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Relations among characteristic classes of manifold bundles

ILYA GRIGORIEV

We study relations among characteristic classes of smooth manifold bundles with
highly connected fibers. For bundles with fiber the connected sum of g copies of a
product of spheres Sd �Sd , where d is odd, we find numerous algebraic relations
among so-called “generalized Miller–Morita–Mumford classes”. For all g > 1 , we
show that these infinitely many classes are algebraically generated by a finite subset.

Our results contrast with the fact that there are no algebraic relations among these
classes in a range of cohomological degrees that grows linearly with g , according
to recent homological stability results. In the case of surface bundles (d D 1), our
approach recovers some previously known results about the structure of the classical
“tautological ring”, as introduced by Mumford, using only the tools of algebraic
topology.

55R40, 55T10, 57R22

1 Introduction

Let M be a 2d–dimensional closed oriented smooth manifold. We denote by DiffM
the topological group of orientation-preserving diffeomorphisms of M . The bar
construction can be used to construct the space BDiff.M/ that classifies bundles with
fiber M . For any characteristic class of vector bundles p 2H�C2d .BSO2d IQ/, we
will define a generalized Miller–Morita–Mumford (MMM) class (or just kappa class)
�p 2H

�.BDiff.M/IQ/. These are the simplest examples of characteristic classes of
bundles1 with fiber M and structure group DiffM .

We are mainly interested in the case where the fiber is ]g S
d � Sd , the connected

sum of g copies of Sd �Sd . More generally, we let the fiber be a highly connected
manifold (see Definition 2.5) of genus g and dimension 2d , denoted M 2d

g or Mg .
Recall that H�.BSO2d IQ/DQŒp1; : : : ; pd�1; e�, where pi is the Pontryagin class
of degree 4i and e is the Euler class of degree 2d . Let S �H�.BSO2d IQ/ consist of

1A geometric example of such a bundle is a proper submersion f W E ! B of smooth, oriented
manifolds that has M as its fiber.
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the monomials in the Pontryagin classes and the Euler class. For each such monomial,
there is a corresponding MMM class in H�.BDiffMg IQ/, which gives rise to a map

Rd W QŒ�p j p 2 S�!H�.BDiffMg IQ/:

This paper presents a large family of polynomials in the MMM classes that lies in the
kernel of the map Rd , in the case that d is odd. In the d > 1 case, ours are the first
results of this kind. In the d D 1 case, we recover previously known results, but using
purely homotopy theoretic methods. Our first main result is the following.

Theorem 1.1 The image of Rd is finitely generated as a Q–algebra when d is odd
and g > 1.

In Proposition 5.8, we also show that for all odd d , the Krull dimension of the image
of Rd is at most 2d .

Our methods generalize the technique Randal-Williams developed for the d D 1 case
in [22], which in turn is based on the work of Morita [18]. They allow us to present many
specific elements in ker Rd . For instance, Randal-Williams found various relations
among the images of the classes

�i WD �eiC1 2H
2di .BDiffMg IQ/

under the map Rd in the case when d D 1. We find that the same relations hold for
any odd d (see Section 5.6 for details and examples). This is surprising, as no map
between subrings of H�.BDiffM 2d

g / for different d that takes �i to �i can preserve
the grading on the cohomology.

1.1 Manifolds with a fixed disk and homological stability

Let S 0�S be the set of monomials in the classes2 pd.dC1/=4e;pd.dC1/=4eC1; : : : ;pd�1 ,
and e of total degree greater than 2d . Let R0

d
denote the map Rd restricted to

QŒ�p j p 2 S 0�. Our second main result is:

Theorem 1.2 If d � 3 .mod 4/, the map R0
d

has nontrivial kernel in degree 2gC 2.
If d � 1 .mod 4/, the map R0

d
has nontrivial kernel in degree 6gC 6.

By contrast, the map R0
d

is known to be injective in a range of cohomological degrees
� � .g � 4/=2 when the fiber is ]g S

d � Sd and d ¤ 2. This fact and the related
phenomenon of homological stability are a large part of the motivation for our work.
We now describe them in more detail.

2 We use the notation d�e and b�c for rounding up and down (respectively) to the nearest integer.
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Let Diff.Mg ;D
2d / � Diff.Mg/ be the subgroup of those diffeomorphisms that fix

pointwise a chosen disk in Mg , and let f W BDiff.Mg ;D
2d /! BDiff.Mg/ be the

map induced on the bar constructions by the inclusion of groups. We define the map
Rı;d W QŒ�p jp 2S 0�!H�.BDiff.Mg ;D

2d /IQ/ as the map that makes the following
diagram commute:

(1.1.1)

QŒ�p j p 2 S�
Rd

// H�.BDiffMg IQ/

f �

��

QŒ�p j p 2 S 0�i
Rı;d

//

R0
d

44

?�

OO

H�.BDiff.Mg ;D
2d /IQ/

(The ı stands for “fixed disk”. See Appendix A for a comparison of the images of the
various maps in the diagram.)

The next fact, in the d D 1 case, is a consequence of the Madsen–Weiss theorem [15]
and the Harer stability theorem [11], with the improved stability range by Boldsen [3].
In the case when d > 2, the fact is a consequence of two theorems of Galatius and
Randal-Williams [10; 9].

Fact 1.3 If Mg D ]g S
d � Sd and d ¤ 2, the map Rı;d is an isomorphism in the

range of cohomological degrees � � .g� 4/=2. Thus the map R0
d

is injective in the
same range of degrees.

For d D 1, the range of degrees can be improved to � � 2g=3.

In particular, the ring H�
�
BDiff

�
]g S

d�Sd ;D2d
�
IQ
�

satisfies homological stability:
it is independent of g in a range of cohomological degrees. Theorem 1.2 implies that
this range of cohomological degrees cannot be improved beyond � � 2gC 1.

In Appendix A, we prove another version of Theorem 1.1.

Theorem A.4 The image of Rı;d is finitely generated as a Q–algebra when d is odd
and g > 1.

1.2 Comparison with known results for surface bundles

In the d D 1 case, the fiber of our bundle is an oriented genus-g surface †g DM 2
g D

]g S
1� S1 and the generalized Miller–Morita–Mumford classes correspond to the

classical ones, with �i D �eiC1 2 H
2i .BDiff.†g ;D2/IQ/. The map R1 takes the

form
R1W QŒ�1; �2; : : : �!H�.BDiff†g IQ/:
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The ring of characteristic classes of surface bundles in rational cohomology coincides
with the cohomology of the moduli space of Riemann surfaces Mg since

H�.BDiff†g IQ/DH�.B�g IQ/DH�.Mg IQ/;

where �g is the orientation-preserving mapping class group. (The first equality follows
from the theorem of Earle and Eells [5], which implies that the natural group homo-
morphism Diff†g ! �g is a homotopy equivalence, and thus the bar constructions
are weakly homotopy equivalent. The second is true only in rational cohomology
and follows from Teichmüller theory; see Farb and Margalit [8, Section 12.6] for an
overview.)

The image of R1 can therefore be thought of as a subring of H�.Mg IQ/. This
subring coincides with the classical tautological ring, as defined in Mumford [20].
Techniques of algebraic geometry and low-dimensional topology (hyperbolic geometry,
in particular) have been used to obtain many results about the structure of this ring. For
example, since Mg is a .6g�6/–dimensional orbifold, the image of R1 must vanish
above that degree, and thus be a finite-dimensional vector space over Q.

More precise results are known; we list the most relevant ones. The image of the
map R1 is trivial above degree 2.g � 2/ by a theorem of Looijenga [13], and in
degree 2.g� 2/ it is one-dimensional; see Faber [7] and Looijenga [13]. Morita [19]
showed that the kernel of R1 is nontrivial in degree 2bg=3cC 2. However, R1 is an
isomorphism in degrees � 2bg=3c according to Fact 1.3 together with the fact that
the map f �W H�.BDiff†g IZ/!H�.BDiff.†g ;D2/IZ/ is an isomorphism in the
same range of degrees; see Boldsen [3] and Harer [11]. For two conjectural, complete
descriptions of ker R1 , which differ for g > 23 but are known to be true for g � 23,
see Faber [7] and Pandharipande and Pixton [21].

Since the relations in Theorems 1.2 and 1.1 have high cohomological degree, they
follow from Looijenga’s theorem in the d D 1 case. We provide a new proof for the
relations of lower degree obtained by Randal-Williams in [22], including all of the
existing relations for g� 5. It is unclear whether our strengthening of Randal-Williams’
methods can result in genuinely new relations in the d D 1 case.

1.3 Outline of the paper

In Section 2, we define the generalized Miller–Morita–Mumford classes. We then
state the main technical result of the paper and the primary source of our relations,
Theorem 2.7. We outline its proof and apply it to prove Theorem 1.2.

The details of the proof of Theorem 2.7 take up Sections 3 and 4. In the special case of
surface bundles, this work leads to a stronger statement and a new proof of a result of
Morita [18, Section 3].
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In Section 5, we use Theorem 2.7 to prove Theorem 1.1 and our other results. These
calculations use methods Randal-Williams developed for surface bundles in [22],
originally based on Morita’s result.

