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CONICAL MEASURES AND CLOSED VECTOR MEASURES
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To the memory of Paweł Domański

Abstract: Let X be a locally convex Hausdorff space with topological dual X∗ and m be
a (σ-additive) X-valued vector measure defined on a σ-algebra. The completeness of the associ-
ated L1-space of m is determined by the closedness of m, a concept introduced by I. Kluvánek
in the early 1970’s. He characterized the closedness of m via the existence of a certain kind of
localizable, [0,∞]- valued measure ι such that every scalar measure 〈m,x∗〉 : E 7→ 〈m(E), x∗〉,
for x∗ ∈ X∗, satisfies 〈m,x∗〉 << ι. The construction of ι relies on the theory of conical measures.
Unfortunately, in this generality the characterization is invalid; a counterexample is exhibited.
However, by restricting ι to the class of Maharam measures and strengthening the requirement of
absolute continuity to the condition that every 〈m,x∗〉, for x∗ ∈ X∗, is truly continuous with re-
spect to ι (a notion investigated by D. Fremlin in connection with the Radon Nikodým Theorem),
it is shown that an adequate characterization of the closedness of m is indeed available.

Keywords: Boolean algebra, conical measure, closed vector measure, truly continuous, localiz-
able measure.

1. Introduction and main results

The theory of vector measures has a well established place in modern analysis.
Recall, if X is a locally convex Hausdorff space (briefly, lcHs) and (Ω,Σ) is a mea-
surable space, then a σ-additive set function m : Σ → X is called an X-valued
vector measure; see, for example, [5], [12, Chapter 1], [16], [23, Chapter 3], [25].
One of the fundamental notions associated with a vector measure is that of its
closedness (see Section 2 for the definition), introduced by I. Kluvánek in [13]
and further developed in [14], [15], [16]. Important from the viewpoint of anal-
ysis is that m always generates an associated lcHs L1(m) consisting of all the
m-integrable functions together with a continuous, linear, X-valued integration
operator f 7→

∫
Ω
f dm for f ∈ L1(m). Under mild assumptions on X it turns out
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that the completeness properties of L1(m) are determined by whether or not m
is a closed vector measure. Many sufficient criteria are known which imply the
closedness of a vector measure; see Section 2. Some of these criteria involve prop-
erties of X (e.g., if X is metrizable , then every X-valued vector measure is closed),
whereas others involve more intrinsic properties of m (e.g., the measure algebra of
m and its order properties). Characterizations of closedness, without any a priori
conditions on X are not so common.

One approach, due to I. Kluvánek, is to consider the family of scalar measures
〈m,x∗〉 : E 7→ 〈m(E), x∗〉, for E ∈ Σ, as x∗ varies through the topological dual
space X∗ of X, with the idea being that some appropriate sort of “global control”
over this family should provide a characterization of the closedness of m. This led
to the following statement, [16, Theorem IV.7.3].

Assertion K-1. Let m : Σ → X be a lcHs-valued vector measure. If there exists
a localizable measure ι : Σ→ [0,∞] such that 〈m,x∗〉 is absolutely continuous with
respect to ι for each x∗ ∈ X∗, then m is closed.

The terminology “localizable measure” is perhaps not so well known and is not
uniquely fixed in the literature. So, let us formulate it more precisely. For any
σ-additive scalar measure ι : Σ → [0,∞] let Jι : L∞(ι) → (L1(ι))∗ denote the
canonical linear map which sends ϕ ∈ L∞(ι) to the continuous linear functional
on L1(ι) given by f 7→

∫
Ω
ϕf dι. Consider the following conditions:

(a) Jι is surjective;
(b) Jι is injective;
(c) Jι is bijective.

In Assertion K-1 the measure ι being localizable means precisely that (a) is satis-
fied, [16, p. 9]. Condition (b) is equivalent to ι being semifinite, [9, Theorem 243G].
Finally, (c) is equivalent to ι being both semifinite and its measure algebra being
a complete Boolean algebra, [9, Theorem 243G]; precise definitions of these no-
tions are given in Section 2. In the setting of (c) the measure ι is also called
localizable (or Maharam); see, for example, the extensive works of D. Fremlin,
[7, 8, 9, 10], and the references therein. The localizable measures in the sense of
[16] form a more extensive class than those of Fremlin; this is illustrated by ex-
amples in Appendix B of Section 4. Unfortunately, in the generality formulated
above it turns out that Assertion K-1 is incorrect; see examples in Appendix B of
Section 4. One of our main aims is to present a modified version of Assertion K-1.
Henceforth, a localizable measure ι always means that it satisfies condition (c)
above. This restriction on ι is still insufficient to rectify Assertion K-1. It is also
important to have available an adequate form of the Radon-Nikodým Theorem
for localizable measures ι which may fail to be σ-finite. The central notion here
is that of a C-valued measure ξ on Σ being truly continuous with respect to ι (see
Section 2 for the definition). This is a genuinely stronger requirement than abso-
lute continuity of ξ with respect to ι (cf. Appendix B). Lemma 2.1 below shows
that a good Radon-Nikodým Theorem is available for true continuity. One of our
aims is to establish the following (correct) analogue of Assertion K-1.
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Theorem 1. Let m : Σ → X be a lcHs-valued vector measure. If there exists
a localizable measure ι : Σ → [0,∞] such that 〈m,x∗〉 is truly continuous with
respect to ι for each x∗ ∈ X∗, then m is closed.

