
Functiones et Approximatio
60.2 (2019), 167–175
doi: 10.7169/facm/1709

LUCAS NON-WIEFERICH PRIMES IN ARITHMETIC
PROGRESSIONS

Sudhansu Sekhar Rout

Abstract: In this note, we define the Lucas Wieferich primes which are an analogue of the
famous Wieferich primes. Conditionally there are infinitely many non-Wieferich primes. We prove
under the assumption of the abc conjecture for the number field Q(

√
∆) that for fixed positive

integerM there are at least O((log x/ log log x)(log log log x)M ) many Lucas non-Wieferich primes
p ≡ 1(mod k) for any fixed integer k > 2.
Keywords: Lucas–Wieferich primes, arithmetic progressions, abc conjecture.

1. Introduction

The first case of Fermat’s last theorem (FLTI) is the statement that, for any odd
prime p, the equation xp+yp = zp does not have integer solutions with p - xyz. In
1909, Arthur Wieferich [21] showed that if FLTI fails for an odd prime exponent,
then that prime must satisfy the congruence

2p−1 ≡ 1 (mod p2). (1.1)

Subsequently, this result was extended to other primes. Specifically, Granville and
Monagan [8] proved that if FLTI fails for prime p then p2 divides qp − q for each
successive prime q up to 89. A prime satisfying (1.1) is called Wieferich prime for
base 2. Until now, we know of only two Wieferich primes for the base 2, that are
1093 and 3511 found respectively by Meissner in 1913 and Beegner in 1922. For
any integer a > 2 and any prime p, if

ap−1 ≡ 1 (mod p2),

then p is said to be Wieferich prime for base a. Otherwise, p is said to be non-
Wieferich prime for base a. It is unknown whether there are finitely many or
infinitely many Wieferich primes. It is not even known if there are infinitely many
non-Wieferich primes. In 1986, Granville [7] proved the infinitude of non-Wieferich
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primes for the base 2 under the assumption of a conjecture of Mollin and Walsh
on triples of powerful numbers. Silverman [16] proved under the assumption of the
abc conjecture, that given any integer a, there are infinitely many non-Wieferich
primes to the base a. In fact he proved this result by showing that for any fixed
a ∈ Q×, a 6= ±1 and assuming abc conjecture,

#{primes p 6 x : ap−1 6≡ 1 (mod p2)} �a log x as x→∞.

Dekoninck and Doyon in [5] proved the same result under a weaker assumption.
Graves and Ram Murty [9] extended this result to primes in arithmetical pro-
gression by showing that for any a > 2 and any fixed k > 2, and assuming abc
conjecture,

#{primes p 6 x : p ≡ 1 (mod k), ap−1 6≡ 1 (mod p2)} � log x

log log x
as x→∞.

Recently Chen and Ding [3] studied the same question and improved the lower
bound. In particular, they proved under the assumption of the abc conjecture, that
for any positive integer M ,

#{primes p 6 x : p ≡ 1 (mod k), ap−1 6≡ 1 (mod p2)}

� log x(log log log x)M

log log x
as x→∞.

For any integer n > 1, define the powerful part of n to be the product

κ(n) :=
∏
p:p2|n

pordp(n).

The quotient n/κ(n) is called the powerfree part of n.

2. Lucas–Wieferich primes

Let P and Q be the nonzero fixed integers with ∆ := P 2 − 4Q 6= 0 and
gcd(P,Q) = 1. Let α and β be the roots of the polynomial x2 − Px + Q with
the convention that |α| > |β|. The Lucas sequences of first and second kind for the
roots α and β are given by

Un(P,Q) =
αn − βn

α− β
and Vn(P,Q) = αn + βn, for all n = 0, 1, . . . (2.1)

respectively. When P and Q are implicitly understood, we are referring the terms
of the Lucas sequence of first kind Un(P,Q) as Un and second kind Vn(P,Q) as
Vn. The sequence {Un} is called non-degenerate, if α/β is not a root of unity.
Further, non-degeneracy implies that Q(α) is totally real. Throughout this paper,
we assume that {Un}n>0 and {Vn}n>0 are non-degenerate, and

√
∆ = (α−β) > 0.

Let µ(p) denote the Legendre symbol
(

∆
p

)
. Recall that for p - ∆, the Legendre
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symbol
(

∆
p

)
= 1 if ∆ is a quadratic residue modulo p and −1 otherwise. Given

m ∈ Z, let ρ be the least positive integer, if it exists, such thatm | Uρ. This value is
called the rank of apparition of m, denoted by ρ(m). For fixed prime p, we simply
write ρ and µ to denote ρ(p) and µ(p) respectively.

