PRODUCTS OF CONSECUTIVE VALUES OF SOME QUARTIC POLYNOMIALS

Artūras Dubickas

Abstract

In this paper, we investigate some special quartic polynomials P whose coefficients for $x^{4}, x^{3}, \ldots, 1$ are $a^{2}, 2 a(a+b), a^{2}+b^{2}+3 a b+2 a c,(a+b)(b+2 c),(a+b+c) c$, where $a, b, c \in \mathbb{Z}$, and consider the question whether the product $\prod_{k=1}^{m} P(k)$ is a perfect square for infinitely many $m \in \mathbb{N}$ or for only finitely many $m \in \mathbb{N}$. The answer depends on the solutions of the Pell type diophantine equation $(a+b+c)\left(a x^{2}+b x+c\right)=y^{2}$. Our results imply, for example, that the product $\prod_{k=1}^{m}\left(4 k^{4}+8 k^{2}+9\right)$ is a perfect square for infinitely many $m \in \mathbb{N}$, whereas the product $\prod_{k=1}^{m}\left(k^{4}+7 k^{2}+16\right)$ is a perfect square for $m=3$ only, when it equals $230400=480^{2}$.

Keywords: integer polynomial, Pell's equation, perfect square.

1. Introduction

Let P be a polynomial in $\mathbb{Z}[x]$ with positive leading coefficient. In general, the question of whether there are infinitely many or only finitely many positive integers m (or, more generally, pairs of positive integers $\ell<m$) for which the product $\prod_{k=1}^{m} P(k)$ (resp. $\left.\prod_{k=\ell}^{m} P(k)\right)$ is a perfect square or a higher power is completely open. Only in case $P(x)=x+b$, where $b \in \mathbb{Z}$, the theorem of Erdös and Selfridge [8] asserting that the product of two or more consecutive integers is never a power gives a complete answer to this problem. The case of a general linear polynomial $P(x)=a x+b$, where $a \geqslant 2$ and b are integers, has a long history, but it is not yet completely solved. It has been considered, for instance, in [10] and [14], where one can find many references on this problem.

In [1], the problem on whether the product $\prod_{k=1}^{m}\left(k^{2}+1\right)$ can be a perfect square has been raised. (Of course, this corresponds to the quadratic polynomial $P(x)=x^{2}+1$.) The negative answer is given in [5]. Similar problems for quadratic polynomials $4 x^{2}+1,2 x^{2}-2 x+1$ and for polynomials of the form $x^{\ell}+1$, where $\ell \geqslant 2$, have been considered in [9] and [2], [3], [4], [17], respectively, whereas some

This research was funded by the European Social Fund according to the activity "Improvement of researchers' qualification by implementing world-class R\&D projects" of Measure No. 09.3.3-LMT-K-712-01-0037.

2010 Mathematics Subject Classification: primary: 11D09; secondary: 11D45, 11B83
special cubic polynomials appear in [12], [15]. In [6], some bounds on the density of squares in the sequence $\prod_{k=1}^{m} P(k), m=1,2,3, \ldots$, have been obtained for a general irreducible polynomial $P \in \mathbb{Z}[x]$.

2. Main results

This paper is a continuation and in some sense a generalization of two recent results ([11] and [13]) related to some special quartic polynomials. In 2016, by a completely elementary approach, Gürel [13] has shown that the product $\prod_{k=1}^{m}\left(4 k^{4}+1\right)$ is a perfect square for infinitely many $m \in \mathbb{N}$, whereas $\prod_{k=1}^{m}\left(k^{4}+4\right)$ is a perfect square only for $m=2$.

This approach was then developed by Gaitanas [11] who generalized it to some other special quartic polynomials. His idea was to use the identity

$$
\begin{equation*}
Q(x+Q(x))=Q(x) Q(x+1) \tag{1}
\end{equation*}
$$

for the monic quadratic polynomial $Q(x)=x^{2}+a x+b \in \mathbb{Z}[x]$.
One should say that a more general identity was already used by the author in an entirely different context (see [7]). For a quadratic polynomial

$$
\begin{equation*}
Q(x):=a x^{2}+b x+c \in \mathbb{C}[x], \quad a \neq 0 \tag{2}
\end{equation*}
$$

and a complex number $t \neq 0$ it was shown that

$$
\begin{equation*}
Q\left(x+\frac{t}{a} Q(x)\right)=\frac{t^{2}}{a} Q(x) Q\left(x+\frac{1}{t}\right) . \tag{3}
\end{equation*}
$$

The proof of (3) given in [7] is a simple exercise. Note that (3) implies (1) for $a=t=1$.