Of course, this result is not a characterization of closedness. In two well known
papers Kluvánek revealed some remarkable connections between vector measures
and conical measures, [14], [15]. Combining Corollary 13 of [15] with the fact that,
for any measure ι : Σ→ [0,∞], every C-valued measure of the form E 7→

∫
E
f dι,

for E ∈ Σ, with f any ι-integrable function is necessarily truly continuous with
respect to ι, [9, Proposition 232D], leads to the following

Assertion K-2. Let m : Σ → X be a lcHs-valued vector measure. Then there
exists (in the sense of [16, p. 9]) a localizable measure ι : Σ → [0,∞] such that
〈m,x∗〉 is truly continuous with respect to ι for each x∗ ∈ X∗.

The difficulty with Assertion K-2 is that it is based on Corollary 13 of [15],
which in turn is an apparent consequence of earlier results on conical measures in
that paper, some of which are known to have incomplete proofs. For instance, some
effort by various authors was invested to provide a detailed proof of Theorem 1
in [15]; see the discussion immediately after the statement of Proposition 2.5 below.
Moreover, the proof of the last claim in the statement of Theorem 1 of [15] is
also rather sketchy with some apparent gaps. We present a detailed argument
of this claim (see Lemmas 3.2 and 3.4 below) but, only for the order ideal Hm

generated by {|〈m,x∗〉| : x∗ ∈ X∗} in the Riesz space ca(Σ) of all R-valued,
σ-additive measures on Σ. We are unable to verify it for a general vector sublattice
of ca(Σ) in place of Hm, as is claimed to be the case in [15]. Fortunately, our result
for Hm suffices to establish our second main result (Theorem 2 below), which
also incorporates an adequate analogue of Assertion K-2 above. We recall that
localizability in Theorem 2 is meant in the sense of condition (c) above being
satisfied.

Given a lcHs X, let (X∗)a denote the algebraic dual of X∗, in which case there
is a dual pairing given by

〈x∗, ξ〉 := ξ(x∗), x∗ ∈ X∗, ξ ∈ (X∗)a.

Then (X∗)a is a weakly complete lcHs for the topology σ((X∗)a, X∗). The following
result characterizes the closedness of an X-valued vector measure in terms of the
family of scalar measures 〈m,x∗〉, for x∗ ∈ X∗.

Theorem 2. Let X be a lcHs and m be an X-valued vector measure defined on a
measurable space (Ω,Σ). The following assertions are equivalent.

(i) The vector measure m is closed.
(ii) There exists a localizable measure ι : Σ→ [0,∞] such that 〈m,x∗〉 is truly

continuous with respect to ι for each x∗ ∈ X∗.
(iii) There exists a localizable measure ι : Σ → [0,∞] and a function F : Ω →

(X∗)a such that each scalar-valued function 〈F, x∗〉 : ω 7→ 〈F (ω), x∗〉, for
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ω ∈ Ω, is ι-integrable for every x∗ ∈ X∗ and satisfies

〈m(E), x∗〉 =

∫
E

〈F (ω), x∗〉 dι(ω), E ∈ Σ. (1.1)

In particular 〈m,x∗〉 is truly continuous with respect to ι for every x∗ ∈ X∗.
It is possible to choose such a localizable measure ι in (ii) and (iii) which has

the same null sets as m.

We have already alluded to the point that (part of) Theorem 2 is essentially
presented in Corollary 13 in [15]; the latter is in a slightly different format but
is equivalent to the relevant part of Theorem 2. The proof of Theorem 2 that we
present in Section 3 is based directly on Proposition 2.4 and Lemma 3.4 below. On
the other hand, the proof of Corollary 13 given in [15] appears to be a consequence
of Theorem 12 and its proof (as given in [15]). However, there is an inherent
difficulty in this process, as pointed out to us by Prof. R. Becker. It arises due to
the fact that the vector lattice taken in [15] (see the proof of Theorem 12 there)
is the one generated by the family of measures {|〈m,x∗〉| : x∗ ∈ X∗} together with
all the Dirac measures δω, for ω ∈ Ω. It is precisely the presence of the Dirac
measures which cause the difficulty; this is explained in Remark 3.5. Our proof
only uses the order ideal Hm; fortunately, this suffices.

