncommutative DGAs. However, on the orbit part
of the algebra there is no naturally induced ordering of the negative asymptotics and
the chosen ordering is an additional choice that is not part of the underlying algebraic
structure. In order to get an expression with the desired algebraic properties also for
the orbit part of SCC.X;L/, we study how the .�2/–curves counted by K" depend
on the choice of ordering perturbation ". To this end we consider almost ordering
perturbations "u , u 2 I which are time-ordering perturbations of the sort considered
above of the negative ends of Floer curves in the positive end of the cobordism. Here
an almost ordering is a true ordering except at isolated instances in I when two ends
are allowed to cross through with nonzero time derivative. It is clear that any two
orderings can be connected through a 1–parameter family of almost orderings. Fix such
a 1–parameter family �u , u2 I , of almost orderings that connects orderings "0 and "1 .
Let K"0

. / and K"1
. / denote the count of .�2/–curves with positive puncture at 

for the ordering perturbations "0 and "1 , respectively. More precisely, we think of the
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whole 1–parameter family of moduli spaces associated to the orderings "u , u 2 I , as
follows. Recall that in the construction above the counts of .�2/–curves were obtained
by following the curves in the positive end with ordered negative punctures through a
1–parameter family that passes the original .�2/–curve moment. Here we consider a
1–parameter family, parametrized by u2 I , of such 1–parameter family of curves with
negative ends (almost) ordered by �u passing the .�2/–curve moment. Geometrically
we think of this path of paths as corresponding to a unit disk D that interpolates
between two paths corresponding to the orderings "0 and "1 . More precisely, the
boundary segment in the lower half plane in the boundary of the disk D between �1

and 1 is the path with ordering "0 , the boundary segment in the upper half plane that
with ordering "1 , and the disk is foliated by the paths interpolating between these two.

Lemma 5.13 Generically, there is a 1–dimensional locus � in D corresponding
to .�2/–curves with transverse self-intersections and with boundary corresponding
to .�3/–curves splittings, and at any .�3/–curve moment, the path has a definite
ordering (ie no two negative ends are at the same time coordinate). Furthermore, after
deformation of D , we may assume that there are no self-intersections of � (but that
the disk still interpolates between the paths "1 and "0 ).

Proof The first part of the lemma is a straightforward transversality result. View
the ordering paths as paths in larger-dimensional spaces of problems where time
coordinates are associated to the negative ends. Choosing these finite-dimensional
perturbations generically there is a transversely cut out .�2/–curve hypersurface in
the larger spaces. The .�2/–curves in D now correspond to intersections of the .�2/–
curve hypersurfaces with D considered as paths of paths in the larger spaces. For
generic D this then gives a curve � with a natural compactification and with normal
crossings. Endpoints of � correspond to one .�3/–curve breaking off. Double points
of � correspond to two .�2/–curves which can be attached at the same disk with
negative punctures in CX1

.

We next deform the disk D in order to remove the double points of � . This is
straightforward: closed components of � bound disks in D and can hence be shrunk
by isotopy. Intersections of other types can be pushed across the boundary of D .
This push results in two new intersections between the .�2/–curve hypersurface and
a component of @D . These two intersections correspond to two copies of the same
.�2/–curve with opposite signs and can be taken to lie arbitrarily close to each other.
There is a third .�2/–curve between these two copies. However, by our original choice
of abstract ordering perturbations all these three disks have positive puncture at almost
the same moment in the 1–parameter family in @D . For curves along @D with negative
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ends where these disks can be attached, the time-separation of these negative ends is
then larger than the separation between the two .�1/–curves of opposite signs, and
hence their contributions cancel.

Consider the two counts of .�2/–curves K" and K� corresponding to two ordering
perturbations " and � . Lemma 5.13 shows that there is a disk D in which the 1–
manifold of .�2/–curves is embedded. Furthermore, if there are no .�3/–curves in D

the 1–manifold of .�2/–curves gives a cobordism between the .�2/–curves along the
boundary arcs and in this case K" DK� . Thus, in order to relate in the general case,
we only need to study what happens when the ordering path crosses a .�3/–curve
moment. Moreover, there is a fixed ordering of negative ends "0D " or "0D � mapping
to orbits in CX1

at such moments. Our next result expresses this change algebraically.

Lemma 5.14 In the above setup, there is an operator K"� such that

(5-4) K". /�K� . /D�
"0

K"�
.d"
0

1 . //C d0.�
"0

K"�
. //:

Proof The difference between K". / and K� . / corresponds to the intersection
of D and the codimension-2 variety of .�3/–curves. The corresponding split curves
are accounted for by the terms in the right-hand side of (5-4).

Proof of Lemma 5.9 By Lemma 5.12 we have

ˆ1. /�ˆ0. /D�
"
K"
.d"1 /C d0�

"
K"
. /;

where " corresponds to any ordering perturbation. We first show that we can replace K"

in this formula with K� for any ordering perturbation � . To this end we use Lemma 5.14
which shows that with � as there and "D "0 (otherwise exchange the roles of � and "),
we have

�
"
K"�K�

.d"1 /C d0�
"
K"�K�

. /

D�
"
K"�d"1

.d"1 /C�
"
d0K"�

.d"1 /C d0d0K"� . /C d0�
"
K"�

.d"1 /:

Here the third term in the right-hand side vanishes. We study the sum of the remaining
three terms in the right-hand side.