Inserting $t=1$ into (3) (but do not assuming that $a=1$) we find that

$$
\begin{align*}
Q(x) Q(x+1) & =a Q\left(x+\frac{Q(x)}{a}\right)=a Q\left(x+x^{2}+\frac{b x}{a}+\frac{c}{a}\right) \tag{4}\\
& =P_{a, b, c}(x),
\end{align*}
$$

where $P_{a, b, c}(x)$ is a quartic polynomial of the form

$$
\begin{align*}
P_{a, b, c}(x):= & a^{2} x^{4}+2 a(a+b) x^{3}+\left(a^{2}+b^{2}+3 a b+2 a c\right) x^{2} \tag{5}\\
& +(a+b)(b+2 c) x+(a+b+c) c .
\end{align*}
$$

With this notation, we have the following:
Theorem 1. For any integers a, b, c satisfying $a \neq 0$ and $a+b+c \neq 0$, the product $\prod_{k=1}^{m} P_{a, b, c}(k)$ is a perfect square for $m \in \mathbb{N}$ if and only if the equation

$$
\begin{equation*}
(a+b+c)\left(a x^{2}+b x+c\right)=y^{2} \tag{6}
\end{equation*}
$$

has a solution (x, y) with $x=m+1$ and $y \in \mathbb{N}$.

Furthermore, for a finite extension K of \mathbb{Q} of degree $d=[K: \mathbb{Q}]$, let $\sigma_{1}, \ldots, \sigma_{d}$ be the distinct embeddings of K into \mathbb{C}. Then, for any algebraic integers $a, b, c \in K$ satisfying $a \neq 0$ and $a+b+c \neq 0$, and any positive integers $\ell \leqslant m$ the product

$$
\begin{equation*}
\prod_{k=\ell}^{m} \prod_{j=1}^{d} P_{\sigma_{j}(a), \sigma_{j}(b), \sigma_{j}(c)}(k) \tag{7}
\end{equation*}
$$

is a perfect square if and only if the equation

$$
\begin{equation*}
\prod_{j=1}^{d}\left(\sigma_{j}(a) \ell^{2}+\sigma_{j}(b) \ell+\sigma_{j}(c)\right) \prod_{j=1}^{d}\left(\sigma_{j}(a) x^{2}+\sigma_{j}(b) x+\sigma_{j}(c)\right)=y^{2} \tag{8}
\end{equation*}
$$

has a solution (x, y) with $x=m+1$ and $y \in \mathbb{N}$.
By Siegel's theorem [16], equation (8) has only finitely many solutions if the polynomial $\prod_{j=1}^{d}\left(\sigma_{j}(a) x^{2}+\sigma_{j}(b) x+\sigma_{j}(c)\right) \in \mathbb{Z}[x]$ has at least three simple roots.

In order to investigate the equation (6) we put

$$
\begin{equation*}
d:=a(a+b+c) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
D:=b^{2}-4 a c \tag{10}
\end{equation*}
$$

Evidently, (6) has at most finitely many solutions $(x, y) \in \mathbb{N}^{2}$ if $d<0$, so it suffices to investigate the case $d>0$. Then, as $a<0$ implies $a+b+c<0$, we can replace the triplet (a, b, c) by $(-a,-b,-c)$, which leaves both (5) and (6) unchaged. For this reason, we only consider the case $a>0, a+b+c>0$.

Theorem 2. Let a, b, c be integers satisfying $a>0$ and $a+b+c>0$. If d defined (9) is a perfect square then the equation (6) has at most finitely many solutions in positive integers (x, y) when D defined in (10) satisfies $D \neq 0$ and infinitely many solutions when $D=0$. If d is not a perfect square and, in addition, either $2 a+b \geqslant 0$ or $D<0$, then (6) has infinitely many solutions $(x, y) \in \mathbb{N}^{2}$.