Finally, letm : Σ→ X be a lcHs-valued vector measure andXσ(X,X∗) denoteX
equipped with its weak topology σ(X,X∗). Then m, when considered as taking
its values in the lcHs Xσ(X,X∗) is also σ-additive; denote this vector measure by
mσ. A consequence of Assertions K-1 and K-2 was to show, in Theorem 2 of [26],
that m is a closed vector measure if and only if mσ is a closed vector measure. In
view of the above discussions it is clear that the proof of this fact presented in [26]
cannot be correct. Fortunately, its statement is still correct (see Proposition 2.4
below); an alternate proof, based on completely different arguments as those used
in [26], is provided in Appendix C of Section 4. This (correctly proved) result can
then (and will) be used in the proof of Theorem 2 above; see Section 3.

The structure of this paper is as follows. Section 2 presents various definitions
and preliminary results (with detailed proofs) that are needed in the sequel, both
for conical measures and for vector measures. Section 3 is mainly devoted to the
proof of Theorem 2. Crucial for its proof is the availability of both Theorem 1
(proved in Appendix A of Section 4) and Proposition 2.4 (proved in Appendix C of
Section 4). Relevant examples and counterexamples which illustrate the difficulties
associated with Assertions K-1 and K-2 are formulated in Appendix B of Section 4.

2. Preliminaries

Throughout this section, let (Ω,Σ) denote a measurable space, that is, Σ is
a σ-algebra of subsets of a non-empty set Ω. In particular, Σ is a σ-complete
Boolean algebra (briefly B.a.). Indeed, it is clear that Σ is a lattice, with ∅ as zero
and Ω as unit, in the order defined by set inclusion. Moreover, Σ is both distribu-
tive and complemented. Here the complement E′ in the B.a. sense of a set E ∈ Σ
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is the set-theoretic complement Ec = Ω \ E. In other words, E is a B.a. of sets
such that E ∧ F = E ∩ F and E ∨ F = E ∪ F for E,F ∈ Σ (see [10, Ch. 31], for
example). The σ-completeness of Σ is obvious.

Let ι : Σ→ [0,∞] be a scalar measure; namely, it is a σ-additive set function.
The subfamily of Σ consisting of all ι-null sets is denoted by N0(ι), that is,

N0(ι) := {E ∈ Σ : ι(E) = 0}.

Then, N0(ι) is a σ-ideal of the B.a. Σ. Define an equivalence relation by E ∼ F
for E,F ∈ Σ if the symmetric difference E4F ∈ N0(ι), where E4F := (E ∪ F ) \
(E ∩ F ). Let πι(E) := {F ∈ Σ : E ∼ F} for each E ∈ Σ. The quotient

Σ
/
N0(ι) := {πι(E) : E ∈ Σ}

is a B.a. with the operations induced by Σ as follows:

πι(E) ∧ πι(F ) := πι(E ∩ F ), πι(E) ∨ πι(F ) := πι(E ∪ F ), (πι(E))′ := πι(Ω \ E)

for E,F ∈ Σ. Since N0(ι) is a σ-ideal of Σ, the quotient B.a. Σ
/
N0(ι) is σ-complete

and the so defined quotient map πι : Σ→ Σ
/
N0(ι) is a B.a. σ-homomorphism.

The measure ι factors through Σ
/
N0(ι). In fact, observe that whenever E,F ∈

Σ satisfy πι(E) = πι(F ), we have E4F ∈ N0(ι), which implies that ι(E) = ι(F ).
This enables us to define a function

ῑ : Σ
/
N0(ι)→ [0,∞]

by ῑ(πι(E)) := ι(E) for E ∈ Σ, so that ῑ ◦ πι = ι on Σ. The function ῑ has the
following two properties:

(ῑ)−1({0}) = {0}, and ῑ(∨∞n=1an) =

∞∑
n=1

ῑ(an), (2.1)

whenever {an}∞n=1 is a pairwise disjoint sequence in Σ
/
N0(ι). The pair (Σ

/
N0(ι), ῑ)

is called the measure algebra of the measure space (Ω,Σ, ι). For the terminology
and further details see [7, 61D], [8, 2.4], [10, 321H].

Given E ∈ Σ, we write Σ∩E := {F ∩E : F ∈ Σ} ⊆ Σ. We say that ι is localiz-
able if the quotient B.a. Σ

/
N0(ι) is complete and ι is semifinite. Here, by ι being

semifinite, we mean that, given E ∈ Σ with ι(E) = ∞, there is F ∈ Σ ∩ E such
that 0 < ι(F ) <∞, [8, 1.2(b)(v)], [9, Def. 211F]. Note that ι is localizable in our
sense if and only if the measure algebra (Σ

/
N0(ι), ῑ) is localizable in the sense of

[7, Definitions 53A and 64A], because the latter requires ῑ being semifinite,
[7, 61F(b)], and because ι is semifinite if and only if ῑ is semifinite, [10, Theo-
rem 322B(d)].