The operator �"K"�d"1
acts as follows on monomials ˇ1 � � �ˇk : act by d"1 on ǰ ,

attach K"� at one of the arising negative punctures, and attach ˆ0 at all punctures
before this puncture in " and ˆ1 at all punctures after. The sum

d0�
"
K"�

.d"1 /C�
"
d0K"�

.d"1 /
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counts configurations of the following form: act by d"1 on  , attach K"� at one
of its negative punctures, attach ˆ0 or ˆ1 at all remaining punctures, according to
the ordering ", then act by d0 at the resulting negative punctures that do not come
from K"� . (The terms in which d0 acts on negative punctures of K"� are counted twice
with opposite signs in the above sum and hence cancel.) Using the chain map property
of ĵ we rewrite this instead as first acting with d1 on the positive puncture where ĵ

was attached and then attaching ĵ (and also remove the d0 at the corresponding
negative ends). We thus conclude that we can write the sum of the remaining terms in
the right-hand side as follows:

�
"
K"�d"1

.d"1 /C�
"
d0K"�

.d"1 /C d0�
"
K"�

.d"1 /D�
"
K"�

.d"1d"1 /D 0;

where the first term in the left-hand side counts the terms where K"� is attached at a
negative end in the lower-level curve in d"1d"1 and the sum of the last two counts the
terms where it is attached at a negative end in the upper level. To see that d"1d"1 D 0

note that it counts the end points of an oriented compact 1–manifold.

We thus find that

�
"
K"
.d"1 /C d0�

"
K"
. /D�

"
K�
.d"1 /C d0�

"
K�
. /:

Using this formula successively and noticing that if there are no .�3/–curves K does
not change over D , we find that

�
"
K�
.d"1 /C d0�

"
K�
. /D�

�
K�
.d�1 /C d0�

�
K�
. /:

Thus for a specific ordering perturbation " we can move all the ˆ0 –factors across and
using the splitting repeatedly we express the right-hand side of (5-2) as the sum over all
r –level trees, r � 0. Here r –level trees are defined inductively as follows. A 0–level
tree is a ˆ0 –curve. A 1–level tree is a curve contributing to d"1 with a .�2/–curve
attached at one of its negative punctures and ˆ0 –curves at all others. An r –level tree is
a curve contributing to d"1 with a .�2/–curve attached at one of its negative punctures.
At punctures after that, trees with < r levels are attached.

By the above we may take the .�2/–curves K"DK to be independent of the ordering
perturbation chosen and averaging over all ordering perturbations then gives

ˆ1. /Dˆ0 e.Kd1�d0K /. /

by definition of the exponential.

Corollary 5.15 The chain maps induced by deformation equivalent cobordisms are
chain homotopic.
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5.5 Composition of cobordism maps

We next study compositions of cobordism maps. Let .X0;L0/, .X1;L1/ and
.X2;L2/ be Liouville pairs, and let .X01;L01/ and .X12;L12/ be two cobordisms
between .X0;L0/ and .X1;L1/ and between .X1;L1/ and .X2;L2/, respectively.
We can then glue the cobordisms to form a cobordism .X02;L02/ from .X0;L0/ to
.X2;L2/. This gives three cobordisms maps ˆ01 , ˆ12 and ˆ02 , and we have the
following result relating them:

Theorem 5.16 The chain maps ˆ01 ıˆ12 and ˆ02 are homotopic.

Proof The maps ˆ01 , ˆ12 and ˆ02 are induced by interpolations of Hamiltonians
H0 and H1 , H1 and H2 , and H0 and H2 , respectively. For the proof we consider
these interpolations simultaneously. More precisely consider the Floer moduli space
with two interpolation regions, and three Hamiltonians as shown in Figure 8. Recall
that our Floer moduli spaces used to define the cobordism map interpolate between
two Hamiltonians in a region determined by a level set of the superharmonic function
in the domains moving along R; see Section 4. Here we use similar moduli spaces
but with two moving interpolation regions, parametrized by R� .0;1/. Here the first
coordinate determines the location of the first interpolation region where we interpolate
between H0 and H1 , the second coordinate determines the separation between the
levels where we interpolate and near the second level we interpolate between H1

and H2 . We then note that when the second coordinate is sufficiently large then all
Floer solutions are close to broken curves and conversely broken curves can be glued
to solutions. Consequently the chain map induced by two interpolation regions that are
sufficiently far separated equals the composition ˆ01 ıˆ12 . At the other end, where
the second coordinate equals 0 we interpolate directly from H0 to H2 and we get the
chain map ˆ02 . The results in Section 5.4 imply that the maps are homotopic.

Corollary 5.17 The DGA SCC.X;L/ is invariant under deformations of .X;L/ as
well as choice of Hamiltonian and almost complex structure.

Proof Apply the homotopy of chain maps to the obvious deformation that takes the
composition of the cobordism induced by a 1–parameter family of deformations of the
data and the inverse 1–parameter family to the trivial cobordism.

6 Isomorphism with contact homology

In this section we prove that the Hamiltonian simplex DGA SCC.X;L/ is quasi-
isomorphic to the (nonequivariant) contact homology DGA A.Y; ƒ/ of its ideal
boundary .Y; ƒ/. The quasi-isomorphism is obtained using the cobordism map ˆ
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Figure 8: Hamiltonians for composition of cobordism maps

in Section 5.2 for vanishing Hamiltonian H1 D 0. For the versions of contact ho-
mology where orbits and chords are not mixed this result implies that SCC.L/ is
quasi-isomorphic to the Legendrian contact homology DGA of ƒ, and that SCC.X /
is isomorphic to the (nonequivariant) contact homology DGA of Y . These results
extend the corresponding isomorphisms between the high-energy symplectic homology
of X and the nonequivariant linearized contact homology of Y [10], or between the
high-energy wrapped Floer homology of L and the linearized Legendrian homology
of ƒ; see eg [19] and [23, Theorem 7.2].