Appendix A discusses the relationship between the maps Rd , R0
d

and Rı;d , and
proves Theorem A.4. Appendix B discusses alternative definitions of the pushforward
map on cohomology, which is a crucial ingredient in defining the MMM classes.
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2 Definitions and our main technical result

In this section, we give more precise definitions for terms used in the introduction. We
then state the main technical result of this paper and give an informal outline of its
proof. Finally, we apply it to prove Theorem 1.2.

Let M be an oriented smooth closed connected manifold and DiffM is the topological
group of orientation-preserving diffeomorphisms of M with the C1 topology.

Definition 2.1 By an oriented manifold bundle (or just manifold bundle), we mean a
bundle E! B with fiber M and structure group DiffM .

2.1 Pushforward maps

For an oriented manifold bundle � W E! B with fiber M , there is a map of abelian
groups �ŠW H�CdimM .EIZ/!H�.BIZ/ called the pushforward map, also known
as the umkehr map or the Gysin homomorphism. Note that �Š.1/D 0 when dimM ¤ 0
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because of the change of cohomological degree, and thus �Š is not a ring map. We
will give its definition (originally from [4]) in a more general setting in Section 3.3,
Definition 3.5.

To give a little substance to this notion, we mention that in the special case when E
and B are closed oriented manifolds, the map �Š coincides with the composition of
Poincaré duality in E , the natural map on homology induced by � , and Poincaré duality
in B . When restricted to de Rham cohomology, the map coincides with integration
along the fiber (these equivalences are discussed in detail in [2]).

For our present purposes, it is sufficient to recall one nontrivial property of �Š . The
pushforward map is natural in the sense that, if we form a pullback diagram of manifold
bundles

(2.1.1)
f �.E/

� 0

��

f 0
// E

�

��

A
f

// B

then for any a 2H�.E/, we have f �.�Š.a//D � 0Š.f
0�.a//.

Further properties of the pushforward map are discussed in Section 5.1.

2.2 Definition of the Miller–Morita–Mumford classes

Let P ! B be the principal DiffM–bundle corresponding to the manifold bundle
E! B . The group DiffM acts on the total space of the tangent bundle TM as well
as on M , and the bundle map TM !M is equivariant with respect to this action. So
the map

P �DiffM TM ! P �DiffMM DE

can be given the structure of a bundle over E with the same fiber and structure group
as the bundle TM !M .

Definition 2.2 The vertical tangent bundle T�E is the vector bundle of rank dimM

over E defined by the above map.

Remark 2.3 In the special case when the bundle map E ! B is a smooth map
between smooth manifolds, the vertical tangent bundle coincides with the subbundle
of TE that is the kernel of the derivative Df W TE! TB .

As we only consider orientation-preserving diffeomorphisms, T�E is an oriented vector
bundle. Its characteristic classes determine a map  W H�.BSOdimM IZ/!H�.EIZ/.
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Definition 2.4 Let E ! B be a manifold bundle with m–dimensional fiber and
p 2H lCm.BSOmIZ/. The corresponding generalized Miller–Morita–Mumford class
or kappa class is defined by

�p

�
E
#

B

�
WD �Š.

�.p// 2H l.BIZ/:

The kappa classes are natural with respect to pullbacks of bundles because of the
naturality property of pushforwards. To be more precise, the following diagram will
commute in the context of the pullback diagram (2.1.1):

H�Cm.BSOmIZ/

p 7!�p

�
f �.E/
#

A

�
))

p 7!�p

�
E
#

B

�
// H�.BIZ/

f �

��

H�.AIZ/

Every manifold bundle is a pullback of the universal bundle over BDiffM . So the
kappa classes for any bundle are pullbacks of universal classes �p 2H�.BDiffM IZ/.
Similarly, for p 2H�Cm.BSOmIQ/ there are classes

�p

�
E
#

B

�
2H�.BIQ/ and �p 2H

�.BDiffM IQ/:

2.3 Key source of the relations

Let us state the main technical result that underlies the relations discussed in this paper.
We will give an informal outline of the proof at the end of this section and postpone all
details to Sections 3 and 4.

We will consider bundles with fiber in the following class of manifolds.

Definition 2.5 By a highly connected manifold of genus g , we mean a 2d–dimensional
.d�1/–connected smooth oriented closed manifold with middle cohomology isomor-
phic to Z2g . Throughout the paper, Mg represents such a manifold.

This class includes the connected sum of g copies of Sd � Sd . To give another
example, let Q be the total space of a bundle such that the fiber and the base spaces
are smooth homotopy d–spheres. A connected sum of g copies of Q will be a highly
connected manifold of genus g .

Remark 2.6 If M is an oriented closed smooth 2d–dimensional .d�1/–connected
manifold, the universal coefficient theorem implies that Hd.M IZ/ŠHom.Hd.M/;Z/,
which is a free group. Poincaré duality and the fact that d is odd imply that the rank
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of this group must be even. So M is a highly connected manifold of genus g for some
integer g .

Theorem 2.7 Let d be an odd natural number and Mg be a 2d–dimensional highly
connected manifold of genus g . Let � W E! B be an oriented manifold bundle with
fiber M 2d

g and let a; b 2H�.EIZ/ be two classes such that �Š.a/ D 0, �Š.b/ D 0,
and deg.a/ is even.

Then the classes

�Š.a[ a/ 2H
2 deg.a/�2d .BIZ/ and �Š.a[ b/ 2H

deg.a/Cdeg.b/�2d .BIZ/

satisfy the two relations

.2gC 1/Š ��Š.a[ a/
gC1
D 0;(2.3.1)

.2gC 1/Š ��Š.a[ b/
2gC1

D 0:(2.3.2)

(Note the larger power in the second relation.)

Remark 2.8 Because of the .2gC 1/Š factor in the statement, the theorem is most
useful to give relations for cohomology with rational coefficients. It is likely that this
factor can be improved somewhat. In [18, Section 3], Morita proved the relation (2.3.1)
in the special case of d D 1 and deg aD 2 with a factor of .2gC 2/Š=.2gC1.gC 1/Š/
instead of .2gC 1/Š.

2.4 An application: proof of Theorem 1.2

In this section, we illustrate Theorem 2.7 by proving Theorem 1.2 as an application.
Further applications of Theorem 2.7 that result in more elaborate relations are discussed
in Section 5.

Proposition 2.9 Suppose d ¤ 1 is an odd integer. Let s D d.d C 1/=4e, and let ps
be the 4s–dimensional Pontryagin class. Then

�
gC1

p2s
D02H .2 or 6/.gC1/.BDiffMg IQ/; where deg �p2s D

�
2 if d � 3 .mod 4/;
6 if d � 1 .mod 4/:

Proof Let d � 3 be odd. Let � W E! .B D BDiffMg/ be the universal manifold
bundle with fiber M 2d

g . The 4s–dimensional Pontryagin class of the vertical tangent
bundle gives rise to the class ps 2H 4s.EIQ/.

Our choice of s insures that, depending on d mod 4, either 4sD dC1 or 4sD dC3.
Since under our assumptions 4s < 2d , we have �Š.ps/ D 0. Also, degps is even.
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Thus we can apply Theorem 2.7 to obtain the following relation concerning the class
�Š.p

2
s /, which is either 2– or 6–dimensional:

.2gC 1/Š�Š.p
2
s /
gC1
D 0 2H .2 or 6/.gC1/.BIQ/:

The class �Š.p2s / coincides with the class �p2s 2H
.2 or 6/.BDiffMg IQ/ by definition.

So rationally �gC1
p2s
D 0 2H .2 or 6/.gC1/.BDiffMg IQ/ as desired.

When d¤1, Proposition 2.9 immediately implies Theorem 1.2 since, in the terminology
of the introduction, p2s 2 S 0 .

Fact 1.3 implies that the class �p2s 2 H
�
�
BDiff

�
]g S

d � Sd ;D2d
�
IQ
�

is not zero
when g is large enough. Therefore we also have �p2s ¤ 02H

�
�
BDiff

�
]g S

d�Sd
�
IQ
�
,

even though we just showed �gC1
p2s
D 0.

When d D 1 and g > 1, Theorem 1.2 follows from Corollary 5.18, which in this case
is due to Morita (Looijenga’s theorem [13] is even stronger). The S1�S1 case can be
done by replacing ps with the class e�e2 in the above proof. The g D 0 case follows
from the fact that BDiffS2 ' BSO3 by a theorem of Smale.

2.5 Outline of the proof of Theorem 2.7

We aim to prove that a certain power of the class �Š.a[ b/ is torsion. If we wanted to
prove that 2˛2 D 0 for some integral cohomology class ˛ , it would be sufficient to
decompose it as product of a integral cohomology class of odd degree ˇ and another
class: ˛ D ˇ[  . Our proof is loosely analogous.