Finite or more generally σ-finite measures are localizable. A wider class of
localizable measures consists of the decomposable measures. This can be found in
[7, 64H(b)], [8, Theorem 2.11]. We say that the measure space (Ω,Σ, ι) is decom-
posable, or simply ι is decomposable, if there exists a family {(Ωκ,Σκ, ικ)}κ∈K of
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finite measure spaces such that {Ωκ : κ ∈ K} is a family of pairwise disjoint subsets
of Ω whose union equals Ω, a set A ⊆ Ω belongs to Σ if and only if A∩Ωκ ∈ Σκ for
all κ ∈ K, and ι(A) =

∑
κ∈K ικ(A∩Ωκ) for A ∈ Σ; see [7, 64G(a)], [8, 1.2(b)(iv)],

[9, Definition 211E], [11, Definition 19.25], for example.
Let us return to the general [0,∞]-valued measure ι on Σ. Take a complex

measure ξ on Σ. Its total variation measure |ξ| is a positive, finite measure on Σ,
[29, §6.1]. A set E ∈ Σ is called ξ-null, if |ξ|(E) = 0. By N0(ξ) we denote the
subfamily of Σ consisting of all ξ-null sets, so that N0(ξ) = N0(|ξ|). We say that ξ
is absolutely continuous with respect to ι, denoted by ξ << ι, if, given ε > 0, there
is a δ > 0 such that |ξ(E)| < ε whenever a set E ∈ Σ satisfies 0 6 ι(E) < δ. It
turns out, [29, Theorem 6.11], that ξ is absolutely continuous with respect to ι if
and only if every ι-null set is ξ-null. In other words

ξ << ι if and only if N0(ι) ⊆ N0(ξ). (2.2)

A measure µ : Σ→ R is called truly continuous with respect to a [0,∞]-valued
measure ι on Σ if µ << ι and if, whenever E ∈ Σ satisfies µ(E) 6= 0, then there
exists F ∈ Σ such that ι(F ) < ∞ and µ(E ∩ F ) 6= 0, [9, Definition 232A and
Proposition 232B(b)]. If ι is σ-finite, then µ is truly continuous with respect to ι
if and only if µ << ι, [9, Proposition 232B(c)]. For examples of ι and µ such that
µ << ι but µ is not truly continuous with respect to ι see Appendix B. We say
that a C-valued measure ξ is truly continuous with respect to ι if both its real part
Re(ξ) and its imaginary part Im(ξ) are truly continuous with respect to ι, where
Re(ξ) : E 7→ Re(ξ(E)) and Im(ξ) : E 7→ Im(ξ(E)), for E ∈ Σ.

Lemma 2.1. Let ι : Σ→ [0,∞] be a scalar measure.
(i) The following assertions are equivalent for a measure ξ : Σ→ C.

(a) The measure ξ is truly continuous with respect to ι
(b) There exists a ι-integrable function φξ such that ξ(E) =

∫
E
φξ dι, for

E ∈ Σ, that is, ξ admits a Radon-Nikodým derivative with respect to ι.
(c) There exists a sequence {En}∞n=1 in Σ satisfying ι(En) < ∞ for all

n ∈ N such that |ξ|(Ω \
⋃∞
n=1En) = 0.

(ii) A measure ξ : Σ→ C is truly continuous with respect to ι if and only if so
is its total variation measure |ξ| : Σ→ [0,∞)

Proof.
(i) For (a)⇔(b) see [9, Proposition 232D and Theorem 232E] and for (a)⇔(c)

see [9, 232X(a)].
(ii) Apply (a)⇔(c) in part (i) to Re(ξ) and Im(ξ) and use the fact that F ∈ Σ

is ξ-null if and only if it is |ξ|-null if and only if it is null for both Re(ξ)
and Im(ξ). �

An example is given in Appendix B.1(ii) of measures ι and ξ such that ξ << ι
but (i)(b) of Lemma 2.1 fails. This shows that, in general, absolute continuity does
not suffice to ensure the existence of a Radon-Nikodým derivative.
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All vector spaces to be considered will be over R or C; the corresponding scalar
field will be indicated clearly. LetX be a lcHs over C. The duality between between
X and X∗ is denoted by 〈x, x∗〉 := x∗(x) for x ∈ X and x∗ ∈ X∗. By P(X) we
denote the set of all continuous seminorms on X.

Consider a vector measure m : Σ→ X. Recall, for x∗ ∈ X∗, that the complex
measure E 7→ 〈m(E), x∗〉 on Σ is denoted by 〈m,x∗〉; its range is a bounded subset
of C. So, the range R(m) of m in X is weakly bounded and hence, bounded in the
initial topology. Given p ∈P(X), the p-semivariation p(m) is defined by

p(m)(E) := sup
x∗
|〈m,x∗〉|(E), E ∈ Σ,

where the supremum is formed over those x∗ ∈ X∗ satisfying |〈x, x∗〉| 6 p(x) for
all x ∈ X. Equivalently, the supremum is taken over all x∗ ∈ (p−1([0, 1]))◦ for the
polar set

U◦p = (p−1([0, 1]))◦ := {u∗ ∈ X∗ : |〈x, u∗〉| 6 1 for all x ∈ X satisfying p(x) 6 1}.