The nonequivariant orbit contact homology DGA is a natural generalization of the
nonequivariant linearized contact homology, but is not described in the literature.
We include a short description of the construction in Section 6.1. In Section 6.2,
we discuss the better known equivariant case that in our setup corresponds to the
Hamiltonian simplex DGA associated to a time-independent Hamiltonian and time-
independent almost complex structure J near the punctures. It should be mentioned
that the transversality problems for the Floer equation in this setting are similar to the
transversality problems for punctured holomorphic spheres in the symplectization end.

6.1 Nonequivariant contact homology orbit DGAs

We give a brief description of nonequivariant contact homology. In essence this is
simply a Morse–Bott theory for holomorphic disks and spheres with several negative

Geometry & Topology, Volume 21 (2017)



2214 Tobias Ekholm and Alexandru Oancea

interior punctures, where each Reeb orbit is viewed as a Morse–Bott manifold. (The
chords are treated as usual, so our result for the Legendrian DGA is unaffected by the
discussion here.)

Consider the contact manifold Y which is the ideal contact boundary of X . To each
Reeb orbit in Y we will associate two decorated Reeb orbits y and L ; see [10; 7]. The
gradings of these decorated orbits are

j L j D CZ. /C .n� 3/ and jy j D CZ. /C .n� 2/:

The differential in nonequivariant contact homology counts rigid Morse–Bott curves.
These are several-level holomorphic buildings where the asymptotic markers satisfy
evaluation conditions with respect to a marked point on each Reeb orbit. Unlike in
previous sections we here study curves in the symplectization. However, we still would
like to use input from the filling. More precisely, as in [7; 10] we will consider anchored
curves. This means that all our curves have additional interior and boundary punctures
where rigid holomorphic spheres and rigid holomorphic disks, respectively are attached.
We will not mention the anchoring below but keep it implicit.

Recall first that in D1Im;k the positive boundary puncture determines an asymptotic
marker at any interior negative puncture and that in D0I0;k any asymptotic marker at
the positive puncture determines markers at all negative punctures. If q is a puncture,
we write evq for the point on the Reeb orbit which is determined by the asymptotic
marker. We next define Morse–Bott curves.

Fix a point x on each geometric Reeb orbit. A several-level holomorphic curve with
components S0; : : : ;Sm with domain in DhIhm;k is a Morse–Bott building if the
following hold:

� If the top-level curve has a positive interior puncture p , then the following hold:

– If the asymptotic orbit is L , then evp D x .
– If the asymptotic orbit is y , then evp is arbitrary.

� For each component Sj and for each negative interior puncture q of Sj , the
following hold:

– If there is a curve Sm with positive interior puncture at p attached to Sj at q ,
then the oriented asymptotic Reeb orbit induces the cyclic order .x; evq; evp/

on the marked point and the two asymptotic markers.
– If there is no curve attached at q and the asymptotic orbit is y , then evqDx .
– If there is no curve attached at q and the asymptotic orbit is L , then evq is

arbitrary.
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Let A.Y; ƒ/ denote the graded unital algebra generated by the Reeb chords of ƒ and
decorated Reeb orbits, where as above chords and decorated orbits sign-commute and
where decorated orbits sign-commute with each other. The differential on A.Y; ƒ/
is given by a holomorphic curve count. Using notation analogous to the above we
write M.aIb; z�/, bD b1 � � � bm and z�D z�1 � � � z�k , where z�j is a decorated orbit, for
the moduli space of anchored Morse–Bott curves uW D1Im;k ! .R�Y;R�ƒ/ with
positive boundary puncture where the map is asymptotic at 1 to the holomorphic
Reeb chord strip R� a, and m negative boundary punctures and k negative interior
punctures where the map is asymptotic to the Reeb chord strips R� bj and the Reeb
orbit cylinders R� �j at �1. Similarly, we write M.z I z�/ for the moduli space of
anchored Morse–Bott curves uW D0I0;k!R�Y with positive interior puncture where
the map is asymptotic at 1 to the holomorphic Reeb orbit cylinder R �  , and k

negative interior punctures where the map is asymptotic to the Reeb orbit cylinders
R� �j at �1. Note that in the definition of the moduli spaces of Morse–Bott curves
the R–action in the target is divided out at each level of the corresponding buildings.
In particular, if a building consists of a single level we divide by the R–action in the
target as usual in SFT.

Define the differential d to satisfy the Leibniz rule and to be given as follows on
generators: for chords,

daD
X

jaj�jbj�jz�jD1

1

k!
jM.aIb; z�/j z�b;

and for orbits,
d z D

X
jz j�jz�jD1

1

k!
jM.z I z�/j z�:

Here jMj denotes a sign count of elements of a rigid moduli space with respect to a
system of coherent orientations and k is the number of orbits in the monomial z�. See
[11, Section 4.4] for a discussion of orientations for fibered products that is relevant in
the case at hand. Then, much like in Lemma 5.2, we have d2 D 0.

Remark 6.1 Instead of using the Morse–Bott framework above, one can give an alter-
native definition of the nonequivariant DGA A.Y; ƒ/ by considering gluing compatible
almost complex structures which are time-dependent and periodic in cylindrical end
coordinates near interior punctures, ie J D Jt , t 2 S1 . The relevant moduli spaces
would then have to be defined in terms of asymptotic incidence conditions determined
by a choice of reference point on each periodic Reeb orbit.

We next describe the moduli spaces used to establish the isomorphism between contact
homology and Hamiltonian simplex DGAs. The constructions correspond to a version
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of the construction presented in Section 5.2 where H1 D 0 and B1 D 0, and where
the cobordism is replaced by the trivial cobordism, ie the symplectization of Y . As in
Section 5.2, we consider a 2–step Hamiltonian H0 with an associated family B0 of
nonpositive 1–forms with values in Hamiltonian vector fields parametrized by splitting
compatible constant sections in E .