Note that in case d is not a perfect square D cannot be zero. Indeed, $D=$ $b^{2}-4 a c=0$ implies that b is even. Hence,

$$
d=a(a+b+c)=a^{2}+a b+(b / 2)^{2}=(a+b / 2)^{2}
$$

is a perfect square. However, it can happen that $2 a+b<0$ and $D>0$. For full description of this case one needs to introduce much more technical conditions, which we will not do in this note.

In the next section, we will prove Theorems 1 and 2. Then, in Section 4 we will give several examples illustrating Theorem 1.

3. Proof of the Theorems 1 and 2

Proof of Theorem 1. By (2) and (4), the product $\prod_{k=1}^{m} P_{a, b, c}(x)$ is equal to

$$
Q(1) Q(m+1) \prod_{k=2}^{m} Q(k)^{2}
$$

where the product $\prod_{k=2}^{m} Q(k)^{2}$ is omitted if $m=1$. This is a perfect square iff

$$
Q(1) Q(m+1)=(a+b+c)\left(a(m+1)^{2}+b(m+1)+c\right)
$$

is a perfect square. This proves the first part of the theorem.
The proof of the second part is exactly the same, since the product (7) is equal to

$$
\prod_{j=1}^{d}\left(\sigma_{j}(a) \ell^{2}+\sigma_{j}(b) \ell+\sigma_{j}(c)\right) \prod_{j=1}^{d}\left(\sigma_{j}(a)(m+1)^{2}+\sigma_{j}(b)(m+1)+\sigma_{j}(c)\right)
$$

multiplied by the product

$$
\begin{equation*}
\prod_{k=\ell+1}^{m} \prod_{j=1}^{d}\left(\sigma_{j}(a) k^{2}+\sigma_{j}(b) k+\sigma_{j}(c)\right)^{2} . \tag{11}
\end{equation*}
$$

Clearly, (11) is a perfect square for $m \geqslant \ell+1$ (it is omitted for $m=\ell$), since $\prod_{j=1}^{d}\left(\sigma_{j}(a) k^{2}+\sigma_{j}(b) k+\sigma_{j}(c)\right) \in \mathbb{Z}$ for each $k \in \mathbb{N}$.

Proof of Theorem 2. Suppose first that $d=a(a+b+c)=v^{2}$ for some positive integer v. Then, the equation (6) is equivalent to

$$
\begin{equation*}
(v x)^{2}+u x+w=y^{2} \tag{12}
\end{equation*}
$$

where $u=b(a+b+c)$ and $w=c(a+b+c)$. Here, the left hand side is between $(v x-\max (|u|,|w|))^{2}$ and $(v x+\max (|u|,|w|))^{2}$ for x large enough. Thus, (12) has infinitely many solutions in $(x, y) \in \mathbb{N}^{2}$ if and only if for some $q \in \mathbb{Z}$ satisfying $|q| \leqslant \max (|u|,|w|)$ one has

$$
\begin{equation*}
(v x)^{2}+u x+w=(v x+q)^{2} \tag{13}
\end{equation*}
$$

for infinitely many $x \in \mathbb{N}$. This happens only when (13) is the identity. Consequently, the discriminant of $v^{2} x^{2}+u x+w$ is zero, that is, $u^{2}=4 v^{2} w$, or, equivalently, $D=b^{2}-4 a c=0$. Otherwise, if $D \neq 0$ then (12) has at most finitely many solutions in $(x, y) \in \mathbb{N}^{2}$.

In all what follows we will prove that if d is not a perfect square and either $2 a+b \geqslant 0$ or $D<0$ then (6) has infinitely many solutions in $(x, y) \in \mathbb{N}^{2}$.

Setting $X=2 a x+b$ and $Y=y /(a+b+c)$ and using the identity $(2 a x+b)^{2}-$ $\left(b^{2}-4 a c\right)=4 a\left(a x^{2}+b x+c\right)$, we can rewrite (6) in the following form:

$$
\begin{equation*}
X^{2}-4 d Y^{2}=D \tag{14}
\end{equation*}
$$

Note that $\left(X_{0}, Y_{0}\right)=(2 a+b, 1) \in \mathbb{Z}^{2}$ is a solution of (14).