In Section 3, we will use the Serre spectral sequence for the fibration � W E! B to
define the pushforward map on cohomology �Š . The key result of Section 3 is that,
under the assumptions of Theorem 2.7, the cohomology class �Š.a[ b/ is the product
of two terms on the E2 page of the spectral sequence, at least one of which — we call
it � — has odd degree (Proposition 3.8).

The class � turns out to be a cohomology class with a 2g–dimensional, twisted coeffi-
cient system. In Section 4, we prove Proposition 4.1, which implies that since deg � is
odd, �2gC1 is torsion. We then relate various notions of cup product to conclude that
�Š.a[ b/

2gC1 and �Š.a[ a/gC1 are both torsion.

3 Spectral sequence argument

In this section, we begin the detailed proof of Theorem 2.7. A reader more interested
in applications might want to skip directly to Section 5.

Geometry & Topology, Volume 21 (2017)



2024 Ilya Grigoriev

The proof of Theorem 2.7 is most naturally stated in the setting of oriented Serre
fibrations. This setting is more general than the setting of manifold bundles. We first
define the pushforward map in this generality. Then our goal is to prove Proposition 3.8,
which in certain cases allows us to decompose cohomology classes of the form �Š.a[b/.

3.1 Oriented Serre fibrations and twisted coefficient systems

By a twisted coefficient system over B , we will mean a bundle of abelian groups over B
with some fiber A and the discrete group AutA as its structure group. Given a basepoint
� 2 B , twisted coefficient systems correspond bijectively to ZŒ�1.B;�/�–modules
(see eg [16, Section 5.3]). Moreover, maps and tensor products of twisted coefficient
systems correspond to maps and tensor products of ZŒ�i .B;�/�–modules, respectively.

Let E!B be a Serre fibration, �2B be a chosen basepoint, and M be the homotopy
fiber at the basepoint. The homotopy-lifting property of Serre fibrations gives rise to an
action of �1.B;�/ on the cohomology groups H i .M IZ/ for all i . This gives rise to
a twisted coefficient system that we denote Hi .M/. The cup product on cohomology
H i .M IZ/˝H j .M IZ/!H iCj .M IZ/ is a map of ZŒ�i .B;�/�–modules. So there
is a well-defined cup product on twisted coefficient systems

(3.1.1) [W Hi .M/˝Hj .M/!HiCj .M/:

We are interested in the case in which the homotopy fiber is a closed, connected
manifold M 2d . An orientation for such a Serre fibration E ! B is a choice of a
trivialization for the twisted coefficient system corresponding to the top cohomology,
ie a choice of an isomorphism orW H2d .M/ �!� Z, where the right-hand side is the
untwisted coefficient system over B . An oriented Serre fibration is a Serre fibration
E! B that is equipped with a choice of an orientation.

Example 3.1 Any (oriented) manifold bundle in the sense of Section 2 is an example
of an oriented Serre fibration, since the structure group of the manifold bundle preserves
the given orientation of the fiber M .

3.2 Convergence of Serre spectral sequences

In this section, we recall the features of the convergence theorem for the cohomological
Serre spectral sequence that we will need.

As we will discuss in more detail in Section 4.1, for any coefficient systems A and B
over B , there is a notion of cohomology with twisted coefficients and a cup product
(different from the one defined in (3.1.1))

(3.2.1) [W Hp.BIA/˝H q.BIB/!HpCq.BIA˝B/:
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Moreover, any map of coefficient systems f W A!B determines a map on cohomology
that we will denote fcoeffW H

�.BIA/!H�.BIB/.

The Serre spectral sequence for a Serre fibration � W E ! B with fiber M (which,
for the purposes of the convergence theorem, can be any CW complex) relates the
following two objects:

(1) The cohomology of the total space H�.EIZ/ together with the cup product and
a filtration

(3.2.2) H�.EIZ/D � � � D F�1 D F 0H�.EIZ/� F 1H�.EIZ/� � � �

defined as follows. Let B.j / denote the j –skeleton of the CW complex B ,
J .j / D ��1.B.j //�E , and J .�1/ D∅. We set

F iH�.E/ WDker
�
H�.E/!H�.J .i�1//

�
D image

�
H�.E; J .i�1//!H�.E/

�
:

Note that this filtration respects the cup product, ie the cup product restricts to a
map F pH�.EIZ/˝F p

0

H�.EIZ/! F pCp
0

H�.EIZ/.

(2) The E2 page of the spectral sequence which is the bigraded ring

E
p;q
2 WDHp.BIHq.M//

with the product specified by the composition of maps

(3.2.3) �W E
p;q
2 ˝E

p0;q0

2 DHp.BIHq.M//˝Hp0.BIHq
0

.M//

[
���!
(3.2.1)

HpCp0.BIHp.M/˝Hq
0

.M//

[coeff
���!
(3.1.1)

HpCp0.BIHqCq
0

.M//DE
pCp0;qCq0

2 :

The convergence theorem relates these two objects by way of the E1 page of the
spectral sequence:

Theorem 3.2 (convergence theorem for the Serre spectral sequence [16, Theorem 5.2])
There is a spectral sequence with the E2 page as described above such that the following
two definitions of its E1 page are equivalent (together with the product structure):

(a) Successive quotients of the filtration (3.2.2) together with the cup product

Ep;q1 Š F pHpCq.EIZ/=F pC1HpCq.EIZ/:

(b) A subquotient of the E2 page obtained by repeatedly taking homology using the
differentials in the spectral sequence. Repeatedly taking subquotients of a group
results in a subquotient, so there are subgroups Bp;q �Zp;q �Ep;q2 such that

Ep;q1 DZp;q=Bp;q:
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By a small abuse of language, we write

Zp;q D ker.differentials out of .p; q/ terms/;

Bp;q D image.differentials into .p; q/ terms/:

The product structure is induced from the product structure on the E2 page. This
uses the fact that all the differentials respect the product on their respective pages
of the spectral sequence.

3.3 Pushforwards and spectral sequences

In this section, we assume that the fiber M 2d is a 2d–dimensional oriented closed
connected manifold.

Lemma 3.3 If M has dimension 2d , the filtration on cohomology is such that

F n�2dHn.EIZ/DHn.EIZ/ for all n:

If M is also .d�1/–connected, then we also have

F n�dHn.EIZ/D F n�2dC1Hn.EIZ/:

(For the indices in this and the following arguments, refer to Figure 1.)

Proof Since the fiber M is 2d–dimensional, En�q;q2 D 0 for q > 2d , and therefore
0DE

n�q;q
1 D F n�qHn.EIZ/=F n�qC1Hn.EIZ/ as well.

E1 page
p

q

2d

d

E
n�d;d
2 ŠHn�d.BIH/

E
n�2d;2d
2 ŠHn�2d.BIH2dŠZ/

p

q

2d

d

Hn.E/

F n�dHn=F n�dC1Hn

F n�2dHn=F n�2dC1Hn

E2 page

direction of
differentials

Figure 1: The E2 and E1 pages of the Serre spectral sequence with fiber a
.d�1/–connected oriented closed 2d–dimensional manifold M . The entries
with total degree n are highlighted. We abbreviate F iHn WD F iHn.EIZ/ .
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If M is .d�1/–connected, then H q.M IZ/D 0 for 2d > q > d by Poincaré duality.
Thus En�q;q2 D 0 as well in this range.

From the E2 page onwards, all the differentials in the spectral sequence go in the
down-and-right direction. In particular, there are no differentials into the 2d th row of
the spectral sequence (ie the En�2d;2di terms for i � 2). So

Bn�2d;2d D image.differentials into .n� 2d; 2d/ terms/D 0:

The convergence theorem implies that En�2d;2d1 �E
n�2d;2d
2 =Bn�2d;2d , so we have:

Lemma 3.4 E
n�2d;2d
1 �E

n�2d;2d
2 .

By definition, En�2d;2d1 D F n�2dHn.EIZ/=F n�2dC1Hn.EIZ/. We can now de-
fine the pushforward map that we use throughout this paper:

Definition 3.5 [4, Section 8] If the Serre fibration � W E!B with fiber M 2d is ori-
ented, we define the pushforward map on cohomology �ŠW H�.EIZ/!H��2d .BIZ/
to be the composition of maps

(3.3.1)
Hn.EIZ/D

F n�2dHn.EIZ/
�Š

33

// // E
n�2d;2d
1

� � // E
n�2d;2d
2

�

orcoeff
// Hn�2d .BIZ/:

Various properties of the pushforward map (which are not used in this section nor in
Section 4) are discussed in Sections 2.1 and 5.1.

3.4 Secondary pushforwards and the decomposition of pushforwards

Let us now assume that our Serre fibration is oriented and that the fiber M is a .d�1/–
connected 2d–dimensional oriented closed manifold. Let us consider the kernel of the
map �Š we just defined.

Lemma 3.6 Let .ker�Š/n WD .ker�Š/ \ Hn.EIZ/ � H�.EIZ/. If M is 2d–
dimensional and .d�1/–connected, then

.ker�Š/n D F n�dHn.EIZ/:

Proof By examining the map (3.3.1), we see that the quotient map

Hn.EIZ/DF n�2dHn.EIZ/� En�2d;2d1 DF n�2dHn.EIZ/=F n�2dC1Hn.EIZ/

Geometry & Topology, Volume 21 (2017)



2028 Ilya Grigoriev

must take .ker�Š/n to zero and therefore .ker�Š/nDF n�2dC1Hn.EIZ/. Lemma 3.3
states that since M is .d�1/–connected, F n�2dC1Hn.EIZ/D F n�dHn.EIZ/.