The moduli spaces from Section 4.1 which we used in order to define the cobordism
map need to be reinterpreted as follows in this context.

First, we define Morse–Bott buildings with free negative ends exactly as Morse–Bott
buildings, defined above, except that we do not impose any condition on the evaluation
maps at the negative interior punctures where no curve is attached.

Second, let a be a Reeb chord,  a Reeb orbit, b a word of Hamiltonian chords and �

a word of Hamiltonian orbits. We define the moduli spaces FR.aIb;�/ and FR. I�/

as the moduli spaces FR.a
0Ib;�/ and FR.

0I�/ for a0 a Hamiltonian chord and  0

a Hamiltonian orbit, in Section 4.1, with the following modifications: any element
in FR.aIb;�/ is asymptotic at the positive puncture at 1 to the holomorphic Reeb
chord strip R� a, and any element in FR. I�/ is asymptotic at the positive puncture
at 1 to the holomorphic Reeb orbit cylinder R�  . Note that these conditions make
sense since the 1–forms B�� are equal to 0 near the positive puncture. Here � 2 .0; 1/
and � 2 E is a splitting compatible constant section over D . Note also that we do
not impose any constraint on the asymptotic marker in the case of an interior positive
puncture, this marker is allowed to vary and induces the location of the markers at all
negative punctures.

Third, let a be a Reeb chord, z a decorated Reeb orbit, b D b1 � � � bm a word of
Hamiltonian chords and �D �1 � � � �k a word of Hamiltonian orbits.

We define the moduli space FR.aIb;�/ to consist of a Morse–Bott building with free
negative ends whose top-level curve is asymptotic at its positive puncture at 1 to
the holomorphic Reeb chord strip R� a, together with curves in the moduli spaces
defined in the second step above, attached at all its negative punctures. Whenever such
a curve with positive puncture p is attached at an interior negative puncture q of the
Morse–Bott building with free ends, we require that the common oriented asymptotic
Reeb orbit induces the cyclic order .x; evq; evp/ on the marked point x and the images
of the two asymptotic markers evq and evp . Finally, we require that the word obtained
by reading the boundary negative punctures of the resulting multilevel curve is equal
to b , and the word determined by the interior negative punctures is equal to �. We
point out that the Morse–Bott building with free negative ends is allowed to be a trivial
Reeb chord strip R� a.
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We define, in a similar way, the moduli space FR.z I�/ to consist of a Morse–Bott
building with free negative ends and with positive asymptote at the decorated Reeb
orbit z , together with curves in the moduli spaces defined in the second step above
attached at all its negative punctures. For each such curve with positive puncture p

which is attached at a negative puncture q of the Morse–Bott building with free ends, we
require again that the common oriented asymptotic Reeb orbit induces the cyclic order
.x; evq; evp/ on the marked point x and the images of the two asymptotic markers evq

and evp . Finally, we require that the word determined by the negative punctures of the
resulting multilevel curve is equal to �. We point out that the Morse–Bott building with
free negative ends is allowed to be a trivial cylinder over the Reeb orbit underlying z .

Define the algebra map ˆW A.Y; ƒ/! SCC.X;LIH0;J0/ as follows on generators:
for chords,

ˆ.a/D
X

jaj�jbj�j�jD0

1

k!
jFR.aIb;�/j�b;

and for orbits,
ˆ.z /D

X
jz j�j�jD0

1

k!
jFR.z I�/j�:

Passing to the direct limit as the slope of H0 goes to infinity we obtain an induced map

ˆW A.Y; ƒ/! SCC.X;L/:

Remark 6.2 Let the word � consist of a single letter �. The moduli spaces FR.z I �/

then coincide with the moduli spaces giving the isomorphism map between nonequiv-
ariant linearized contact homology and symplectic homology in [10, Section 6]. (Note
that the latter isomorphism used an intermediate neck-stretching procedure which is
unnecessary in our setup since anchored curves appear naturally in the compactification
of the relevant 1–dimensional moduli spaces.) Similarly, in case the word b consists
of a single letter b and the word � is empty, the moduli spaces FR.aI b/ coincide with
the moduli spaces giving the isomorphism map between wrapped Floer homology and
linearized Legendrian contact homology in [23, Theorem 7.2].

Theorem 6.3 The induced map ˆW A.Y; ƒ/! SCC.X;L/ is a chain isomorphism.

Proof The fact that ˆ is a chain map follows as usual by identifying contributing terms
of dˆ�ˆd with the endpoints of a 1–dimensional moduli space. The isomorphism
statement is a consequence of the fact that interpolating strips of Reeb chords and inter-
polating cylinders of Reeb orbits contribute 1, together with a standard action-filtration
argument. Here the interpolating strips and cylinders are simply reparametrizations of
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trivial strips over Reeb chords and cylinders over Reeb orbits cut off in the r –slice where
the corresponding Hamiltonian chord or orbit lies. See [10, Proof of Proposition 4,
pages 660–662] for orbits and [23, Theorem 7.2] for chords.

Remark 6.4 In the proof of Theorem 6.3 the curves which split-off at positive infinity
do not have weights since the 1–forms B�� are zero near the positive puncture for
all values of the parameters � and � . Note that Reeb chords and (decorated) orbits
have identical gradings in contact homology and in the Hamiltonian simplex DGA (for
a small time-independent perturbation of the Hamiltonian as in [10]). The grading
shift corresponding to the simplex in the Hamiltonian DGA corresponds on the contact
homology side to the Morse–Bott degeneracy in the symplectization direction at a
negative puncture.