We also consider the equation

$$
\begin{equation*}
X^{2}-4 d Y^{2}=1 \tag{15}
\end{equation*}
$$

Since $4 d>0$ is not a perfect square, this is a Pell equation, so that its solutions in positive integers are $\left(X_{n}, Y_{n}\right) \in \mathbb{N}^{2}$, where $\left(X_{1}, Y_{1}\right) \in \mathbb{N}^{2}$ is a fundamental solution, and $X_{n}+2 \sqrt{d} Y_{n}=\left(X_{1}+2 \sqrt{d} Y_{1}\right)^{n}$ for $n=1,2, \ldots$. It follows that the pairs

$$
\begin{equation*}
\left((2 a+b) X_{n}+4 d Y_{n},(2 a+b) Y_{n}+X_{n}\right), \quad n=1,2, \ldots, \tag{16}
\end{equation*}
$$

obtained from the products $\left(X_{0}+2 \sqrt{d} Y_{0}\right)\left(X_{n}+2 \sqrt{d} Y_{n}\right)$ are some solutions of (14).
Suppose first that $2 a+b \geqslant 0$. Then each pair in (16) belongs to \mathbb{N}^{2}. Furthermore, by (9) and (15), we see that X_{1} modulo $2 a$ is either 1 or -1 . In both cases, $X_{2}=X_{1}^{2}+4 d Y_{1}^{2}$ modulo $2 a$ is 1 . Consequently, for each $n \in \mathbb{N}$ the number $U_{n}:=(2 a+b) X_{2 n}+4 d Y_{2 n}$ is a positive integer, which is b modulo $2 a$, and $V_{n}:=$ $(2 a+b) Y_{2 n}+X_{2 n}$ is a positive integer too. Choosing

$$
\begin{equation*}
x=\frac{U_{n}-b}{2 a} \quad \text { and } \quad y=(a+b+c) V_{n} \tag{17}
\end{equation*}
$$

we get a positive solution of (6). This, by choosing different n 's, gives infinitely many solutions of (6) in $(x, y) \in \mathbb{N}^{2}$.

Suppose now that $D=b^{2}-4 a c<0$. Then, the argument is the same as above, but, since $2 a+b$ can be negative, we need to show that both U_{n} and V_{n} tend to $+\infty$ as $n \rightarrow \infty$. (Then, we can take the solutions as in (17) but with n large enough.)

To show that $U_{n}=(2 a+b) X_{2 n}+4 d Y_{2 n} \rightarrow \infty$ as $n \rightarrow \infty$, we first observe that $X_{2 n} \rightarrow \infty$ as $n \rightarrow \infty$ and $\lim _{n \rightarrow \infty} 4 d Y_{2 n} / X_{2 n}=2 \sqrt{d}$, by (15). So, it remains to verify the inequality

$$
\begin{equation*}
2 a+b+2 \sqrt{d}>0 \tag{18}
\end{equation*}
$$

The inequality (18) clearly holds for $2 a+b \geqslant 0$, whereas for $2 a+b<0$ it is equivalent to $4 d>(2 a+b)^{2}$. This inequality indeed holds, because

$$
4 d-(2 a+b)^{2}=4 a^{2}+4 a b+4 a c-4 a^{2}-4 a b-b^{2}=4 a c-b^{2}=-D>0
$$

Similarly, to show that $V_{n}=(2 a+b) Y_{2 n}+X_{2 n} \rightarrow \infty$ as $n \rightarrow \infty$, we observe that $Y_{2 n} \rightarrow \infty$ as $n \rightarrow \infty$ and $\lim _{n \rightarrow \infty} X_{2 n} / Y_{2 n}=2 \sqrt{d}$, by (15). Hence, we arrive to the same inequality (18), which is already verified.

4. Examples

Example 1. Selecting $(a, b, c)=(2,-2,1)$ in (5), we find that $P_{2,-2,1}(x)=4 x^{4}+1$. With this choice, $d=a(a+b+c)=2$ is not a perfect square and $D=b^{2}-4 a c=$ $-4<0$. Theorem 2 implies that (6) has infinitely many solutions in $(x, y) \in \mathbb{N}^{2}$. Therefore, by Theorem 1,

$$
\prod_{k=1}^{m}\left(4 k^{4}+1\right)
$$

is a perfect square for infinitely many $m \in \mathbb{N}$. This reproduces the result of Gürel [13]. A similar choice $(a, b, c)=(2,-2,3)$ shows that