We will now attempt to repeat the construction of the map (3.3.1). The lemma gives us
a quotient map .ker�Š/nDF n�dHn.EIZ/�E

n�d;d
1 (see also Figure 1 for indices).

It is no longer necessarily true that En�d;d1 is a subset of En�d;d2 , but the convergence
theorem states that it is in general a subset of a quotient:

Ep;q1 D
Zp;q

Bp;q
�
E
p;q
2

Bp;q
:

So we have the following sequence of maps:

(3.4.1)

.ker�Š/n

�

,,

F n�dHn.EIZ/ // // E
n�d;d
1

� � // E
n�d;d
2 =Bp;d

E
n�d;d
2 DHn�d .BIHd /

OOOO

We use the fact that the wrong-way map in this diagram is surjective to make the
following definition:

Definition 3.7 For each a 2 .ker�Š/n , we define its secondary pushforward �.a/ to
be some element in En�d;d2 D Hn�d .BIHd / which maps to the same element of
E
n�d;d
2 =Bp;d as a under the maps in (3.4.1). From now on, we assume that we have

fixed a choice of such a �.a/ for every a .

Since there is no reason for �W .ker�Š/nÜHn�d .BIHd / to be a group homomor-
phism, we will call it a correspondence rather than a map and denote it with a dashed
arrow.

Proposition 3.8 Let a 2 .ker�Š/pCd and b 2 .ker�Š/p
0Cd . The cohomology class

�Š.a[ b/ 2H
pCp0.BIZ/ is the image of �.a/˝ �.b/ under the following map:

(3.4.2)
E
p;d
2 ˝E

p0;d
2

�
// E
pCp0;2d
2

�

orcoeff
// HpCp0.BIZ/

�.a/˝ �.b/
� //

2

�Š.a[ b/

2

Proof Since the Serre spectral sequence is multiplicative, every term in the dia-
gram (3.4.1) is a subset of some ring. The following diagram combines the multiplica-
tion maps on every term:
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.a˝b/2 .ker�Š/pCd ˝ .ker�Š/p
0Cd [

// HpCp0C2d .EIZ/

�Š(a)

oo

F pHpCd .EIZ/˝F p
0

Hp0Cd .EIZ/

����

F pCp
0

HpCp0C2d .EIZ/

����

E
p;d
1 ˝E

p0;d
1

E1 mult.
//

� _

��

E
pCp0;2d
1 � _

��

E
p;d
2

Bp;d
˝
E
p0;d
2

Bp
0;d

E2 mult.

(b)
//
E
pCp0;2d
2

BpCp
0;2d
DE

pCp0;2d
2

orcoeff �

��

E
p;d
2 ˝E

p0;d
2

OOOO

�Š.a[b/2HpCp0.BIZ/3�.a/˝�.b/

We observe the following:

� The convergence theorem implies that the diagram commutes and the map (b) is
well defined.

� The composition of maps (a) coincides with the map (3.3.1) from the definition
of �Š .

� In the image of the map (b), the group BpCp
0;2d is zero as we discussed in the

proof of Lemma 3.4.

� The composition of maps from E
p;d
2 ˝E

p0;d
2 to HpCp0.BIZ/ in the diagram

is precisely the map (3.4.2).

By the construction of the secondary pushforward, the image of �.a/ ˝ �.b/ in
HpCp0.BIZ/ is the same as the image of a˝ b , which is precisely �Š.a[ b/.

4 Remainder of the proof of Theorem 2.7

The first goal of this section is to prove the following property of the cup product (3.2.1):

Proposition 4.1 Let H be a twisted coefficient system with fiber Zk with k � 2g .
Let � 2H�.BIH/ have odd degree. Then

.2gC 1/Š � �2gC1 D 0 2H .2gC1/ deg.�/.BIH˝2gC1/:
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This proposition is a generalization of the fact that if ˇ 2H�.BIZ/ has odd degree,
then 2ˇ2 D 0. Similarly to that fact, the proof relies on the generalized commutativity
of cup product with twisted coefficients.

Once we prove Proposition 4.1, we will relate it with Proposition 3.8 to complete the
proof of Theorem 2.7.

4.1 Cup product and twisted coefficients

In this section, we state the formal properties of cup product for cohomology with
twisted coefficients that we use. They generalize familiar properties of the usual cup
product. See [23] for a reference.

Cohomology with twisted coefficients assigns a graded abelian group H�.X IA/ to
the pair .X;A/ of a space and a twisted coefficient system. Given two coefficient
systems A and B over the same space X , the cup product with twisted coefficients we
mentioned in (3.2.1) is a map [W H�.X;A/˝H�.X;B/!H�.X;A˝B/. Also, given
a map of coefficient systems f W A! B , there is a corresponding map on cohomology
fcoeff W H

�.X IA/!H�.X IB/.

The following properties of cup products on cohomology with twisted coefficients will
be important for us:

� The cup product is associative in the sense that the two possible cup products of
three terms H�.X;A/˝H�.X;B/˝H�.X; C/!H�.X;A˝B˝ C/ are the
same.

� The cup product commutes with change of coefficients in the following sense:
Let f W A! B be and gW C! D be maps of coefficient systems (all over the
same space X ). There is a corresponding map f ˝ gW A˝ C! B˝D . The
following diagram commutes:

H�.X IA/˝H�.X I C/
fcoeff˝gcoeff

//

[

��

H�.X IB/˝H�.X ID/

[

��

H�.X IA˝ C/
.f˝g/coeff

// H�.X IB˝D/

� The cup product is graded-commutative in the following sense: Denote by
� W A˝B! B˝A the map that swaps the coordinates. For a 2Hp.X IA/ and
b 2H q.X IB/, we have

(4.1.1) ˛[ˇ D .�1/pq�coeff.ˇ[˛/:
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These facts can be proven in the same way as the corresponding facts for the regular
cup product; we refer to [23, Section 11] for details. As in the regular case, graded
commutativity of the cup product doesn’t hold in general on the level of chains.

4.2 Powers of odd classes and proof of Proposition 4.1

Before proving Proposition 4.1, we need to state two lemmas.

For any representation V of the symmetric group Sn , we denote by AltV the alter-
nating subrepresentation

AltV D fv 2 V j 8� 2 Sn; � � v D sgn.�/vg � V:

Let H be a twisted coefficient system. Then H˝t, for any t , is an St–representation
with the action defined by � � .h1˝ � � �˝ht /D .h�.1/˝ � � �˝h�.t//. This action on
coefficients also makes the cohomology H�.BIH˝t / into an St–representation.

Lemma 4.2 If � 2H deg.�/.BIH/ with deg.�/ odd, then �t 2 AltH�.BIH˝t /.

Proof First, consider the t D 2 case. Since � has odd degree, the formula for commu-
tativity of cup product states that, if � 2 S2 is the nontrivial transposition,

�coeff.�[ �/D��[ �D sgn.�/ � .�[ �/ 2H 2 deg.�/.BIH˝2/:

The general case follows from the facts that any permutation � 2St can be decomposed
into a product of transpositions, and that the number of these transpositions mod 2 is
determined by sgn.�/.

The inclusion i W AltH˝t ,! H˝t is a map of coefficient systems, and therefore
induces a map on cohomology. If our coefficient system was a Q–vector space,
we would want to prove that all of AltH�.BIH˝tQ / is in the image3 of the map
icoeffW H

�.BIAltH˝tQ /! H�.BIH˝tQ /. We prove an integral version of the same
statement.

Lemma 4.3 Suppose ˛ 2 AltH deg˛.BIH˝t /. Then t Š˛ is contained in the image
of the map icoeffW H

�.BIAltH˝t /!H�.BIH˝t /. By an abuse of notation, we will
denote this fact by t Š˛ 2H�.BIAltH˝t /.

Proof Consider the map on coefficient systems pW H˝t ! AltH˝t defined by

.v 2H˝t / p
7�!

� X
�2St

sgn.�/.� � v/
�
:

3With a little more work, one can show that icoeff induces an isomorphism H�.BIAltH˝tQ / ��!

AltH�.BIH˝tQ / .

Geometry & Topology, Volume 21 (2017)



2032 Ilya Grigoriev

(It is easy to check that its image indeed lies in AltH˝t � H˝t .) The map on
cohomology pcoeff has image in H�.BIAltH˝t /.

At the same time, if ˛ 2AltH deg˛.BIH˝t /�H�.BIH˝t /, then �coeff �˛D sgn.�/˛ ,
and thus

pcoeff.˛/D
X
�2St

sgn.�/.�coeff �˛/D
X
�2St

sgn.�/2.˛/D t Š˛:

So t Š˛ 2H�.BIAltH˝t / as desired.