Then we have

sup
F∈Σ∩E

p(m(F )) 6 p(m)(E) 6 4 sup
F∈Σ∩E

p(m(F )), E ∈ Σ, (2.3)

[18, p.158]. Consequently, p(m)(E) < ∞ for all E ∈ Σ because the boundedness
of R(m) ensures that the right-side of (2.3) is finite. We say that a set E ∈ Σ is
m-null if p(m)(E) = 0 for all p ∈ P(X). It follows from (2.3) that a set E ∈ Σ
is m-null if and only if m(Σ ∩ E) = {0}. The subfamily N0(m) ⊆ Σ of all m-null
sets satisfies

N0(m) =
⋂

x∗∈X∗

N0(|〈m,x∗〉|) =
⋂

x∗∈X∗

N0(〈m,x∗〉). (2.4)

It is clear that N0(m) is a σ-ideal of the B.a. Σ, so that we can consider the
quotient B.a. Σ

/
N0(m), analogous to the case of Σ

/
N0(ι). Let

qm : Σ→ Σ
/
N0(m)

denote the corresponding quotient map, which is a B.a. σ-homomorphism. Given
p ∈P(X), the p-semivariation p(m) defines a natural pseudometric on Σ via

(E,F ) 7→ p(m)(E4F ), (E,F ) ∈ Σ× Σ. (2.5)

These pseudometrics with p varying through P(X) generate a uniformity τ(m)
on Σ. We then equip Σ with the topology induced by τ(m). The uniformity τ(m)
may not be separated, or equivalently its induced topology on Σ may not be
Hausdorff. The associated Hausdorff space turns out to be the quotient space
Σ
/
N0(m). To be precise, given p ∈ P(X), define a function p̂(m) : Σ

/
N0(m) →

[0,∞) by
p̂(m)(qm(E)) := p(m)(E), E ∈ Σ;
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it is well defined because N0(m) ⊆ p(m)−1({0}). The pseudometric on Σ
/
N0(m)

induced by p̂(m) can be shown to equal the function

(qm(E), qm(F )) 7→ p(m)(E4F ), E, F ∈ Σ, (2.6)

because qm is a B.a. homomorphism. Let τ̂(m) denote the uniformity on Σ
/
N0(m)

generated by those pseudometrics p̂(m) with p varying through P(X). The topol-
ogy on Σ

/
N0(m) induced by τ̂(m) is Hausdorff. In other words, Σ

/
N0(m) is

a Hausdorff uniform space.
A vector measure m is said to be closed if Σ

/
N0(m) is τ̂(m)-complete,

[13, p. 49], [16, p. 71]. A characterization of closed vector measures is given by
the following lemma. It has originally been presented in [6, Proposition 1.1] with
extra assumptions on X. The current general form is in [20, Lemma 1.4].

Lemma 2.2. A lcHs-valued vector measure m : Σ → X is closed if and only
if the B.a. Σ

/
N0(m) is complete and has the property that, whenever {Eκ}κ is

a net with {qm(Eκ)}κ filtering to 0 in the order of Σ
/
N0(m), the net {m(Eκ)}κ

converges to 0 in X.

The following sample result is from [16, Theorem IV.7.1] and [26, Proposi-
tion 1].

Lemma 2.3. Let m : Σ→ X be a lcHs-valued vector measure. If X is metrizable,
in particular, if X is normable, then m is closed. Actually, it suffices that the range
R(m) of m is metrizable for the relative topology from X.

Further sufficient criteria for closedness of vector measures occur in [20],
[21, §1], [22], [26]; see also the references therein..

Let us return to the general lcHs-valued vector measure m : Σ → X. Given
x∗ ∈ X∗, the seminorm px∗ : x 7→ |〈x, x∗〉| on X is σ(X,X∗)-continuous and
hence, continuous in the initial topology. According to [22, (3.16) and (3.17), p.26]
we have

px∗(m)(E) = |〈m,x∗〉|(E), E ∈ Σ. (2.7)
Recall that mσ : Σ→ Xσ(X,X∗) denotes the vector measure m when considered

as taking its values in Xσ(X,X∗). Thenmσ is σ-additive as the natural identity map
iσ from X onto Xσ(X,X∗) is continuous and linear. In view of (2.4) and (2.7), we
have the identity N0(mσ) = N0(m), so that

qmσ = qm and Σ
/
N0(mσ) = Σ

/
N0(m). (2.8)

By (2.7), we can deduce that the uniformity τ(mσ) on Σ is generated by the
pseudometrics

(E,F ) 7→ |〈m,x∗〉|(E4F ), E, F ∈ Σ, (2.9)
with x∗ varying through X∗. The corresponding uniformity τ̂(mσ) on Σ

/
N0(m)

is generated by the pseudometrics

(qm(E), qm(F )) 7→ |〈m,x∗〉|(E4F ), E, F ∈ Σ, (2.10)

with x∗ varying through X∗; see both (2.6) with px∗ in place of p and (2.7) as well
as (2.8).
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As indicated in Section 1, the following result is needed in the sequel.

