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A NOTE ON FIBONOMIAL COEFFICIENTS

Víctor C. García, Florian Luca

Abstract: We show that for most primes p, the set of Fibonomials forms an additive basis of
order 8 for the group of residue classes modulo p.
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1. Introduction

Let F = {Fn}n>1 be the sequence of Fibonacci numbers given by F0 = 0, F1 = 1
and

Fn+2 = Fn+1 + Fn, for all n > 0. (1)

The nth Fibonacci number Fn is also given by Binet’s formula

Fn =
αn − βn

α− β
, where (α, β) =

(
1 +
√
5

2
,
1−
√
5

2

)
(2)

are the roots of the characteristic polynomial

f(x) = x2 − x− 1. (3)

For n > 1, we put:

[n]F =

n∏
k=1

Fk.

We also put [0]F = 1 by convention. For n > k > 0, the Fibonomial coefficient is
given by (

n

k

)
F

=
[n]F

[k]F [n− k]F
=
Fn−k+1 · · ·Fn
F1F2 · · ·Fk

.
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It is known that
(
n
k

)
F
is an integer (see [7] for a more general result). By convention,

we extend the definition of the Fibonomial coefficient and put(
n

k

)
F

= 0, for n < k.

Clearly,
(
n
k

)
F
=
(
n

n−k
)
F
. In [8], it was shown that(

n

k

)
F

6=
(
m

l

)
F

, when 1 6 k 6 n/2 and 1 6 l 6 m/2.

That is, in the Pascal like triangle for the Fibonomials {
(
n
k

)
F

: n > k > 0}, the
entries in the left–half of it, aside from the first edge of 1’s, consist of distinct
integers. This is not true for the classical Pascal triangle formed of binomial coef-
ficients in which some values appear multiple times as a binomial coefficient such
as in (

78

2

)
=

(
15

5

)
=

(
16

6

)
= 3003,

or (
F2i+2F2i+3

F2iF2i+3

)
=

(
F2i+2F2i+3 − 1

F2iF2i+3 + 1

)
for i = 1, 2, . . . .

Put
F =

{(
n

k

)
F

: 1 6 k 6 n/2

}
= {f1, f2, . . . },

where 1 = f1 < f2 < · · · are all elements of F arranged increasingly. The first few
elements of F are

F = {1, 2, 3, 5, 6, 8, 13, 15, 21, 34, 40, 55, 60, 89, 104, . . .}.

In [8], it was shown that fn+1 − fn �
√
log fn holds for all n and determined all

n such that fn+1 − fn 6 100.
In this paper we look at Fibonomials modulo prime numbers. Recall that given

an abelian group (A,+) and a subset B of elements of it, we say that B is a basis
of order k for A if for every a ∈ A there exist b1, . . . , bk such that

b1 + · · ·+ bk = a.

Showing that such a k exists for given A and B and finding the optimal (smallest
one) is usually refereed to as Waring’s problem. Our main result is the following.

Theorem 1. For almost all primes p, each residue class λ modulo p can be written
as (

u1
v1

)
F

+ · · ·+
(
u8
v8

)
F

≡ λ (mod p),

for positive integers u1, v1 . . . , u8, v8 � p3/2 log2 p.

In [3], it was shown that for most p, the set of Fibonacci numbers form an
additive basis of order 32. The number 32 was improved to 16 in [4]. See also [2]
for results on the Waring problem modulo p with various numbers appearing in
combinatorics such as binomial coefficients and Apéry numbers.
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2. Auxiliary lemmas

The following result from arithmetic combinatorics is due to Glibichuk [5].

Lemma 2. Let A,B subsets of Fp with |A||B| > 2p. Then

8AB = Fp.

For a positive integer m we let z(m) denotes the order of appearance of m in
the sequence of Fibonacci numbers, namely

z(m) := min{k > 1: m | Fk}.

This exists for every positive integer m.
The following lemma is a consequence of a Theorem due to Hu and Sun [6].

Lemma 3. Let m,n, s, t be integers with 0 6 s, t < z(p)/2. Then(
2mz(p) + 2s

2nz(p) + 2t

)
F

≡
(
2m

2n

)(
2s

2t

)
F

(mod p). (4)

3. Strategy of the proof

In this section, we indicate the strategy of the proof as a sequence of lemmas.
In fact, by the end of this section we would have proved Theorem 1 modulo the
proofs of the lemmas which are deferred to the next section. We need only a lower
bound on z(p) valid for most primes p. This can be deduced from [3, Section 2].

Lemma 4. For every constant ρ0 ∈ (0, 1) there are π(x)(1 + o(1)) primes p 6 x
such that

z(p) > p1/2 exp (logρ0 p). (5)

By [3, Lemma 2.2], the function indicated as o(1) in the statement of Lemma 4
can be taken to be Oρ0((log x)−δ(1−ρ0)(log log x)3/2), where

δ = 1− 1 + log log 2

log 2
.