To see how this works consider .X;L/ as above and recall that the (nonequivariant)
linearized contact homology of the boundary .Y; ƒ/ is isomorphic to the high-energy
symplectic homology of .X;L/ and that the isomorphism is given by a count of rigid
holomorphic cylinders and strips along which we interpolate from zero Hamiltonian at
the positive end, where the curves are asymptotic to Reeb chords and orbits, to nonzero
Hamiltonian at the negative end where the curves are asymptotic to Hamiltonian
chords and orbits. Consider now the higher-degree parts (quadratic, cubic, etc.) of the
differential in the (nonequivariant) contact homology DGA. We would like to interpret
also this part of the differential in terms of symplectic homology, by composing it
with the above isomorphism map. Consider thus a curve in the symplectization with
one positive and several negative punctures that contributes to the contact homology
differential; ie the curve is rigid up to translations. Composing this curve with the
isomorphism map corresponds geometrically to gluing an interpolating cylinder or strip
at each negative end.

This is a standard gluing problem in SFT, and provided there is one gluing (or translation)
parameter at each negative puncture the Floer–Picard lemma applies and the gluing
results in curves moving in a unique 1–dimensional moduli space. Note however that
the independent gluing parameters at the negative ends give rise to different 1–form-
perturbations of the Cauchy–Riemann equation on domains in the same conformal class.
The actual 1–form is determined by the values of all gluing parameters but the shift
in the symplectization direction identifies forms that differ by an overall translation
in the whole domain. The domains with such families of 1–forms are related to the
curve with varying weights in the Hamiltonian simplex DGA, sliding the interpolation
region at a puncture towards minus infinity corresponds to lowering the weight at that
puncture. In this sense the translation degree of freedom at the ends of SFT curves
corresponds to the weight degree of freedom in the Hamiltonian simplex DGA.
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6.2 Equivariance and autonomous Hamiltonians

In order to relate the usual (equivariant) contact homology zA.Y; ƒ/ of the ideal contact
boundary to a Hamiltonian simplex DGA we can use more or less the same argument
as in the nonequivariant case. The starting point here is to set up an equivariant
version of the Hamiltonian simplex DGA. To this end we use a time-independent
one-step Hamiltonian and define a version �SCC.X;L/ of the Hamiltonian simplex
DGA generated by unparametrized Hamiltonian orbits. To establish transversality for
this theory one needs to use abstract perturbations. Assuming that such a perturbation
scheme — that also extends to curves in the symplectization with no Hamiltonian —
has been fixed, we can repeat the constructions of Section 6.1 word by word to prove:

Theorem 6.5 The map ẑ W zA.Y; ƒ/! �SCC.X;L/ is a chain isomorphism.

Proof Analogous to Theorem 6.3.

7 Examples and further developments

In this section we first discuss examples where the Hamiltonian simplex DGA is known
via the isomorphism to contact homology. Then we discuss how the theory can be
generalized to connect Hamiltonian Floer theory to other parts of SFT.

7.1 Knot contact homology

Our first class of examples comes from Legendrian contact homology. By Theorem 6.3,
this corresponds to the chord case of our secondary DGA.

Given a knot K�S3 , one considers its conormal bundle �K�X DT �S3 . This is an
exact Lagrangian that is conical at infinity, that has vanishing Maslov class, and whose
wrapped Floer homology WH.�K/ was shown in [1] to be equal to the homology of
the space PK S3 of paths in S3 with endpoints on K , ie

WH.�K/'H.PK S3/:

One can prove that the homotopy type of the space PK S3 does not change as the knot is
deformed in a 1–parameter family possibly containing immersions. Since any two knots
in S3 can be connected by a path that consists of embeddings except at a finite number
of values of the deformation parameter, where it consists of immersions with a single
double point, we infer that PK S3 has the same homotopy type as PU S3 , where U �S3

is the unknot. As a matter of fact, the homotopy equivalence can be chosen to be
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compatible with the evaluation maps at the endpoints, showing that H.PK S3/ '

H.PU S3/ as algebras with respect to the Pontryagin–Chas–Sullivan product. Moreover,
we also have isomorphisms H.PK S3;K/ ' H.PU S3;U / induced by homotopy
equivalences. We infer that WH.�K/ and its high-energy version WHC.�K/ '
H.PK S3;K/ are too weak as invariants in order to distinguish knots.

In contrast, for the superficially different case K � R3 , the Legendrian contact ho-
mology of �K , also called knot contact homology, was proved in [20] to coincide
with the combinatorial version of [33] and, as such, to detect the unknot. Theorem 6.3
can be extended in a straightforward way to cover the case of T �R3 in order to
show that Legendrian contact homology of �K is isomorphic to the homology of the
Hamiltonian simplex DGA SCC.�K/. In particular, the higher coproducts constituting
the differential on SCC.�K/ are rich and interesting operations. This contrasts to the
naive higher coproducts defined without varying the weights which are rather trivial.
In terms of PK the operations of the Hamiltonian simplex DGA correspond to fixing
points on the paths with endpoints on K , constraining these points to map to the
knot K , and then averaging over the locations of these points. This gives a string
topological interpretation of knot contact homology, where chains of strings split as
the strings cross the knot as studied in [14].

As a final remark, the coefficient ring of knot contact homology involves a relative
second homology group that in the unit cotangent bundle of R3 contains also the class
of the fiber, which is killed in the full cotangent bundle. This extra variable is key to
the relation between knot contact homology and the topological string (see [5]) and
indicates that it would be important to study the extension of the theory described in
the current paper to a situation where the contact data at infinity does not have any
symplectic fillings.

7.2 A1 , L1 and the diagonal

As already mentioned in the introduction, the Hamiltonian simplex DGA SCC.X / in
the orbit case can be viewed as the cobar construction on the vector space generated by
the high-energy orbits, viewed as an 1–Lie coalgebra with the sequence of operations
.d1; d2; : : : /. Note that 1–Lie coalgebras are dual to L1 , or 1–Lie algebras.