$$
\prod_{k=1}^{m}\left(4 k^{4}+8 k^{2}+9\right)
$$

is a perfect square for infinitely many $m \in \mathbb{N}$.
Example 2. For $(a, b, c)=(4,1,-4)$ we obtain $P_{4,1,-4}(x)=16 x^{4}+40 x^{3}-3 x^{2}-$ $35 x-4$. Now, $d=a(a+b+c)=4$ is a perfect square and $D=b^{2}-4 a c=65 \neq 0$. Theorem 2 implies that (6) has only finitely many solutions in $(x, y) \in \mathbb{N}^{2}$. In fact, (6) is $4 x^{2}+x-4=y^{2}$. This equation has two solutions in positive integers $(x, y)=(1,1)$ and $(4,8)$. Indeed, for $x=2,3$ the expression $4 x^{2}+x-4$ is not a perfect square. It is also not a perfect square for $x \geqslant 5$, since then $(2 x)^{2}<$ $4 x^{2}+x-4<(2 x+1)^{2}$. Therefore, by Theorem 1 ,

$$
\prod_{k=1}^{m}\left(16 k^{4}+40 k^{3}-3 k^{2}-35 k-4\right)
$$

is a perfect square for $m=3$ only, when it equals $15366400=3920^{2}$.
Example 3. For $(a, b, c)=\left(1,-1, t^{2}\right)$, where $t \in \mathbb{N}$, we have

$$
P_{1,-1, t}(x)=x^{4}+\left(2 t^{2}-1\right) x^{2}+t^{4} .
$$

With this choice, $d=a(a+b+c)=t^{2}$ is a perfect square and $D=b^{2}-4 a c=$ $1-4 t^{2} \neq 0$. Since (6) is $t^{2}\left(x^{2}-x+t^{2}\right)=y^{2}$, we must have $t \mid y$, which leads to $x^{2}-x+t^{2}=z^{2}$, where $z \in \mathbb{N}$. Clearly, it has no solutions in $(x, z) \in \mathbb{N}^{2}$ with $x \geqslant 2$ when $t=1$ and has a unique such solution $(x, z)=(4,4)$ when $t=2$. Thus,

$$
\prod_{k=1}^{m}\left(k^{4}+k^{2}+1\right)
$$

is never a perfect square (this is misstated in [11]), whereas

$$
\prod_{k=1}^{m}\left(k^{4}+7 k^{2}+16\right)
$$

is a perfect square for $m=3$ only, when it equals $230400=480^{2}$.
Example 4. Take $K=\mathbb{Q}(i)$ and $(a, b, c)=(1,-1,1+i)$. The two embeddings of $\mathbb{Q}(i)$ into \mathbb{C} are the identity $u+i v \mapsto u+i v$ and $u+i v \mapsto u-i v$ (here $u, v \in \mathbb{Q}$). Hence, by (5),

$$
P_{1,-1,1+i}(k) P_{1,-1,1-i}(k)=\left(k^{4}+4\right)\left(k^{2}+1\right)^{2} .
$$

Note that equation (8) becomes $2\left(\left(x^{2}-x+1\right)^{2}+1\right)=y^{2}$, so $y=2 z$ with $z \in \mathbb{N}$. This gives the equation

$$
\begin{equation*}
\left(x^{2}-x+1\right)^{2}+1=2 z^{2} . \tag{19}
\end{equation*}
$$

Evidently, $\prod_{k=1}^{m}\left(k^{2}+1\right)^{2}$ is always a perfect square. Hence, by the second part of Theorem 1, the product

$$
\prod_{k=1}^{m}\left(k^{4}+4\right)
$$

is perfect square iff $(x, z)=(m+1, z)$ is a solution of (19) in positive integers $x \geqslant 2, z$. By [13], the above product is a square for $m=2$ only. This corresponds to the solution $(x, z)=(3,5)$ of (19).