Proposition 2.4. A lcHs-valued vector measure m : Σ→ X is closed if and only
if mσ : Σ→ Xσ(X,X∗) is closed.

For the special case when m happens to be a spectral measure, Proposition 2.4
has already been verified (independently), [22, Proposition 3.8].

Now let us turn our attention to conical measures over weakly complete, real
lcHs’. For conical measures over general lcHs’ over R, we refer to the monographs
[3], [4, Sections 30 and 38-40]. Let Y be a weakly complete, real lcHs. By h(Y )
we denote the vector lattice of R-valued functions on Y which is generated, with
respect to the pointwise order, by all linear functionals in the continuous dual
space Y ∗ of Y . Every function f ∈ h(Y ) is of the form

f(y) = sup{〈y, y∗j 〉 : j = 1, . . . , k} − sup{〈y, y∗j 〉 : j = (k + 1), . . . , l}, y ∈ Y,
(2.11)

that is,

f =

k∨
j=1

y∗j −
l∨

j=k+1

y∗j (2.12)

as elements of h(Y ) for some y∗1 , . . . y∗l ∈ Y ∗ and l ∈ N with l > 2, where
∨

(resp.∧
) denotes the least upper (resp. greatest lower) bound in a lattice. We adopt the

usual notation h(Y )+ for the positive cone of h(Y ), i.e., f ∈ h(Y )+ if and only
if f(y) > 0 for all y ∈ Y . The restriction of each f ∈ h(Y ) to a subset U ⊆ Y is
denoted by f |U , except possibly when we can clearly see that f is considered on
such a set U . Write

h(Y )|U := {f |U : f ∈ h(Y )}.

Each positive linear functional u on h(Y ) is called a conical measure over Y .
By ‘positive’ we mean the value u(f) > 0 for all f ∈ h(Y )+. The set M+(Y ) of all
conical measures over Y is a lattice in the order given by u > v with u, v ∈M+(Y )
if and only if u(f) > v(f) for all f ∈ h(Y )+.

We shall adopt the setting of the proof of Theorem 2.8 in [27], with some al-
terations. As Y is weakly complete, we may assume that Y = RA with A equal to
a closed ordinal interval [0,Γ]. Both symbols Y and RA will be used interchange-
ably. Given α ∈ A, let e∗α : Y = RA → R denote the corresponding coordinate
functional, i.e., eα(y) = yα for y = (yβ)β∈A. Then Y ∗ equals the linear hull
span{e∗α : α ∈ A} and {e∗α : α ∈ A} is a Hamel basis for Y ∗. Define pairwise
disjoint subsets T (α) ⊆ Y , for α ∈ A, as follows: if α = 0, then

T (0) := {y ∈ Y : |〈y, e∗0〉| = 1}

and for α > 0,

T (α) := {y ∈ Y : |〈y, e∗β〉| = 0 for all β ∈ [0, α) and |〈y, e∗α〉| = 1}.
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Then, for every α ∈ A, the restriction of |e∗α| to T (α) equals the constant function 1
on T (α), that is, 1 ∈ h(Y )|T (α). Given α ∈ A, let Sα denote the σ-algebra of
subsets of T (α) generated by h(Y )|T (α); namely, it is the smallest σ-algebra which
makes all functions in h(Y )|T (α) measurable. Next define a σ-algebra of subsets of
the disjoint union

T :=
⋃
α∈A

T (α) ⊆ Y

by
S := {A ⊆ T : A ∩ T (α) ∈ Sα for all α ∈ A}.

Fix u ∈ M+(Y ) for the moment. The proof of Theorem 2.8 in [27] constructs
pairs (uα, λα) for each α ∈ A of a conical measure uα over Y and a positive finite
measure λα : Sα → [0,∞) such that

u(f) =
∑
α∈A

uα(f), f ∈ h(Y ),

with the right-side absolutely summable in R and

uα(f) =

∫
T (α)

f dλα, f ∈ h(Y ), α ∈ A. (2.13)

In (2.13) the right-side should have been written as
∫
T (α)

f |T (α) dλα. However, we
have written f instead of f |T (α) as the set T (α) over which f is integrated is clearly
indicated. Now define a decomposable measure λ : S → [0,∞] by

λ(A) :=
∑
α∈A

λα(A ∩ T (α)), A ∈ S .

Our arguments in Section 3 will depend on the following result; the notation
is as above.

Proposition 2.5. Let Y be a weakly complete, real lcHs and u : h(Y ) → R be
a conical measure.