Proof of Proposition 4.1 Let � 2 H�.BIH/ have odd degree and suppose that the
twisted coefficient system H has a free abelian group of rank � 2g as fiber. Then
we have AltH˝2gC1 D 0. By the above two lemmas, t Š�t 2 H�.BIAltH˝t /. So
.2gC 1/Š�2gC1 D 0 as desired.

Remark 4.4 In the above proof, the full strength of the assumption that H is free
abelian is unnecessary. If the fiber of H is any finitely generated abelian group such
that dimQ.H˝Q/� 2g , then AltH˝2gC1 will be a torsion group, and so �2gC1 will
be torsion. If H is generated by 2g elements and has no 2–torsion, AltH˝2gC1 D 0.

4.3 Proof of Theorem 2.7

Let d be an odd natural number and � W E! B be an oriented Serre fibration with
fiber M 2d

g , a 2d–dimensional highly connected manifold of genus g .

Remark 4.5 The result we prove is more general than the statement of Theorem 2.7,
as we do not need to make any assumptions about smoothness of the bundle or of Mg .
However, to apply the theorem to more general bundles, one would need to define
some sort of “kappa classes” as pushforwards of some cohomology classes on the total
space. The results of Ebert and Randal-Williams from [6] show that this is possible in
rational cohomology for topological bundles with fiber Mg . Their results also suggests
that some kappa classes can be defined this way for block bundles with structure group
BDiffMg . To apply the full strength of our results, one would need also to define

intersection classes (see Definition 5.9) in such a way that Lemma 5.11 holds.

Let us restate Proposition 3.8 from the last section in a form that does not involve
spectral sequences. Let H denote the twisted coefficient system Hd .Mg/ and ! denote
the map

!W H˝H [
�!H2d .Mg/

or
�!Z:
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Proposition 4.6 Let a 2 H deg.a/.E/ and b 2 H deg.b/.E/ be two classes such that
�Š.a/D0 and �Š.b/D0. Then there are �2H deg.a/�d .BIH/ and �2H deg.b/�d .BIH/
that depend only on a and b (respectively) such that �Š.a[ b/ is the image of �˝ �
under the following composition of maps, where i D deg.a/C deg.b/� 2d :

(4.3.1)
H deg.a/�d.BIH/˝H deg.b/�d.BIH/ [

// H i.BIH˝H/
!coeff

// H i.BIZ/

�˝ �
� //

2

�Š.a[ b/

2

Proof The map (3.4.2) from Proposition 3.8 is the composition of the product on
the E2 page of the spectral sequence (3.2.3) with the orientation isomorphism on
coefficients:

.orcoeff ı �/W E
p;d
2 ˝E

p0;d
2 DHp.BIH/˝Hp0.BIH/ [

��!HpCp0.BIH˝H/
[coeff
��!HpCp0.BIH2d .Mg//

orcoeff
��!HpCp0.BIZ/:

The composition of the last two arrows in the above diagram is precisely !coeff , and
thus the maps (3.4.2) and (4.3.1) coincide.

Note that if deg.a/ is even while d is odd, then deg.�/ will be odd.

Now the following proposition implies that the map (4.3.1) commutes with taking
further cup products. The point is that one can compute the value of �Š.a[ b/l from
the values of �l and �l . More precisely, we have:

Proposition 4.7 The following diagram commutes (only up to sign in the top right
corner):

.�˝�/

:̋::
˝

.�˝�/

2

0@H deg.a/�d .BIH/
˝

H deg.b/�d .BIH/

1A˝l

[

��

[

**

˙

�permute coord.,
then [˝[

�
//

0@H .deg.a/�d/�l.BIH˝l/
˝

H .deg.b/�d/�l.BIH˝l/

1A
[

then permute
coefficients
��

3
˙.�[���[�/
˝

.�[���[�/

H i.BIH˝H/˝l [
//

.!coeff/
˝l

��

H il.BI .H˝H/˝l/

.!˝l /coeff
��

�Š.a[b/
˝l2H i.BIZ/˝l

[
// H il.BIZ˝lŠZ/ 3 �Š.a[b/l

Proof The commutativity of this diagram follows from repeated applications of the
associativity of cup product and the fact that cup product commutes with change of
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coefficients. In the top right corner, we need to also use the commutativity of cup
product, which may insert a sign.

Proof of Theorem 2.7 Let a; b 2 H�.EIZ/ be two classes such that �Š.a/ D 0,
�Š.b/D 0, and deg.a/ is even. By the Proposition 4.7 and the decomposition (4.3.1),
we see that there are

� 2H deg.a/�d .BIH/ and � 2H deg.b/�d .BIH/

such that �Š.a [ b/2gC1 is the image of �2gC1 [ �2gC1 under some group homo-
morphism (the composition of the vertical maps on the right side of the diagram in
Proposition 4.7). Since deg.a/ is even and d is odd, � has odd cohomological degree.
Since rankHD rankHd.Mg IZ/D2g , Proposition 4.1 states that .2gC1/Š � �2gC1D0.
This proves that .2gC 1/Š � �Š.a[ b/2gC1 D 0.

Similarly, �Š.a [ a/gC1 is the image of �gC1 [ �gC1 D �2gC1 [ � under a group
homomorphism. Again .2gC1/Š � �2gC1D 0 and thus .2gC1/Š ��Š.a[a/gC1D 0.

5 Generating relations using methods of Randal-Williams

In this section, we apply Theorem 2.7 to obtain the results claimed in the introduction
as well as some additional relations in kerRd .

5.1 Further properties of pushforwards

To do our calculations, we will use the following properties of the pushforward map.

Proposition 5.1 (properties of the pushforward map) Let � W E ! B be an ori-
ented Serre fibration with some closed manifold M as fiber. The pushforward map
�ŠW H

�Cdim.M/.EIZ/!H�.BIZ/, as defined in Definition 3.5, satisfies the follow-
ing:

(1) For any classes a 2H�.EIZ/ and b 2H�.BIZ/, we have

�Š.a[�
�.b//D �Š.a/[ b:

This makes the pushforward into a map of H�.BIZ/–modules, and is sometimes
called the push-pull formula.

(2) As already mentioned in Section 2.1, pushforwards are natural with respect to
maps f W A!B . If � 0W f �.E/!A is the pullback of the fibration � W E!B ,
then for any a 2H�.EIZ/, we have f �.�Š.a//D � 0Š.f

�.a//.
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(3) Suppose both maps G � 00
�!E and E �

�!B are oriented Serre fibrations with
(possibly different) closed oriented manifolds as fibers. Then so is the com-
position .� ı� 00/W G! B . Pushforward maps are functorial in the sense that
�Šı�

00
Š
D .� ı� 00/Š as maps from the cohomology of G to the cohomology of B .

For proofs, we refer to [4, Section 8].

We will also need the following well-known fact:

Lemma 5.2 Let � W E! B be an oriented manifold bundle such that B is connected
and the fiber is a closed connected oriented manifold M . Let e D e.T�E ! E/ 2

H dimM .EIZ/. Then �Š.e/ D �.M/ 2 H 0.BIZ/, where �.M/ 2 Z is the Euler
characteristic of M .

Proof First consider the case when B is a point and E DM . The vertical tangent
bundle then coincides with the tangent bundle of M . Its Euler class is e.TM !M/D

�.M/ � ŒM �, where ŒM � is the generator of H dimM .M IZ/ determined by the orien-
tation. It follows easily from Definition 3.5 that �Š.ŒM �/ D 1 and therefore, by the
push-pull formula, �Š.�.M/ � ŒM �/D �.M/ 2H 0.f�g/.

In general, consider the inclusion of a point f�g ,! B . The induced map on H 0 is
an isomorphism. The desired statement follows from the fact that the Euler class, the
vertical tangent bundle, and the pushforward map are all natural with respect to the
pullbacks of bundles.

Remark 5.3 For manifold bundles, there is a commonly used alternative definition
of the pushforward map that uses the Pontryagin–Thom construction (see [2] or [1,
Section 4]). It coincides with our definition of the pushforward map rationally and,
moreover, the two definitions coincide for integral cohomology as long as B is a
CW complex of finite type (see Appendix B). We do not know whether the two
definitions coincide nor whether Theorem 2.7 applies integrally to the Pontryagin–
Thom pushforward more generally, particularly when B D BDiffM .

5.2 Notation and conventions

For the remainder of this section, we assume that all cohomology has rational coeffi-
cients. Thus we ignore the integral multiple of Theorem 2.7.

Throughout, M 2d
g denotes a 2d–dimensional highly connected manifold of genus g

(Definition 2.5). The most important case is when Mg D ]g S
d�Sd .

We assume that 2� 2g ¤ 0 throughout, and that 2� 2g < 0 in Section 5.5. By the
tautological ring, we mean the image of the map Rd . We denote this subring by
R� D image.Rd /�H�.BDiffM 2d

g IQ/.
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5.3 Direct applications of Theorem 2.7 and the radical

In this section, we illustrate how one can obtain relations using Theorem 2.7 directly.
These calculations can serve as a warm-up for more complicated calculations described
in Section 5.5. We prove that the tautological ring modulo nilpotent elements is
generated by at most 2d elements.