Fibonacci sequence {Fn}n>0 is an example of Lucas sequence of first kind for
(P,Q) = (1,−1) with initial conditions F0 = 0 and F1 = 1. The Lucas sequence of
second kind for (P,Q) = (1,−1), is also known as sequence of Lucas numbers and
is denoted by {Ln}n>0 with initial conditions L0 = 2 and L1 = 1.

It is well-known (see [4, pp. 393-395]) that Fp−( 5
p ) is divisible by p, where p

is prime and
(

5
p

)
denotes the Legendre symbol. If Fp−( 5

p ) is divisible by p2, then
we call p a Fibonacci–Wieferich prime (these primes are sometimes called Wall–
Sun–Sun primes). Sun and Sun [19] proved that if the first case of Fermat’s last
theorem fails for an odd prime p, then Fp−( 5

p ) ≡ 0 (mod p2).
Returning to the general Lucas Sequences {Un} and {Vn}, it is known that

Up−µ is divisible by p whenever p is a prime not dividing 2Q (see [2, Theorem XII],
[17, Proposition 1(viii)]). A prime p is called a Lucas–Wieferich prime associated
to the pair (P,Q) if

Up−µ ≡ 0 (mod p2). (2.2)

Every Wieferich prime is a Lucas Wieferich prime associated to the pair (3, 2) [12].
Ribenboim [14] proved under the hypothesis of the abc conjecture that there are
infinitely many Lucas non-Wieferich primes.

The objective of this paper is to show that, for fixed P,Q and for fixed integer
k > 2, there are infinitely many Lucas non-Wieferich primes p with p ≡ 1 (mod k)
under the assumption of abc conjecture for the number field Q(

√
∆). Our proof

closely follow the papers of Chen and Ding [3] and Graves and Ram Murty [9].

Theorem 2.1. Let K = Q(
√

∆) be a real quadratic field and assume that abc
conjecture holds in K. Let k > 2 be any fixed integer. Then for any positive integer
M , we have

#{primes p 6 x : p ≡ 1 (mod k), Up−µ 6≡ 0 (mod p2)} � (log x)(log log log x)M

log log x
.

3. Preliminaries

In this section, we briefly reproduce some notations related to Lucas sequences
and some related results. Firstly, we list some known identities for Lucas sequences
which we use later.

Lemma 3.1 ([18]). For the sequences {Un}n>0 and {Vn}n>0, we have the fol-
lowing:

1. V 2
n −∆U2

n = 4Qn for all n > 0,
2. gcd(Un, Q) = gcd(Vn, Q) = 1 for all n > 1,
3. gcd(Un, Um) = Ugcd(n,m) for all n,m > 0,
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Lemma 3.2. Let {Un}n>0 be a Lucas sequence of first kind and ρ be the rank of
apparition of p. Then

1. for n ∈ N,
p | Un ⇔ ρ | n.

2. Moreover, if p | Un then

vp(Un) = vp

(
n

ρ

)
+ vp(Uρ). (3.1)

Proof. For the proof of first statement (see [1, Corollary 2.2] ) and second relation
follows from Proposition 2.1 in [1]. �

Corollary 3.3. Let p be a prime coprime to 2Q. Suppose Un ≡ 0 (mod p) and
Un 6≡ 0 (mod p2). Then Up−µ ≡ 0 (mod p) and Up−µ 6≡ 0 (mod p2).

Proof. Since p‖Un, we have vp(Un) = 1 and vp(Uρ) > 1. This implies vp
(
n
ρ

)
= 0

and vp(Uρ) = 1. Now from (3.1), we have

vp(Up−µ) = vp

(
p− µ
ρ

)
+ vp(Uρ) = 1. �

Lemma 3.4. For sufficiently large n, we have

|α|n/2 < |Un| 6 2|α|n.

Proof. From (2.1), we have

|Un| =
∣∣∣∣αn − βnα− β

∣∣∣∣ 6 |α|n + |β|n

|α− β|
< 2|α|n.

For the proof of lower bound refer [6, Theorem 2.3]. �

3.1. abc conjecture for number field [10, 20]

At first we define the radical then relate this to the number field radical. For
relatively prime nonzero integers a, b, c, define the radical

rad(a, b, c) = rad(abc)

where rad(m) is the product of all distinct prime divisors of m. Now we consider
all triples r, s, t ∈ Q \ {0} satisfying r + s = t. Every such triple is proportional
to a triple of the form (q, 1 − q, 1) where q ∈ Q \ {0, 1} and to a triple (a, b, c)
of nonzero relatively prime integers such that a + b = c. We define the radical
of a single rational number q ∈ Q \ {0, 1} by rad(q) := rad(a, b, c). Equivalently,
rad(q) is the product of all prime numbers p satisfying vp(q(1− q)) 6= 0.