(i) There exists a decomposable measure λ on a σ-algebra S of subsets of
a non-empty set T ⊆ Y such that every f ∈ h(Y ) (more precisely its
restriction f |T ) is λ-integrable and

u(f) =

∫
T

f dλ. (2.14)

(ii) The subset h(Y )|T is dense in the real Banach space L1(λ) of all R-valued,
λ-integrable functions, equipped with the usual L1-norm.

Some comments are in order. The above result has been presented originally
in [15, Theorem 1]. However, according to [3, p.131], [27, p.29], there are problems
with the proof given in [15] of part (i) of Proposition 2.5 above. A correct proof of
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Proposition 2.5(i) above is given in [27]; see Theorem 2.8 there. It proceeds via the
construction outlined prior to Proposition 2.5. We point out that an earlier proof
than the one in [27] occurs in [2, Theorem 21] but, with an additional assumption
on the cardinality of A. The general case, without such cardinality assumptions
on A, has been presented later in [3, Theorem VI.1.11].

Regarding part (ii) of Proposition 2.5 above, the arguments presented in [15,
p.90] do not seem to provide a full proof. So, we now present a more detailed proof
of this fact.

Concerning some terminology, the scalar measure λ in part (i) above is said to
represent u, [15, p.93]. According to the terminology of [27, p.27], u is localized in
the measurable space (T,S ), which generalizes the concept of localizing conical
measures on compact sets, [4, Definition 30.4, Vol. II], [14, p.328].

Proof of Proposition 2.5(ii). Fix A ∈ S with 0 < λ(A) < ∞. We shall show
that its characteristic function χA can be approximated by functions from h(Y )|T
in the norm of L1(λ).

Step 1: For every α ∈ A, the space h(Y )|T (α) is dense in the real Banach space
L1(λα).

To verify this consider the linear functional Iα, on the vector lattice h(Y )|T (α),
given by

Iα(f |T (α)) :=

∫
T (α)

f dλα =

∫
T (α)

f |T dλα, f ∈ h(Y ).

The Monotone Convergence Theorem for λα implies that Iα is a Daniell integral
(the definition of Daniell integrals can be found in [28, Section 1, Ch. 13], [31,
Ch. 6], for example). Recall from above that h(Y )|T (α) contains the constant func-
tion 1 on T (α) and that Sα is the σ-algebra generated by h(Y )|T (α). So, λα is
the unique (finite) measure on Sα with the property that a function on T (α) is
Iα-Daniell integrable if and only if it is λα-integrable and such that, for every
g ∈ L1(λα), the Daniell integral of |g| equals

∫
T (α)
|g| dλα; see [28, Theorem 13.20

and Proposition 13.21], for example.
Next, h(Y )|T (α) is known to be dense in the space of all Iα-Daniell integrable

functions with respect to the norm which assigns to each g the Daniell integral of
|g|, [31, Theorem 6-4 VI].

Step 2: For every α ∈ A and ε > 0, there exists fα ∈ h(Y ) such that∫
T

|χA∩T (α) − fα| dλ < ε. (2.15)

To verify Step 2, fix α ∈ A and ε > 0. First select f̃ ∈ h(Y ) such that∫
T (α)
|χA∩T (α) − f̃ | dλα < ε

3 ; this is possible via Step 1 as χA∩T (α) ∈ L1(λα).
Set f0 := |f̃ | ∧ |e∗α| ∈ h(Y ). Then∫

T (α)

|χA∩T (α) − f0| dλα <
ε

3
(2.16)
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because |e∗α| = 1 on T (α) and hence,

|χA∩T (α) − f0| = |(χA∩T (α) ∧ |e∗α|)− (|f̃ | ∧ |e∗α|)|
6 |χA∩T (α) − |f̃ | | 6 |χA∩T (α) − f̃ |

pointwise on T (α), where we have used the Birkoff inequality: |(a∧ c)− (b∧ c)| 6
|a− b|, [1, Theorem 1.1(12)]. By the definition of e∗α, we can see that e∗α vanishes
on
⋃
β∈(α,Γ] T (β); recall that A = [0,Γ]. Hence, also f0 vanishes on

⋃
β∈(α,Γ] T (β).

Suppose first that α = 0. Since f0 vanishes on
⋃
β∈(0,Γ] T (β), we have, by (2.16)

with α = 0, that∫
T

|χA∩T (0) − f0| dλ =

∫
T (0)

|χA∩T (0) − f0| dλ0 <
ε

3
.

So, (2.15) holds when α = 0.
Now assume that α > 0. Since f0 ∈ h(Y ), part (i) implies that f0|T ∈ (L1(λ))+.