Example 5.4 Consider a manifold bundle � W E!B with 2d–dimensional fiber M 2d
g

and d odd (for example, the universal bundle). If a Pontryagin class pi 2 H 4i .E/

satisfies 4i < dimMg then �Š.pi /D 0. So the argument of Proposition 2.9 applies to
it and we have the following relation concerning �p2

i
D �Š.p

2
i / 2H

4i �2�2d .B/:

.�p2
i
/gC1 D 0 2H .8i�2d/.gC1/.B/ for i < 1

2
d D 1

4
dimM:

Example 5.5 More generally, let p 2 H 2��.E/ be any characteristic class of even
degree. Assuming that the Euler characteristic � D 2� 2g is not zero, we can use
the Euler class of the vertical tangent bundle e 2 H 2d .E/ to construct the class
aDp�.e=�/���.�Š.p//2H

�.E/. Because of the push-pull formula (Proposition 5.1)
and Lemma 5.2, this class satisfies �Š.a/D 0.

Let q 2H 2��.E/ be another such class. We apply the procedure just described and
Theorem 2.7 to obtain the following formula (we use the notation �Š.p/D �p ):

(5.3.1) 0D

�
�Š

��
p�

e

�
�p

��
q�

e

�
�q

���2gC1
D

�
�pq �

�ep

�
�q �

�eq

�
�pC

�e2

�2
�p�q

�2gC1
:

Let
p
0�R� denote the radical of the tautological ring (that is, the ideal consisting of

all the nilpotent element, also known as the nilradical). The following easy fact, together
with our finite-generation result (Theorem 1.1), provides motivation to consider it.

Lemma 5.6 If a graded commutative ring A� is finitely generated as an A0–algebra
and A0 is a field, then the following statements are equivalent:

.1/ A� is finite-dimensional; .2/ A�=
p
0D A0; .3/ dimKrullA

�
D 0:

Example 5.5 implies:

Lemma 5.7 In the ring R�=
p
0, the class �pq is in the ideal generated by �p and �q .
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Proof The expression (5.3.1) implies that

�pq �
�ep

�
�q �

�eq

�
�pC

�e2

�2
�p�q 2

p
0:

Proposition 5.8 If g¤ 1, the ring R�=
p
0 is generated by the 2d elements in the set

E D f�pi ; �pi �e j 1� i � dg. So the Krull dimension of the ring R� is at most 2d .

Proof Every generator of R� that is not in E can be written as �pq so that p; q ¤ e .
This uses the fact that pd D e2 . It follows that whenever either �p or �q is not zero,
it has strictly positive cohomological degree. By Lemma 5.7, �pq is decomposable
in R�=

p
0 as a polynomial in classes of smaller degree. It follows that R�=

p
0 is

generated by the elements of E .

5.4 The classifying spaces of manifolds with marked points

To get additional relations, we will use the methods of [22]. Those methods involve
certain natural bundles with structure group DiffMg and fiber .Mg/

�nDMg�� � ��Mg .
In this section, we introduce these bundles and the special characteristic classes they
possess. The discussion is completely analogous to the two-dimensional case, as
described in [22, Section 2.1].

Notation In this section, we denote the universal bundle EDiffMg �DiffMg Mg !

BDiffMg with fiber Mg as E2dg !M2d
g . The notation refers to the fact that in the

case when d D 1, the space M2
g has the same rational cohomology as the moduli

space of Riemann surfaces. We will also use the notation == for homotopy quotients:
.�==DiffM/ WD .��DiffM EDiffM/. For example, Mg D �==DiffMg and Eg D
Mg ==DiffMg .

For a finite set I , we let Map.I IMg/ be the space of maps I !Mg ,

Mg.I / WDMap.I IMg/==DiffMg and Mg.n/ WDMg.f1; : : : ; ng/:

The fiber of the natural map Mg.n/!Mg is .Mg/
�n . So a map from any space B

to Mg.n/ gives rise to a manifold bundle over B with fiber Mg together with a choice
of n ordered points in each fiber.

For J�I, there are natural projections �IJ WMg.I /!Mg.J / and �I∅WMg.I /!Mg .
We can identify the bundle Mg.1/!Mg with the universal bundle Eg!Mg . More
generally, the pullback of the universal bundle .�I∅/

�.Eg/ and Mg.I t f?g/ are
canonically isomorphic as bundles over Mg.I /.
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Definition 5.9 By the tautological subring of the cohomology of Mg.I / we mean the
subring R�.Mg.I //�H

�.Mg.I // generated by the following three types of classes
that we call the fundamental tautological classes:

� The generalized MMM classes �c 2 H�.Mg.I // that are pulled back from
H�.Mg/ using the canonical map Mg.I /!Mg (there is one such class for
each c 2H�.BSO2d /).

� For each choice of i 2 I , there is a canonical map �Ii WMg.I /!Mg.fig/ŠEg .
The vertical tangent bundle determines a classifying map  W Eg ! BSO2d . For
each c 2H�.BSO2d / and i 2 I , we define the class c.i/ 2H�.Mg.I // as the
pullback of c via the composition of the above-mentioned maps.4

Note that given c; d 2H�.BSO2d /, we clearly have .cd/.i/ D c.i/d.i/ .

� For each subset S � I , we consider the intersection class

�.S/ 2H
2d �.jS j�1/.Mg.I //

defined below. We will write simply �.1;2/ for �.f1;2g/ .

Definition 5.10 For S � I , let Map.I=S IMg/ �Map.I IMg/ be those maps that
send all elements of S to the same point. Note that this inclusion has codimension
.jS j � 1/ � dimM . Let Mg.I=S/DMap.I=S IMg/==DiffMg . There is an inclusion
iS WMg.I=S/ ,!Mg.I /. As shown in [22, Lemma 2.1], this inclusion has a Thom
class

�0.S/ 2H
2d.jS j�1/

�
Mg.I /;Mg.I /�Mg.I=S/IZ

�
:

We define the intersection class �.S/ to be the image of �0
.S/

in H�.Mg.I //.

Lemma 5.11 The classes �.S/ satisfy the following:

(i) For S � I 0� I , the class �.S/ 2H�.Mg.I // is a pullback of the corresponding
class �.S/ 2H�.Mg.I

0// via the map .�II 0/
�.

(ii) If S and S 0 intersect at a single point, then �.S/�.S 0/ D �.S[S 0/ . For example,
in Mg.f1; 2; ?g/, we have �.1;?/�.2;?/ D �.1;?/�.1;2/ .

(iii) In Mg.2/, we have �2
.1;2/
D �.1;2/ � e.1/ , where e is the Euler class.

(iv) For any characteristic class c , we have �.1;2/ � c.1/ D �.1;2/ � c.2/ .

(v) The pushforward of the class �.1;2/ 2H 2d .Mg.2// is 1, ie

.�
f1;2g

f1g
/Š.�.1;2//D 1 2H

0.Mg.1//:

4We use parentheses in the notation to prevent confusion with the notation pi for the i th Pontryagin
class.
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The proof of this lemma is similar to the arguments in [17, Section 11]; see also [22,
Lemma 2.1]. The proof of part (v) is very similar to the proof of Lemma 5.2.

Our next goal is to be able to compute the pushforward of any tautological class in
H�.Mg.I // via the projection maps �IJ . We will use the properties of the pushforward
described in Section 5.1.

Lemma 5.11 and the naturality of the pushforward imply the following.

Lemma 5.12 For any finite set I , we have

.�
Itf?g
I /Š.�.i?//D 1 and .�

Itf?g
I /Š.c.?//D �c

for all i 2 I and c 2H�.BSO2d /. We use the convention �e D �D 2� 2g .

Furthermore, it is possible to rewrite a tautological class in H�.Mg.I tf?g// in terms
of a tautological classes in H�.Mg.I // as follows:

Lemma 5.13 We can simplify any monomial in the fundamental tautological classes
m 2H�.Mg.I t f?g// in one of the following ways:

� If the monomial contains �.i;?/ for some i 2 I , then it can be rewritten as
mD �.i;?/ �n

0 , where n0 is a monomial in classes that do not involve the marked
point ?. That is, n0 D .�Itf?gI /�.n/, where n is a monomial in tautological
classes of Mg.I /.

� Otherwise, the monomial can be rewritten as mD c.?/ �n0 , where c is a product
(possibly empty) of characteristic classes of the vertical tangent bundle and n0 is
as before.

Proof If m does not contain any �.i;?/ , reordering its terms will put it in the required
form. Otherwise, we use the relations

�.i;?/�.j;?/ D �.i;?/�.i;j / and �.i;?/c.?/ D �.i;?/c.i/

from Lemma 5.11 to get rid of any classes that involve ? except for the single �.i;?/ .