Let K be an algebraic number field and OK be its ring of integers. Let VK
be the set of places on K, that is v ∈ VK is an equivalence class of non-trivial
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norms on K (finite or infinite). For v ∈ VK , we choose an absolute value ‖ · ‖v
in the following way: if v is finite place corresponding to a prime ideal p of OK ,
then we put ‖x‖v = NK/Q(p)−vp(x) for x ∈ K \ {0} and ‖0‖v = 0 where vp is the
corresponding valuation; if v is infinite and corresponds to σ : K → C, then we
put ‖x‖v = |σ(x)|e for x ∈ K where e = 1 if σ(K) ⊂ R and e = 2 otherwise. Then
height of any triple (a, b, c) ∈ (K∗)3 is defined as

HK(a, b, c) =
∏
v∈VK

max(‖a‖v, ‖b‖v, ‖c‖v),

and the radical of (a, b, c) as

radK(a, b, c) =
∏

p∈IK(a,b,c)

NK/Q(p)vp(p),

where p is a rational prime with pZ = p ∩ Z and IK(a, b, c) is the set of prime
ideals p of OK for which ‖a‖v, ‖b‖v, ‖c‖v are not equal. Now one can easily verify
that radK(a, b, c) = rad(a, b, c) if K = Q. Finally, the statement of abc conjecture
for number field is as follows:

Conjecture 3.5. For any ε > 0, there exists a positive constant CK,ε depending
on K, ε, such that for all a, b, c ∈ K∗ satisfying a+ b+ c = 0, we have

HK(a, b, c) 6 CK,ε(radK(a, b, c))1+ε. (3.2)

For K = Q , this reduces to the Oesterlé–Masser conjecture.

Definition 3.6. For any integer m > 1, the m-th cyclotomic polynomial can be
defined as

Φm(x) =
∏

(d,m)=1
0<d<m

(X − ζdm), (3.3)

where ζm is a primitive m-th root of unity. We have

Xm − 1 =
∏
d|m

Φd(X). (3.4)

Lemma 3.7 ([13, p.233]). If p | Φn(b), then either p | n or p ≡ 1 (mod n).

Lemma 3.8 ([15, Proposition 2.4]). For any real number b with |b| > 1, there
exists C > 0 such that

|Φn(b)| > C · |b|φ(n),

where φ(n) is Euler’s totient function.

Lemma 3.9 ([11, Theorem 437]). Let πm(x) denote the number of squarefree
integers which do not exceed x and have exactly m prime factors. Then

πm(x) ∼ x(log log x)m

(m− 1)! log x
.
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We write Un = XnYn where Xn is the squarefree part of Un and Yn is the
powerful part of Un. By Corollary 3.3, p is a Lucas non-Wieferich prime if p | Xn

for some n. Define

X ′n = gcd(Xn,Φn(α/β)) and Y ′n = gcd(Yn,Φn(α/β)).

One can easily show that X ′nY ′n = Φn(α/β) = Φn(α2/Q). Let pi be the ith prime.
For n > 2, let

δn :=
∏
p|n

(
1− 1

p

)
and δ̃n :=

n∏
i=1

(
1− 1

pi

)
.

Lemma 3.10. Suppose the abc conjecture for number field Q(
√

∆) holds. Then
for any ε > 0,

|Q|φ(n)X ′n � |Un|2(δn−ε).

Proof. From (2.1) we have,
√

∆Un − αn + βn = 0.

Then we use abc conjecture for K = Q(
√

∆). By (3.2), for any ε > 0, there exists
a constant Cε such that

H(
√

∆Un,−αn, βn) 6 Cε(rad(
√

∆Un,−αn, βn))1+ε. (3.5)

Now from the definition of the height, we have

H(
√

∆Un,−αn, βn) > max{|
√

∆Un|, | − αn|, |βn|} ·max{| −
√

∆Un|, | − βn|, |αn|}

> |
√

∆Un| · | −
√

∆Un| = ∆U2
n = ∆X2

nY
2
n . (3.6)

We shall now estimate rad(
√

∆Un,−αn, βn) in the right hand side of (3.5). Since
αβ = Q, rad(Yn) 6 rad(

√
Yn) and vp(p) 6 2 for any prime ideal p lying above the

rational prime p, we have

rad(
√

∆Un,−αn, βn) =
∏

p|Q
√

∆Un

NK/Q(p)vp(p) 6 Q2∆X2
nYn. (3.7)