In a similar vein, given a Lagrangian L�X the Hamiltonian simplex DGA SCC.L/
in the chord case can be viewed as the cobar construction on the vector space generated
by the high-energy chords, viewed as an 1–coalgebra, a type of structure that is dual
to A1–algebras.

It turns out that one can produce an 1–algebra structure in the orbit case by im-
plementing exactly the same construction subject to the additional condition that all
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punctures lie on a circle on the sphere. This condition is invariant under conformal
transformations and yields well-defined moduli spaces, which effectively appear as
submanifolds inside the moduli space that define the operations on SCC.X /. The
resulting DGA is not an 1–Lie coalgebra, but simply an 1–coalgebra.

Doubling chords to orbits and holomorphic disks to holomorphic spheres with punctures
on a circle using Schwarz reflection, it is straightforward to show that the resulting
DGA coincides with SCC.�X /, the Hamiltonian simplex DGA of the Lagrangian
diagonal �X � X � X . This fact parallels the well-known isomorphism between
periodic Hamiltonian Floer homology and Lagrangian Floer homology of the diagonal.

This example shows in particular that the relationship between the Hamiltonian simplex
DGAs in the closed and in the open case is subtler than its linear counterpart.

7.3 Chern class, Maslov class and exactness

We discuss in this section some of the standing assumptions in the paper.

A first set of assumptions imposed in Section 5 is that �1.X / D 0, c1.X / D 0 and
�L D 0. These are the simplest technical assumptions under which the theory has a
unique Z–grading. If �1.X / D 0 but c1.X / or �L are nonzero, the closed theory
would be uniquely graded modulo the positive generator of c1.X / �H2.X /, and the
open theory would be uniquely graded modulo the positive generator of �L �H2.X;L/.
There are also ways to dispose of the condition �1.X /D 0 at the expense of possibly
further weakening the grading; see the discussion in [25]. In any case, the grading is
not unique if �1.X / is nontrivial.

A standing assumption of a quite different and much more fundamental kind is that the
manifold X and the Lagrangian L be exact. This is a simple way to rule out, a priori, the
bubbling-off of pseudoholomorphic spheres in X , respectively of pseudoholomorphic
discs with boundary on L. The advantage of this simple setup is that it allows us to
focus on the new algebraic structure. The theory would need to be significantly adapted
should one like to consider nonexact situations.

7.4 Dependence on the filling

The Hamiltonian simplex DGA depends, a priori, on the filling, and this is reflected in
the definition of the nonequivariant contact homology DGA A.Y; ƒ/ by the fact that
its differential involves curves which are anchored in .X;L/.

The Hamiltonian simplex DGA can be defined also in the absence of a filling under the
index-positivity assumptions explained for example in [17], namely if Y admits a contact
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form such that every closed Reeb orbit is nondegenerate and has Conley–Zehnder index
CZ. /C n� 3> 1 and every Reeb chord is nondegenerate and has Conley–Zehnder
index CZ.c/ > 1. The nonequivariant contact homology DGA A.Y; ƒ/ can be defined
in the absence of a filling under the same assumptions.

This is to be contrasted with the definition of the contact homology DGA from SFT [25],
which does not require the existence of a filling, though it is subject to the same caveats
regarding the existence of an abstract perturbation scheme as explained in Remark 1.3.
The reason is that, within the setup of Floer theory, bubbling-off at the negative end of
the symplectization always produces curves which satisfy a Cauchy–Riemann equation
without zero order perturbation. These objects are external to the framework of our
Hamiltonian simplex DGA, whereas they are incorporated in the definition of the
differential for the contact homology DGA.

To resolve this discrepancy one needs to clarify the relationship between the nonequiv-
ariant Hamiltonian simplex DGA and the contact homology DGA. One direction of
study would be to build a mixed theory combining the two. Another direction is
discussed further below.

7.5 Further developments

At a linear level, S1 –equivariant symplectic homology is obtained from its nonequiv-
ariant counterpart using (an 1–version of) the BV-operator [12]. The BV-operator
is an operation governed by the fundamental class of the moduli space of spheres
with two punctures and varying asymptotic markers at the punctures. Note that this
moduli space is homeomorphic to a circle and the BV-operator has degree C1 as a
homological operation, which corresponds to the fact that the fundamental class of the
moduli space lives in degree 1. It was proved in [12] that the high-energy, or positive
part of S1 –equivariant symplectic homology recovers linearized cylindrical contact
homology of the contact boundary Y . One advantage of the S1 –equivariant point of
view over the symplectic field theory (SFT) point of view is that it does not require any
abstract perturbation theory.

Question What is the additional structure on the nonequivariant Hamiltonian sim-
plex DGA SCC.X / that allows to recover the equivariant Hamiltonian simplex DGA
described in Section 6.2?

Though one can construct an 1–version of the BV-operator in the DGA setting that
we consider in this paper by methods similar to those of [12], it is not clear whether
this is enough in order to recover the equivariant DGA from the nonequivariant one. It
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may be that one needs more information coming from the structure of an algebra over
the operad of framed little 2–disks that exists on any Hamiltonian Floer theory.

From the point of view of SFT, the natural next steps are to understand the algebraic
structure that is determined on Hamiltonian Floer theory by moduli spaces of genus-0
curves with an arbitrary number of positive punctures, respectively by moduli spaces
of curves with an arbitrary number of positive punctures and arbitrary genus. These
would provide in particular nonequivariant analogues of the rational SFT and full SFT.