The push-pull formula and the above lemmas give us the following procedure to
compute the pushforward of a general tautological class:

Procedure 5.14 The result of applying the pushforward map

.�
Itf?g
I /ŠW H

�.Mg.I t f?g//!H�.Mg.I //
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to a tautological class can be computed as follows, one monomial at a time. First,
simplify the monomial m 2H�.Mg.I t f?g// using Lemma 5.13. Then apply the
push-pull formula and Lemma 5.12 to get one of the following results:

.�
Itf?g
I /Š.m/D .�

Itf?g
I /Š.�.i?// �nD n if mD �.i;?/ � .�

Itf?g
I /�.n/;

.�
Itf?g
I /Š.m/D .�

Itf?g
I /Š.c.?// �nD �c �n if mD c.?/ � .�

Itf?g
I /�.n/:

In the second case above, if we have c.?/ D 1, then the pushforward will be zero.

Example 5.15 We can compute a pushforward as follows:

.�
fi;j;?g

fi;j g
/Š
�
�3.i;?/�

2
.j;?/d.?/�e

�
D .�

fi;j;?g

fi;j g
/Š
�
�.i;?/e

2
.i/�

2
.i;j /d.i/�e

�
D e2.i/�

2
.i;j /d.i/�e:

Since pushforward maps are functorial, we can apply Procedure 5.14 several times to
calculate .�IJ /Š for any J � I . There also exist formulas for calculating .�I∅/Š of a
tautological monomial in H�.Mg.I // in one step. See [22, Section 2.7] for details.

5.5 Randal-Williams’ method and proof of Theorem 1.1

We can obtain numerous relations in the cohomology of Mg by applying the following
idea of [22].

Procedure 5.16 First, we construct some tautological class c 2 R�.Mg.I t f?g//

such that .�Itf?gI /Š.c/D 0. Applying Theorem 2.7 to one or two such classes will tell
us that some polynomial in the ring R�.Mg.I // is equal to zero. We may multiply
this relation by any other polynomial and apply .�I∅/Š to the result to get a relation
among the tautological classes of Mg .

We can obtain more relations than were obtained in [22] because the version of our
Theorem 2.7 used in [22] (from [18]) only applies when the cohomological degree of c
is 2 and does not allow using two cohomology classes at once.

Example 5.17 We illustrate this procedure by repeating, with our notation, the follow-
ing example from [22, Section 2.2]. Consider the bundle � WMg.f1; ?g/!Mg.1/

(which has fiber Mg ). The following class pushes forward to 0:

��.1?/� e.?/ 2H
�.Mg.f1; ?g//:
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Theorem 2.7 applies to give us the following relation in the ring R�.Mg.1//, which
we then simplify using Procedure 5.14 and related lemmas:

(5.5.1) 0D .�Š..��.1?/� e.?//
2//gC1

D .�Š.�
2�.1?/e.1/� 2��.1?/e.1/C e

2
.?///

gC1

D ..�� 2/�e.1/C �e2/
gC1
D

gC1X
iD0

�gC1
i

�
..�� 2/�e.1//

i .�e2/
gC1�i :

Let us now assume that � D 2� 2g < 0. For each integer k , we can multiply both
sides of the formula by ek

.1/
=..�� 2/�/gC1 and apply .�f1g∅ /Š to both sides to get the

following relation in the cohomology of Mg :

(5.5.2) 0D

gC1X
iD0

� gC1
i

�
�eiCk

�
�e2

.�� 2/�

�gC1�i
2H 2d.gCk/.Mg/

(where we should keep in mind that �e0 D 0 and �e1 D �).

Corollary 5.18 From the above example, we can see that for k � 0, the degree
2d.g C k/ class �gCk D �ekCgC1 can be written as a polynomial in lower kappa
classes.

Example 5.19 Assume that �¤ 0 and fix any p 2H 2i .BSO2d /. We obtain a relation
in the cohomology of Mg.1/ by applying the second part of Theorem 2.7 to the classes
aD �.1?/�e.?/=�2H

2d .Mg.f1; ?g// and bDp.?/�.e.?/=�/�p 2H 2i .Mg.f1; ?g/

(both classes push down to zero in Mg.1/). The theorem gives us the following
formula:

(5.5.3) 0D
�
.�
f1;?g

f1g
/Š
��
p.?/� .e.?/=�/�p

��
�.1?/� .e.?/=�/

���2gC1
D

�
p.1/�

�ep

�
�
e.1/�p

�
C
�e2�p

�2

�2gC1
2H�.Mg.1//:

We will use the above example to prove Theorem 1.1. First, we need the following
lemma.

Let A � R�.Mg/ be the augmentation ideal generated by all the elements of the
tautological subring that have a nonzero cohomological degree, and let DDA �A be
the ideal of the decomposable elements.

Lemma 5.20 Assume g > 1. There is an integer N >0 that depends only on g and d
such that for all p; q 2H�.BSO2d / with degp > 0,

�.pNq/ 2 D �R�.Mg/:
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Proof If 1 � degp < 2d , we replace p with p2dC1 . This allows us to assume
that degp > 2d .

Let A0; B0; D0 �R�.Mg.1// be the following ideals:

A0D
�
�t j t 2H

>2d.BSO2d /
�
; B0D

�
t.1/ j t 2H

>2d.BSO2d /
�
; D0DA0�.A0CB0/:

We observe that:

(1) p
2gC1

.1/
2D0 . To see this, note that e.1/�p and �e2�p are in D0 since deg.p/>2d .

Under our assumption that g > 1, the formula (5.5.3) implies that we have
p
2gC1

.1/
2 D0 as well.

(2) The pushforward operation .�f1g∅ /Š takes D0 �Mg.1/ into D �Mg .

It follows that p2gC1
.1/

q.1/D .p
2gC1q/.1/ 2D0 for all q 2H�.BSO2d / and, therefore,

�.p2gC1q/ 2 D .

Now we can finally prove that the tautological ring is finitely generated.

Proof of Theorem 1.1 The infinitely many elements �.ea0 QdiD1 paii / (where the ai
are nonnegative integers and the pi are the Pontryagin classes) generate the tautological
ring rationally. By the previous lemma, there is a constant N such that �.ea0 QdiD1 paii /
is decomposable whenever at least one of the ai is greater than N . In other words, any
such generator is expressible as a polynomial in kappa classes of lower cohomological
degree.

So the finitely many generators of cohomological degree less than deg.�.eN Qd
iD1 p

N
i
//

generate the whole tautological subring of H�.BDiffMg IQ/.

5.6 Randal-Williams’ calculations and high-dimensional manifolds

Using computer calculations, Randal-Williams obtained numerous examples5 of re-
lations in the d D 1 case for g D 3; 4; 5; 6; 9 in [22, Section 2] . He also produced a
more explicit family of relations in every genus in [22, Section 2.7].

Formally, all the equations and examples from [22] can be interpreted as generators for
some ideal IRW

g �QŒ�1; �2; : : : �. In this language, the result of [22] is that the ideal
IRW
g is in the kernel of the map QŒ�1; �2; : : : �!H�.BDiffM 2

g / in the d D 1 case.
We will show the following.

Proposition 5.21 For all odd d , the same ideal IRW
g is in the kernel of the correspond-

ing map QŒ�1; �2; : : : �!H�.BDiffM 2d
g /.

5These include all the relations that exist for d D 1 and g � 5 in degrees � � 2.g � 2/ . In higher
degrees, the tautological ring vanishes completely according to [13].
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As we mentioned in the introduction, this is surprising since the cohomological degree
of �i D �eiC1 2H

2di .BDiffM 2d
g / depends on d .

Example 5.22 ([22, Example 2.5] and Proposition 5.21) For all odd values of d and
g D 4, we have the following relations in H�.BDiffM 2d

4 /:

3�21 D�32�2 2H
4d.BDiffM 2d

4 / and �22 D �1�2 D �3 D 0 2H
6d.BDiffM 2d

4 /:

For more examples of relations, see [22, Examples 2.3–2.7].

Proof of Proposition 5.21 First, we repeat the key steps of [22] at our level of
generality.

(1) Let M 2d
g ! E �

!B be a manifold bundle. Let c 2 H 2d .E/ and q D �Š.c/ 2
H 0.B/Š Z. The relation (2.3.1) from Theorem 2.7 applied to the cohomology class
.� � c � q � e/=gcd.�; q/ implies that the cohomology class

(5.6.1) �.E; c/ WD
1

.gcd.�; q//2
.�2�Š.c

2/� 2q��Š.e � c/C q
2�1/ 2H

2d .B/

has the property that �.E; c/gC1 is torsion.

This is precisely the version of [22, Theorem A] that is stated on [22, top of page 1775]
for d D 1 (we use slightly different notation). Note that the only part of the expres-
sion (5.6.1) that depends on d is the cohomological degree.

(2) Consider the bundle Mg ! Eg.n/ !Mg.n/, defined as the pullback of the
universal bundle Eg!Mg to Mg.n/. Following [22], our next step is to apply (5.6.1)
to a particular class in the cohomology of its total space.