From now on, we can work with primes p satisfying inequality (5) with ρ0 = 1/2.
We next need information on the value set of binomial coefficients modulo p.

In the recent paper [1], Garaev and Hernández studied ratios of two factorials
proving that for any integer N in the range p1/2+ε < N 6 0.1p we have

#

{
m!

n!
(mod p) : 1 6 m,n 6 N

}
�ε N log(p/N).

Following [1], we give a lower bound on the set of values of binomial coefficients
modulo p and we also improve slightly the range of the parameter N in the above
estimate by making the exponent ε of the lower bound for N explicit.
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Lemma 5. Let N be an integer such that e200p1/2 log2 p < N < e−200p. Then the
inequality

#

{(
m

n

)
(mod p) : 1 6 n 6 m 6 N

}
> c0N min

{
log
( p
N

)
, log

(
N

p1/2 log2 p

)}
.

holds with some absolute constant c0 > 0.

We include the proof of the above Lemma 5 in Section 4.1 for completeness.
Taking N = be201p1/2(log2 p)c in Lemma 5 we have the following corollary.

Corollary 6. For all large enough primes p we have

#

{(
2m

2n

)
(mod p) : 1 6 n 6 m 6 e201p1/2(log p)2

}
� p1/2log2 p.

We also obtain a lower bound for the value set of a certain subset of the
Fibonomial coefficients modulo p.

Lemma 7. Let N, t be positive integers with 2t 6 N < z(p)/4. Then the inequality

#

{(
s

t

)
F

(mod p) : 1 6 s 6 N − t
}

> c1
N

t
,

holds with some positive constant c1 > 0.

A similar argument as the one used in the proof of Lemma 7 shows that the
conclusion of Lemma 7 remains valid even if we impose that s, t have the same
parity (maybe with a different value of the constant c1). Applying Lemma 4 with
N = 4bp1/2 exp (log1/2 p)c, we get the following corollary.

Corollary 8. Let t0 = bexp (log1/2 p)c. For all primes p 6 x except o(π(x)) of
them as x→∞, the following inequality holds

#

{(
2s

2t0

)
F

(mod p) : 1 6 s 6 p1/2 exp (log1/2 p)

}
� p1/2.

Applying now Lemma 2 with

A =

{(
2m

2n

)
(mod p) : 1 6 n 6 m 6 e201p1/2(log p)2

}
,

B =

{(
2s

2t0

)
F

(mod p) : 1 6 s 6 p1/2 exp (log1/2 p)

}
,

it follows that for almost all p 6 x except o(π(x)) of them as x → ∞, we have
|A||B| � p log2 p > 2p. Thus, every residue class modulo p can be written as(

2m1

2n1

)(
2s1
2t0

)
F

+ · · ·+
(
2m8

2n8

)(
2s8
2t0

)
F

(mod p),



A note on fibonomial coefficients 147

where mi, ni � p1/2 log2 p and si � p1/2 exp (log1/2 p) for all i = 1, 2, . . . , 8.
Finally, from Lemma 3, we have(

2mi

2ni

)(
2si
2t0

)
F

≡
(
2miz(p) + 2si
2niz(p) + 2t0

)
F

(mod p),

for all i = 1, 2, . . . , 8. Theorem 1 now follows with ui = 2miz(p) + 2si and vi =
2niz(p) + 2t0 for i = 1, 2, . . . , 8.

It remains to prove lemmas 5 and 7.

4. Proofs of the lemmas

4.1. Proof of Lemma 5

For e200p1/2 log2 p < N < e−200p, let

K = min

{( p
N

)1/3
,

(
N

p1/2 log2 p

)1/4
}
.

For any 2 6 k 6 K set

Bk =

{(
x+ k

k

)
(mod p) : 1 6 x 6 N − k

}
.

Given λ ∈ Bk, let Jk(λ) denotes the number of solutions of the congruence(
k + x

k

)
≡ λ (mod p), 1 6 x 6 N − k.

It is clear that ∑
λ∈Bk

Jk(λ) = N − k,

By the Cauchy-Schwartz inequality, we get

(N − k)2 6 #Bk
∑
λ∈Bk

J2
k (λ).

Note that the last summatory is the number of solutions of the congruence(
k + x

k

)
≡
(
k + y

k

)
(mod p), 0 6 x, y 6 N − k, (6)

which we denote it by Jk. Therefore,

#Bk >
(N − k)2

Jk
. (7)
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Clearly, congruence (6) is equivalent to

k∏
i=1

(x+ i) ≡
k∏
j=1

(y + j) (mod p), 1 6 x, y 6 N − k.