Appendix: Determinant bundles and signs

In this appendix, we give a more detailed discussion of how the sign rules of the
Hamiltonian simplex DGA derive from orientations of determinant bundles. The
material here has been discussed at many places in this context; see for example
[40, Section 11; 32, Appendix A.2; 9; 43; 26; 21].

If V is a finite-dimensional vector space, then
Vmax

V D
Vdim V

V is its highest exterior
power. For the 0–dimensional vector space,

Vmax
.0/DR. If

0! V1

f1
�! V2

f2
�! � � �

fn
�! VnC1! 0

is an exact sequence of finite-dimensional vector spaces, then there is a canonical
isomorphism O

k odd

Vmax
Vk Š

O
k even

Vmax
Vk

that does depend on the maps f1; : : : ; fn . For example, if dim V1 is odd and the
map f1 is changed to �f1 , then the isomorphism changes sign.

If X and Y are Banach spaces and DW X ! Y is a Fredholm operator, then the
determinant line det.D/ of D is the 1–dimensional vector space

det.D/D
Vmax

.coker D/�˝
Vmax ker D:

We think of det.D/ as a graded vector space supported in degree index.D/.

We next discuss stabilization. We first stabilize in the source. Let DW X ! Y be a
Fredholm operator, V a finite-dimensional real vector space and ˆW V ! Y a linear
map. The stabilization of D by ˆ is the Fredholm operator DV DD˚ˆW X �V !Y ,
.x; v/ 7!DxCˆv . The exact sequence

0! ker D! ker DV
! V

ˆ
�! coker D! coker DV

! 0
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gives a canonical isomorphism that depends on the map ˆ:

det.DV /Š det D˝
Vmax

V:

For example, if the map ˆ changes sign and if dim coker D � dim coker DV is odd,
then the isomorphism changes sign.

Similarly we can stabilize in the target. If W is a finite-dimensional vector space
and ‰W X !W is a continuous linear map, then with DW D .D; ‰/W X ! Y �W ,
x 7! .Dx; ‰x/, we get

0! ker DW ! ker D
‰
�!W ! coker DW ! coker D! 0;

which gives a canonical isomorphism that depends on ‰ :

det.DW /Š
�Vmax

W
��
˝ det D:

For example, if the map ‰ changes sign and dim ker D�dim ker DW is odd, then the
isomorphism changes sign.

Finally, combining the two, if ˛W V !W is a linear map, then the map

DV
W W X �V ! Y �W; DV

W .x; v/D .DxCˆv;‰xC˛v/

gives a canonical isomorphism that depends on ˆ, ‰ and ˛ :

(A-1) det.DV
W /Š

�Vmax
W
��
˝ det D˝

Vmax
V:

Remark A.1 For the isomorphism above, one also needs to specify conventions
for orientations of direct sums corresponding to stabilizations. The details of these
conventions, however, do not affect our discussion here.

If D 2 F.X;Y /, then by stabilizing in the domain, one may make all operators in a
neighborhood of D surjective and that together with the above isomorphism allows for
the definition of a locally trivial line bundle det!F.X;Y / over the space of Fredholm
operators acting from X to Y with fiber over D equal to det.D/.

Assume DW O! F.X;Y / is a continuous map defined on some topological space O .
Consider the pull-back bundle D�det ! O and note that it admits a trivialization
provided the first Stiefel–Whitney class vanishes, w1.D�det/D 0.

If V and W are finite-dimensional vector spaces, we consider in line with the discus-
sion above the bundle OV

W
D O�Hom.V;Y /�Hom.X;W /�Hom.V;W / and the

map DV
W
W OV

W
!F.X �V;Y �W / defined as follows: DV

W
.p; ˆ;‰; ˛/ is the linear

map which takes .x; v/ 2X �V to

.D.p/xCˆv; ‰xC˛v/ 2X �W:
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Using the natural base point in Hom.V;Y / � Hom.X;W / � Hom.V;W / given by
.ˆ;‰; ˛/ D 0 and the natural isomorphism (A-1), we transport orientations ofVmax

W �˝D�det˝
Vmax

V !O to orientations of .DV
W
/�det ! OV

W
, and back.

Here V !O and W !O denote the trivial bundles O�V !O and O�W !O
respectively.

We now apply this setup to spaces of (stabilized) Cauchy–Riemann operators used in
the definition of the Hamiltonian simplex DGA. Indeed, the linearized operator for our
family of Cauchy–Riemann equations parametrized by the simplex �m�1 is of the
type DTw�

m�1

. Since Tw�
m�1D ker `� with `� W Rm!R, `�.�/D h�; �i, where �

is the vector � D .1; 1; : : : ; 1/, we have a canonical isomorphism det.DTw�
m�1

/'

det.DRm

R /, with DRm

R .x; �/ D
�
DTw�

m�1

.x; ��/; `�.�/
�

and � W Rm ! Tw�
m�1

the orthogonal projection parallel to � . We can thus view the linearization of our
parametrized Cauchy–Riemann problem as an element of a suitable space ORm

R of
Fredholm operators of Cauchy–Riemann type.

The negative orbit and chord capping operators o�. / and o�.c/ belong to natural
spaces O�. / and O�.c/ of Cauchy–Riemann operators with fixed asymptotic be-
havior determined by the linearized Hamiltonian flow along  and respectively c ,
acting between appropriate Sobolev spaces of sections W 1;p!Lp , p > 2 (see [11,
Section 4.4] for the orbit case and [40, Section 11; 4, Section 9] for the chord case).
These spaces of Cauchy–Riemann operators with fixed asymptotes are contractible,
and consequently the determinant line bundle can be trivialized over each of them.
We similarly define natural spaces of Cauchy–Riemann operators OC. / and O�.c/
containing the positive orbit and chord capping operators oC. / and oC.c/.