Recall that Eg.n/ ŠMg.f1; : : : ; n; ?g/. Given a vector A D .A1; : : : ; An/ 2 Zn ,
consider the class

cA WD

nX
iD1

Ai�.i?/ 2H
2d .Eg.n//DH 2d .Mg.f1; : : : ; n; ?g//:

We define the class �A WD �.Eg.n/; cA/ using (5.6.1). It will satisfy �gC1A D 0 2

H 2d.gC1/.Mg.n/IQ/. The expression for this class does not depend on d and
coincides with [22, (2.1)].

(3) We can now obtain nontrivial examples of relations as follows, repeating the
procedure from [22, Section 2.4]. Take the equation �

gC1
A D 0 for some values

of A and n, and perhaps multiply it by another tautological class that doesn’t involve
Pontryagin classes. Then apply the pushforward .�f1;:::;ng∅ /Š to the result to obtain
an element of the kernel of the map QŒ�i j i 2 N�! H�.Md

g ;Q/. Every relation
obtained in [22] lies in the ideal IRW

g �QŒ�i j i 2N� generated by such elements.
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To complete the proof, it remains to show that the ideal IRW
g does not depend on

the value of d . Any tautological class in H�.Mg.n/IQ/ that appears in the above
construction (and any tautological class that makes sense for d D 1) is in the image of
the polynomial algebra QŒ�.ij /; e.i/; �l j 1� i < j � n; 1� l <1�. The pushforward
maps factor through these polynomial algebras. That is to say, there is a map � that
makes the following diagram commute:

QŒ�.ij /; e.i/; �l j 1� i < j � n; 1� l <1� //

�

��

H�.Mg.n/IQ/�
�
f1;:::;ng

f1;:::;n�1g

�
Š

��

QŒ�.ij /; e.i/; �l j 1� i < j � n� 1; 1� l <1� // H�.Mg.n� 1/IQ/

This map � is determined by Procedure 5.14, and does not depend on the value of d
(in fact, only the value of �e D �D 2� 2g is at all affected by what the fiber of our
bundle is). The expressions for further pushforwards such as .�f1;:::;ng∅ /Š.b/2H

�.Mg/

also cannot depend on d , since they can be computed by applying Procedure 5.14
repeatedly. It follows that the expressions for the generators of the ideal IRW

g do
not depend on d , and thus all of Randal-Williams’ examples hold verbatim in the
2d–dimensional case whenever d � 1 is odd.

Appendix A: MMM classes related to low Pontryagin classes

In this appendix, we discuss of the images of the maps Rd , R0
d

and Rı;d defined in
Section 1.1. We prove that the image of Rı;d is finitely generated. From now on, we
omit the subscript d from the notation.

Proposition A.1 The maps R, R0 and f � pictured in diagram (1.1.1) are related as
follows:

(1) There are classes q1; : : : ; qd.dC1=4/e�1 2 image.R/ � H�.BDiffMg IQ/ that
generate image.R/ as an image.R0/–module.

(2) f �.qi /D 0 2H
�.BDiff.Mg ;D

2d /IQ/ for all i .

Proof Let � W U ! BDiffMg be the universal bundle and pi 2 H�.U IQ/ be the
Pontryagin classes of the vertical tangent bundle. Since Mg is .d�1/–connected, the
map ��W H�.BDiffMg IQ/!H�.U IQ/ is an isomorphism in degrees �< d (this
can be seen eg using the Serre spectral sequence). It follows that there are classes
qi 2H

�.BDiffMg IQ/ such that pi D ��.qi / for all i < d.d C 1/=4e.

Now let m2S . If degm� 2d , then �mD 0 or �m 2Q, so �m 2 imageR0 � imageR.
If degm > 2d , then m can be decomposed as a product of some n 2 S 0 and some
Pontryagin classes pi with i < d.d C 1/=4e. Since the pushforward is a map of
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H�.BDiffMg IQ/–modules, �m D �Š
�
n �
Q
��.qi /

�
D �n �

Q
qi for some indices i .

In other words, the qi generate image.R/ as an image.R0/–module, as desired.

Let us now prove that f �.qi / D 0 for all i . It is sufficient to consider the uni-
versal bundle with a fixed disk and prove that the corresponding universal classes
qi 2H

�.BDiff.Mg ;D
2d /IQ/ are zero. We can fix a basepoint b 2D2d �M 2d

g that
determines a section of the universal bundle (which we denote Uı ). The following
diagram describes the corresponding map on cohomology:

Uı D EDiff.Mg ;D
2d /�Diff.Mg;D2d /Mg

�

��

H�.Uı IQ/

s�

��

BDiff.Mg ;D
2d /

s

KK

H�.BDiff.Mg ;D
2d /IQ/

��

SS

As s is a section we must have s�.pi /D s�.��.qi //D qi as long as i < d.d C1/=4e.
So qi D s�.pi / is a characteristic class of the bundle s�.T�Uı/ over BDiff.Mg ;D

2d /.
Since a neighborhood of the point b is fixed by the action of Diff.Mg ;D

2d /, this
bundle is trivial, and so qi must be zero.

Observation A.2 For d>3 , in the notation of the proof above, p1D��.q1/2H�.U /.
Therefore, for all g ,

��e2p1D��Š.e
2
���.q1//D�Š.e/ � q1 ��Š.e

2/D �ep1�e2 2H
�.BDiffMg IQ/:

So the map R has nontrivial relations in its kernel that do not depend on g . This cannot
happen in ker Rı or ker R0 by Fact 1.3.

Proposition A.1 implies the following.

Corollary A.3 f �.�m/ D 0 if �m 2 image.R/� image.R0/. So image.f � ıR/ D
image.Rı/.

Theorem A.4 The image of Rı;d is a finitely generated as a Q–algebra when d is
odd and g > 1.

Proof By the above corollary, the image of the map Rı is a quotient of the image of
the map R, which is finitely generated by Theorem 1.1.

Remark A.5 If we require that all the Pontryagin classes pi mentioned in Section 5
satisfy i � d.d C 1/=4e, all of the arguments in that section will apply to the map
R0W QŒ�p j p 2 S 0�!H�.BDiff.Mg/IQ/ without any further modification. This way,
one can prove that the image of the map R0 is also finitely generated. That gives
another proof that the image of Rı is finitely generated.
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Appendix B: The Pontryagin–Thom pushforward

While the definition of the pushforward map used throughout this paper applies to all
oriented Serre fibrations, in the case of manifold bundles (M is a smooth closed oriented
manifold and � W E ! B is a bundle with structure group DiffM ), there is another
commonly used definition of the pushforward map �ŠPTW H

�Cm.EIZ/!H�.BIZ/
that uses the Pontryagin–Thom construction; see [2] or [1, Section 4]. This Pontryagin–
Thom pushforward has the advantage of being defined even for generalized cohomology
theories if the bundle has an appropriate orientation. It is also necessary for constructing
the kappa classes as pullbacks of natural classes in the cohomology of the infinite-loop
space �1MTSO.2d/ in the manner of [14]. While we do not use that construction
explicitly, it is needed in the proof of Fact 1.3.

It is conceivable that the notion of kappa classes depends on which definition of the
pushforwards one uses. We do not know whether �Š and �ŠPT coincide for integral
cohomology when B DBDiffM . However, the following fact applies in most relevant
cases. It is accepted in the literature, but we provide a proof for completeness.

Proposition B.1 If E! B is a manifold bundle with structure group DiffM and B
is a CW complex of finite type, the pushforwards �ŠPT and �Š coincide.

In rational cohomology, �ŠPT and �Š coincide for any CW complex B .

Proof One can check that the Pontryagin–Thom construction commutes with bundle
pullbacks in an appropriate way so that �ŠPT satisfies the naturality property (2) from
Proposition 5.1. If we either work in rational cohomology or assume that B is a CW
complex of finite type, we have (see eg [12, Section 3.F] for an overview)

H�.B/D lim
 �
B 0�B

finite subcomplex

H�.B 0/:

So we can assume without loss of generality that B is a finite CW complex. Finally,
we use the Lemma B.2 below to reduce the case of a finite CW complex to the case
of B a closed oriented manifold.

In the case when B is a closed oriented manifold, the fact that �ŠPT and �Š coincide is
proven in [2]. Briefly, Boardman proves a multiplicativity property for the cap product,
similar to property (1) from Proposition 5.1, for both �Š and �ŠPT . He then deduces
that both pushforwards must coincide with the pushforward determined by Poincaré
duality.
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Lemma B.2 Any finite CW complex B is a retract of a smooth oriented closed
manifold D . In particular, there is a map f W D ! B such that f �W H�.BIZ/!
H�.DIZ/ is injective.

Proof 6 It is possible to embed B into a Euclidean space. A sufficiently small tubular
neighborhood T of such an embedding will be an oriented compact manifold with
boundary that deformation retracts onto T (see eg the appendix of [12]). In particular,
we have maps B i,!T

f 0
!B such that the composition is the identity.

Let D D T tıT .�T / be the double of T . It is a closed oriented manifold. There is
an obvious inclusion T ,!D and, crucially, the map f 0W T ! B extends to a map
f W D! B . So we have our retraction

B
� � i // T

� � //

f 0
88

D
f
// B:

The composition is the identity since it coincides with f 0 ı i .
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