The polynomial
∏k
i=1 (x+ i) ∈ Fp[x] is monic of degree k. Hence, for each 1 6

y 6 N − k fixed, the above congruence has at most k solutions in the unknown x.
Thus, Jk 6 k(N − k) and in view of (7), we get

#Bk >
N − k
k

. (8)

In order to estimate the value set of

B(N) :=

{(
m

n

)
(mod p) : 1 6 n 6 m 6 N

}
,

we note that

B(N) ⊇
K⋃
k=1

Bk = B1 ∪
K⋃
k=2

(Bk\(B1 ∪ · · · ∪Bk−1)),

where B1, and (Bk\(B1 ∪ · · · ∪ Bk−1)) are pairwise disjoint sets for 2 6 k 6 K.
Then,

#B(N) > #B1 +

K∑
k=2

#(Bk\(B1 ∪ · · · ∪Bk−1)) >

> #B1 +

K∑
k=2

(#Bk − (#(B1 ∩Bk) + · · ·+#(Bk−1 ∩Bk))) . (9)

For any ` 6 k − 1, we have |B` ∩ Bk| 6 Jk,`, where Jk,` counts the number of
solutions of the congruence(

k + x

k

)
≡
(
`+ y

`

)
(mod p), 1 6 x 6 N − k, 1 6 y 6 N − `.

The above congruence is equivalent to

k∏
i=1

(x+ i) ≡ (k − `)!
∏̀
j=1

(y + j) (mod p), 1 6 x 6 N − k, 1 6 y 6 N − `.

Note that (k − `)! 6≡ 0 (mod p) is a constant for k > ` fixed. The polynomial

Pk,`(X,Y ) =

k∏
i=1

(X + i)− (k − `)!
∏̀
j=1

(Y + j)
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in Fp[X,Y ] has degree k. Clearly,

Jk,` 6
∑

16x6N−k
16y6N−`
Pk,`(x,y)=0

1.

Completing to the entire range for x, y, we have

Jk,` 6
∑

16x6N−k
16y6N−`
Pk,`(x,y)=0

1 =
1

p2

∑
a,b∈Fp

∑
x,y

∑
u,v∈Fp

Pk,`(u,v)=0

exp
(
a(u−x)+b(v−y)

p

)
.

Separating the contribution of the term a = b = 0, we get

Jk,` 6
N2

p2

∑
u,v∈Fp

Pk,`(u,v)=0

1

+
1

p2

∑
a,b∈Fp

(a,b) 6=(0,0)

∣∣∣∣∣
N−k∑
x=1

exp
(
ax
p

)∣∣∣∣∣
∣∣∣∣∣
N−∑̀
y=1

exp
(
by
p

)∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
u,v∈Fp

Pk,`(u,v)=0

exp
(
au+bv
p

)∣∣∣∣∣∣∣∣ .
(10)

Note that ∑
u,v∈Fp

Pk,`(u,v)=0

1 = #{(u, v) ∈ Fp : Pk,`(u, v) = 0}.

Thus, ∑
u,v∈Fp

Pk,`(u,v)=0

1 6 kp. (11)

We also recall the well–known bound

∑
a∈Fp

∣∣∣∣∣∣
∑
x6M

exp (axp )

∣∣∣∣∣∣ 6 p log p, for any 1 6M 6 p/2. (12)

Combining the last two bounds (11) and (13) with (10), we get

Jk,` 6
kN2

p
+ (log p)2 max

(a,b)6=(0,0)


∣∣∣∣∣∣∣∣

∑
u,v∈Fp

Pk,`(u,v)=0

exp
(
au+bv
p

)∣∣∣∣∣∣∣∣
 . (13)
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We next equire the following estimate (see [1, Lemma1]):∣∣∣∣∣∣∣∣
∑

u,v∈Fp

Pk,`(u,v)=0

exp
(
au+bv
p

)∣∣∣∣∣∣∣∣ 6 2k2p1/2. (14)

Inserting (14) into (13), we obtain

Jk,` 6
kN2

p
+ 2k2(log p)2p1/2. (15)

Summing up (15) over 1 6 ` 6 k − 1 and 1 6 k 6 K, we end up with

K∑
k=1

k−1∑
`=1

#(B` ∩Bk) 6
K∑
k=1

k−1∑
`=1

Jk,` 6
K∑
k=1

(
k2N2

p
+ 2k3(log p)2p1/2

)
6
K3N2

p
+K4(log p)2p1/2

6 2N

((
K

(p/N)1/3

)3

+

(
K

(N/(p1/2 log2 p))1/4

)4
)

6 10N.

Therefore, in view of (8) and (9), we have

#B(N) >
K∑
k=1

#Bk −
K∑
k=2

(#(B1 ∩Bk) + · · ·+#(Bk−1 ∩Bk))

>
1

2
N logK − 10N >

1

4
N logK.

The lemma follows by the choise of K.