Example 5. Let $K=\mathbb{Q}(\sqrt{5})$ and $(a, b, c)=(1,-1,(3+\sqrt{5}) / 2)$. The two embeddings K into \mathbb{C} are the identity $u+\sqrt{5} v \mapsto u+\sqrt{5} v$ and $u+\sqrt{5} v \mapsto u-\sqrt{5} v$ (here $u, v \in \mathbb{Q}$). Hence, by (5),

$$
P_{1,-1,(3+\sqrt{5}) / 2}(k) P_{1,-1,(3-\sqrt{5}) / 2}(k)=k^{8}+4 k^{6}+6 k^{4}-k^{2}+1 .
$$

Note that for $\ell=1$ equation (8) becomes $\left(x^{2}-x\right)^{2}+3\left(x^{2}-x\right)+1=y^{2}$, which is equivalent to $\left(2 x^{2}-2 x+3\right)^{2}-5=(2 y)^{2}$. It has integer solutions only when $2 x^{2}-2 x+3= \pm 3$, that is, $x=0$ and $x=1$. Hence, by the second part of Theorem 1, the product

$$
\prod_{k=1}^{m}\left(k^{8}+4 k^{6}+6 k^{4}-k^{2}+1\right)
$$

is never a perfect square.

References

[1] T. Amdeberhan, L. A. Medina and V. H. Moll, Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory 128 (2008), 18071846.
[2] Y.-G. Chen and M.-L. Gong, On the products $\left(1^{\ell}+1\right)\left(2^{\ell}+1\right) \ldots\left(n^{\ell}+1\right) I I$, J. Number Theory 144 (2014) 176-187.
[3] Y.-G. Chen, M.-L. Gong and X.-Z. Ren, On the products $\left(1^{\ell}+1\right)$ $\left(2^{\ell}+1\right) \ldots\left(n^{\ell}+1\right)$, J. Number Theory 133 (2013), 2470-2474.
[4] Y.-G. Chen, M.-L. Gong and X.-Z. Ren, On the products $\left(1^{\ell}+1\right)$ $\left(2^{\ell}+1\right) \ldots\left(n^{\ell}+1\right)$, II, J. Number Theory 144 (2014), 176-187.
[5] J. Cilleruello, Squares in $\left(1^{2}+1\right) \ldots\left(n^{2}+1\right)$, J. Number Theory 128 (2008), 2488-2491.
[6] J. Cilleruello, F. Luca, A. Quirós and I. E. Shparlinski, On squares in polynomial products, Monatsh. Math. 159 (2010), 215-223.
[7] A. Dubickas, Multiplicative dependence of quadratic polynomials, Lith. Math. J. 38 (1998), 225-231.
[8] P. Erdös and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
[9] J.-H. Fang, Neither $\prod_{k=1}^{n}\left(4 k^{2}+1\right)$ nor $\prod_{k=1}^{n}(2 k(k-1)+1)$ is a perfect square, Integers 9 (2009), paper \#A16, 177-180.
[10] M. Filaseta, S. Laishram and N. Saradha, Solving $n(n+d) \ldots(n+(k-1) d)=$ $b y^{2}$ with $P(b) \leqslant C k$, Intern. J. Number Theory 8 (2012), 161-173.
[11] K. Gaitanas, An infinite family of quartic polynomials whose products of consecutive values are infinitely often perfect squares, Integers 17 (2017), paper \#A32, 3 pp.
[12] E. Gürel, A note on the products $\left((m+1)^{2}+1\right) \ldots\left(n^{2}+1\right)$ and $\left((m+1)^{3}+1\right)$ $\ldots\left(n^{3}+1\right)$, Math. Commun. 21 (2016) 109-114.
[13] E. Gürel, On the occurrence of perfect squares among values of certain polynomial products, Amer. Math. Monthly 123 (2016), 597-599.
[14] K. Győry, L. Hajdu and A. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compos. Math. 145 (2009), 845-864.
[15] C. Niu and W. Liu, On the products $\left(1^{3}+q^{3}\right)\left(2^{3}+q^{3}\right) \ldots\left(n^{3}+q^{3}\right)$, J. Number Theory 180 (2017), 403-409.
[16] C. L. Siegel, The integer solutions of the equation $y^{2}=a x^{n}+b x^{n-1}+\cdots+k$, J. Lond. Math. Soc. 1 (1926), 66-68.
[17] W. Zhang and T. Wang, Powerful numbers in $\left(1^{k}+1\right)\left(2^{k}+1\right) \ldots\left(n^{k}+1\right)$, J. Number Theory 132 (2012), 2630-2635.

Address: Artūras Dubickas: Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
E-mail: arturas.dubickas@mif.vu.lt
Received: 12 January 2018; revised: 17 July 2018