Thus from (3.5), (3.6) and (3.7), we obtain

∆(XnYn)2 6 Cε(Q
2∆X2

nYn)1+ε

and hence
Yn �ε,∆ U2ε

n . (3.8)

From Lemma 3.8,

|X ′nY ′n| = |Φn(α2/Q)| > C
∣∣∣∣α2

Q

∣∣∣∣φ(n)

.
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Using the Lemma 3.4,

|X ′nY ′n| > C
∣∣∣∣α2

Q

∣∣∣∣φ(n)

= C

∣∣∣∣α2

Q

∣∣∣∣nδn > C1 · |Un|2δn ·
(

1

|Q|

)φ(n)

. (3.9)

Thus, from (3.8) and (3.9),

|X ′nU2ε
n | > |X ′nY ′n| > C1 · |Un|2δn ·

(
1

|Q|

)φ(n)

,

which will further simplify to

|X ′n| � |Un|2(δn−ε)
(

1

|Q|

)φ(n)

. �

The following lemma is very essential to prove our theorem.

Lemma 3.11. If m < n, then gcd(X ′m, X
′
n) = 1.

Proof. On the contrary suppose p | X ′m and p | X ′n for m < n and suppose
gcd(m,n) = d. Then p | Φm(α/β) and p | Φn(α/β). Thus, p | Um and p | Un. Since
gcd(Um, Un) = Ugcd(m,n) = Ud, we have p | Ud. Also,

Un
Ud

= βn−d
(α/β)

n − 1

(α/β)
d − 1

, (3.10)

and it follows that Φn(α/β)|(Un/Ud), hence p | (Un/Ud). By writing Un =
(Un/Ud)Ud, we conclude that p2 | Un. This is a contradiction as p | X ′n. Thus
gcd(X ′m, X

′
n) = 1. �

In the following, we fix integers k,M with k > 2 and M > 1. Let TM be the
set of all squarefree integers with exactly M prime factors.

Lemma 3.12. Suppose that abc conjecture for number field Q(
√

∆) is true and
n ∈ TM . Then there exists an integer c0 depending only on α, k,M such that for
n > c0, we have |Q|φ(nk)|X ′nk| > nk.

Proof. Suppose ε = δ̃Mφ(k)/3k. From Lemma 3.10, we have

|Q|φ(nk)|X ′nk| � |Unk|2(δnk−ε). (3.11)

Since φ(nk) = φ(n)φ(k) g
φ(g) , where g = gcd(k, n) we have φ(nk) > φ(n)φ(k). By

Lemma 3.4,

|Unk|2(δnk−ε) > |α|nk(δnk−ε) > |α|(nδ̃Mφ(k)−nkε) = |α|2nkε (3.12)

as n ∈ TM . Thus,

|Q|φ(nk)|X ′nk| � |α|2nkε � |α|2nkε−log(nk)/ log |α|nk. (3.13)

Therefore, there exists an integer c0 depending only on α, k,M such that, if n ∈ TM
with n > c0, then |Q|φ(nk)|X ′nk| > nk. �
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4. The proof of Theorem 2.1

First we show that there exists a prime pn such that

pn | X ′nk, pn ≡ 1 (mod nk), Up−µ 6≡ 0 (mod p2
n). (4.1)

Let c0 be as in Lemma 3.12 and n ∈ TM with n > c0. By Lemma 3.1(2) and
3.12, and X ′nk being squarefree, there is a prime pn such that pn | X ′nk and
pn - nk. Since X ′nk | Φnk(α/β), it follows from Lemma 3.7 that pn ≡ 1 (mod nk).
Since pn | X ′nk, X ′nk | Xnk by Corollary 3.3, we have Up−µ 6≡ 0 (mod p2

n). From
Lemma 3.11, primes pn are distinct when n ∈ TM and n > c0. By Lemma 3.4, we
have |α|nk/2 6 |Unk| for n > c1 where c1 is a positive integer. Thus |Unk| 6 x if
and only if

n 6
2 log x

k log |α|
.

Now |Unk| 6 x and n ∈ TM if and only if

n 6
2 log x

k log |α|
, n ∈ TM .

From Lemma 3.9 the number of integers n with |Unk| 6 x, n ∈ TM and n > c2 :=
max(c0, c1) is

� (log x)(log log log x)M

log log x
.

Therefore,

#{primes p 6 x : p ≡ 1 (mod k), Up−µ 6≡ 0 (mod p2)} � (log x)(log log log x)M

log log x
.

This completes the proof of Theorem 2.1.
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