4.2. Proof of Lemma 7

Let t > 2 be an integer. It is clear that{(
s

t

)
F

(mod p) : t 6 s 6 N

}
⊇
{(

x+ t

t

)
F

(mod p) : 1 6 x 6 N − t
}
.

Let
Bt =

{(
x+ t

t

)
F

(mod p) : 1 6 x 6 N − t
}
.

Given λ ∈ Bt, we denote by I(λ) the number of solutions of the congruence(
t+ x

t

)
F

≡ λ (mod p), 1 6 x 6 N − t.
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Clearly, ∑
λ∈Bt

I(λ) = N − t,

and by the Cauchy-Schwartz inequality, we get

(N − t)2 6 #Bt
∑
λ∈Bt

I2(λ).

Note that the last summatory is the number of solutions of the congruence(
t+ x

t

)
F

≡
(
t+ y

t

)
F

(mod p), 1 6 x, y 6 N − t, (16)

which is denoted by It(N). Therefore,

#Bt >
(N − t)2

It(N)
. (17)

Clearly, congruence (16) is equivalent to

t∏
i=1

Fx+i ≡
t∏

j=1

Fy+j (mod p), 1 6 x, y 6 N − t. (18)

We now use Binet’s formula (2). Here, we assume that p > 5 and α, β are the
roots of the polynomial (3) modulo p. In particular, they belong to Fp if p ≡ 1, 4
(mod 5) and are quadratic over Fp if p ≡ 2, 3 (mod 5). From now on we work over
Fq, where q = p, p2 according to whether p ≡ 1, 4 (mod 5) or 2, 3 (mod 5), so
that α, β,

√
5 are all in Fq. Thus, Fq = Fp(

√
5). We have

t∏
i=1

Fx+i =
1

5t/2

t∏
i=1

(αx+i − βx+i) = 1

5t/2αtx

t∏
i=1

(α2xαi − (−1)xβi).

Analogously
t∏

j=1

Fy+j =
1

5t/2αty

t∏
j=1

(α2yαj − (−1)yβj).

Therefore,

t∏
i=1

Fx+i −
t∏

j=1

Fy+j

=
1

5t/2α(x+y)t

αty t∏
i=1

(α2xαi − (−1)xβi)− αtx
t∏

j=1

(α2yαj − (−1)yβj)

 .
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For δ, σ ∈ {0, 1}, define the polynomials Pδσ(X,Y ) ∈ Fq[X,Y ] by

Pδ,σ(X,Y ) = Y t
t∏
i=1

(X2αi − (−1)δβi)−Xt
t∏

j=1

(Y 2αj − (−1)σβj).

Such polynomials have total degree 3t and degree 2t in each one of the two indeter-
minatesX and Y . For any δ, σ the monomials of Pδ,σ(X,Y ) with highest degree are
Y tX2t and XtY 2t with nonzero leading coefficients αt(t+1)/2/5t/2, −αt(t+1)/2/5t/2,
respectively.

Denote by It(N,
√
5) the sum of the number of solutions of the equations

Pδ,σ(X,Y ) = 0, δ, σ ∈ {0, 1}, (19)

subject to the conditions (X,Y ) ∈ Fq×Fq, X = αx, Y = αy and 1 6 x, y 6 N − t.
Given (x, y) a solution for (18) it is clear that (αx, αy) is a solution of (19)

for some polynomial Pδ,σ(X,Y ) with δ ≡ x (mod 2) and σ ≡ y (mod 2). Let
(x1, y1) and (x2, y2) be solutions for (18) such that (αx1 , αy1) = (αx2 , αy2).
Hence, α2(x1−x2) = 1 and α2(y1−y2) = 1. This implies that β2(x1−x2) = 1 and
β2(y1−y2) = 1. Thus,

F2(x1−x2) ≡ 0 (mod p), and F2(y1−y2) ≡ 0 (mod p).

Since p | F` if and only if z(p) | `, we get

2(x1 − x2) ≡ 0 (mod z(p)), 2(y1 − y2) ≡ 0 (mod z(p)),

Recalling that 0 6 2|x1 − x2|, 2|y1 − y2| 6 2N and 2N 6 z(p)/2, it follows that
x1 − x2 ≡ 0 (mod p) and y1 − y2 ≡ 0 (mod p). Thus, It(N) 6 It(N,

√
5).

Moreover, fixing 1 6 y0 6 N − k and σ0 ≡ y0 (mod p), for each δ the number
of solutions of the equation

Pδ,σ0(α
x, αy0) = 0, with 1 6 x 6 N − t, x ≡ δ (mod 2),

is at most 2t, which is the degree of Pδ,σ(X,αy0) as a polynomial in Fq[X]. Then
It(N) 6 It(N,

√
5) 6 4t(N − t), and combining this with (17), we obtain

#Bt >
(N − t)

4t
>
N

8t
,

which concludes the proof of the lemma.
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