Our procedure for the construction of coherent orientations for the parametrized Cauchy–
Riemann equation is then the following:

(i) Given the canonical orientation on C , we orient the determinant bundles over the
spaces O.CP1/ of Cauchy–Riemann operators over CP1 by the canonical orientation
of complex linear operators. Since all the Euclidean spaces Rn are canonically oriented,
this induces orientations of the determinant bundles over all spaces ORk

R`
.CP1/ for

arbitrary k; ` 2 Z�0 .

Similarly, following [26], the choice of a relative spin structure on the Lagrangian L

determines an orientation of the determinant bundle over all spaces of Cauchy–Riemann
operators O.D2/ defined on the pull-back of TX over the disk D2 by arbitrary
smooth maps uW .D2; @D2/! .X;L/, with totally real boundary conditions given
by uj�@D2TL. This then induces orientations of the determinant bundles over all spaces
ORk

R`
.D2/ for arbitrary k; ` 2 Z�0 .
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(ii) We choose orientations of the determinant lines over the spaces O�. / and O�.c/,
which determine in turn orientations of the determinant lines over all spaces O�R

0
. /

and O�R
0
.c/.

(iii) By gluing, we obtain orientations of the determinant lines over the spaces OC. /
and OC.c/, which determine in turn orientations of the determinant lines over all
spaces OCR

0
. / and OCR

0
.c/.

(iv) If b D b1 � � � bm is a word of Hamiltonian chords and � D �1 � � � �k a word of
Hamiltonian orbits, then we write

OCR
0 .b;�/DOCR

0 .b1/� � � � �OCR
0 .bm/�OCR

0 .�1/� � � � �OCR
0 .�k/

and
OCR

0 .�/DOCR
0 .�1/� � � � �OCR

0 .�k/:

Given a Hamiltonian chord a, we write O.aIb;�/ for the space of Cauchy–Riemann
operators defined on a punctured disc with one positive boundary puncture, m negative
boundary punctures, and k negative interior punctures, with Lagrangian boundary
conditions given by the pull-back of TL via a map on the disk into X with boundary
in L, and with asymptotic behavior at the punctures according to the Hamiltonian
chords and orbits a, b and �. Similarly, given a Hamiltonian orbit  we write O. I�/
for the space of Cauchy–Riemann operators defined on a sphere with one positive
puncture and k negative punctures, and with asymptotic behavior at the punctures
determined by the linearized flow along the Hamiltonian orbits  , �. We then have
spaces ORmCkC1

0
.aIb;�/ and ORkC1

0
. I�/, and ORmCk

R .aIb;�/ and ORk

R . I�/.

(v) Cauchy–Riemann operators which are stabilized by finite-dimensional spaces at
the source can be glued much like usual, ie nonstabilized, Cauchy–Riemann operators;
see eg [24, Section 4.3]. The gluing operations

O�R
0 .a/�ORmCkC1

0 .aIb;�/�OCR
0 .b;�/ ! OR2.mCkC1/

0 .D2/

and
O�R

0 . /�ORkC1

0 . I�/�OCR
0 .�/ ! OR2.kC1/

0 .CP1/

induce isomorphisms of determinant bundles which are canonical up to homotopy.
From our previous choices we obtain orientations of all the spaces ORmCkC1

0
.aIb;�/

and ORkC1

0
. I�/. After restricting to the slice given by the zero stabilization map, we

obtain as explained above orientations of all the spaces ORmCk

R .aIb;�/ and ORk

R . I�/.
These orientations are used in order to count rigid holomorphic curves with signs in
the relevant moduli spaces.

Our choice of coherent orientations gives the following graded commutativity property.
As in Section 4.1, let jcj D CZ.c/� 2 and j j D CZ. /C n� 3. Let bD b1 � � � bm
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and � D �1 � � � �k be words in Hamiltonian chords and orbits respectively as above.
Consider spaces of stabilized Cauchy–Riemann operators ORmCkC1

0
.aIb;�/ and

ORkC1

0
. I�/ for Hamiltonian chords and orbits a and  . Given 1 � i � k � 1, let

�i D �1 � � � �i�1�iC1�i�iC2 � � � �k . There are canonical identifications

ORmCkC1

0 .aIb;�/ŠORmCkC1

0 .aIb;�i/ and ORkC1

0 . I�/ŠORkC1

0 . I�i/

obtained by relabeling the i th and .iC1/st interior punctures of the domain. Accord-
ingly, the determinant line bundles over these spaces of operators are canonically
identified. Each of them comes with an induced orientation as above, and these
orientations differ by the sign

.�1/j�ijj�iC1j:

Indeed, these orientations differ by the same sign as the orientations of the determinant
lines over OCR

0
.i/�OR

0
.iC1/ and OCR

0
.iC1/�OR

0
.i/, identified via the obvious

exchange of factors. By [40, page 150], the latter sign is equal to

.�1/
index.DR

0 i
/�index.DR

0 iC1
/
D .�1/j�i jj�iC1j;

where DR
0 i
2OCR

0
.i/ and DR

0 iC1
2OCR

0
.iC1/. This holds because

index.DR
0 i/D CZ.�i/C nC 1� j�i j .mod 2/

and
index.DR

0 iC1/D CZ.�iC1/C nC 1� j�iC1j .mod 2/I

see Section 4.1.

This shows that orbits sign-commute in the Hamiltonian simplex DGA of Section 5.

Remark A.2 In the Hamiltonian simplex DGA of Section 5 orbits sign-commute with
chords. That is not a consequence of coherent orientations. It is just an algebraic choice
that reflects the interpretation of orbits as coefficients for the algebra generated by
chord generators. Indeed, we can always order the negative punctures of a holomorphic
curve by first considering boundary punctures and then considering interior punctures
(analogous to normal ordering of operators).
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