Consequently, as the disjoint union
⋃
β∈[0,α) T (β) ⊆ T we have

∑
β∈[0,α)

∫
T (β)

f0 dλ 6
∫
T

f0 dλ <∞

and hence, the set {β ∈ [0, α) :
∫
T (β)

f0 dλ > 0} is at most countable. So, there
exists a finite, non-empty subset A0 ⊆ [0, α) such that∑

β∈[0,α)\A0

∫
T (β)

f0 dλβ <
ε

3
. (2.17)

With n denoting the number of elements in A0, let {β(j) : j = 1, . . . , n} be an
enumeration of A0. For each j = 1, . . . , n, since |e∗β(j)(t)| = 1 for every t ∈ T (β(j)),
we have f0 ∧ |ke∗β(j)| ↑ f0 pointwise on T (β(j)) as k → ∞. According to the
Monotone Convergence Theorem, there exists kj ∈ N such that∫

T (β(j))

(f0 − (f0 ∧ |kje∗β(j)|)) dλβ(j) <
ε

3n
. (2.18)

Now let

fα :=

n∧
j=1

(f0 − (f0 ∧ |kje∗β(j)|)).

Then fα ∈ h(Y ) and we have that fα = f0 pointwise on T (α), because e∗β(j)

vanishes on T (α) as β(j) < α for all j = 1, . . . , n, and also that 0 6 fα 6 f0 on
h(Y ). So, (2.16) and (2.17) give∫

T (α)

|χA∩T (α) − fα| dλα =

∫
T (α)

|χA∩T (α) − f0| dλα <
ε

3
(2.19)
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and ∑
β∈[0,α)\A0

∫
T (β)

fα dλβ 6
∑

β∈[0,α)\A0

∫
T (β)

f0 dλβ <
ε

3
, (2.20)

respectively. Next, by (2.18) and the definition of fα we have∑
β∈A0

∫
T (β)

fα dλβ 6
n∑
j=1

∫
T (β(j))

(f0 − (f0 ∧ |kje∗β(j)|)) dλβ(j) <

n∑
j=1

ε

3n
=
ε

3
.

(2.21)

Combining (2.19), (2.20) and (2.21) yields∫
T

|χA∩T (α) − fα| dλ =
∑
β∈A0

∫
T (β)

fα dλβ +
∑

β∈[0,α)\A0

∫
T (β)

fα dλβ

+

∫
T (α)

|χA∩T (α) − fα| dλα <
ε

3
+
ε

3
+
ε

3
= ε.

We have thereby established Step 2.
Step 3: For every ε > 0, there exists f ∈ h(Y ) such that

∫
T
|χA − f | dλ < ε.

To establish Step 3, observe first that
∑
α∈A λ(A∩T (α)) = λ(A) <∞, so that

λ(A ∩ T (α)) = 0 except for at most countably many α’s. So, there exists a finite,
non-empty subset A1 ⊆ A such that∫

T

|χA −
∑
α∈A1

χA∩T (α)| dλ =
∑

α∈A\A1

λ(A ∩ T (α)) <
ε

2
. (2.22)

With m denoting the number of elements in A1, let {α(1), . . . , α(m)} be an enu-
meration of A1. For each j = 1, . . . ,m, choose fα(j) ∈ h(Y ) such that∫

T

|χA∩T (α(j)) − fα(j)| dλ <
ε

2m
; (2.23)

see Step 2 with α(j) in place of α and ε
2m in place of ε.

Let f :=
∑m
j=1 fα(j) ∈ h(Y ). Then it follows from (2.22) and (2.23) that∫

T

|χA − f | dλ =

∫
T

|(χA −
∑
α∈A1

χA∩T (α)) + (
∑
α∈A1

χA∩T (α) − f)| dλ

6
∫
T

|(χA −
∑
α∈A1

χA∩T (α))| dλ

+

m∑
j=1

∫
T (α(j))

|χA∩T (α(j)) − fα(j)| dλ

<
ε

2
+

m∑
j=1

ε

2m
= ε,

so that Step 3 is verified.
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Finally, since span{χA : A ∈ Σ with 0 < λ(A) < ∞}, i.e., the λ-simple func-
tions in the terminology of [9], is dense in L1(λ), [9, Proposition 242M], Step 3
ensures that h(Y )|T is also dense in L1(λ), which completes the proof of Proposi-
tion 2.5(ii). �

Now we present a consequence of Proposition 2.5. To this end, let the notation
be as in Proposition 2.5. First, observe that L1(λ) is a vector lattice with respect
to the λ-a.e. pointwise order. Denote its positive cone by (L1(λ))+. According to
Proposition 2.5(i), h(Y )|T is a vector sublattice of L1(λ).

By L∞(λ) we denote the real vector space of all (equivalence classes of)
R-valued, λ-essentially bounded, S -measurable functions on T . Recall that an
S -measurable function g is called λ-essentially bounded if there is a ∈ (0,∞) such
that {t ∈ T : |g(t)| > a} is λ-null, [9, Def. 243A]. Since the decomposable measure
λ in Proposition 2.5 has the property that

λ(A) = 0⇐⇒ λ(A ∩B) = 0 for all B ∈ S with λ(B) <∞,

[9, 213J, 214J], the above definition of λ-essential boundedness is equivalent to
that in [11, Definition 20.11]. Functions in L∞(λ) which coincide λ-a.e. on T are
identified, except when we need to distinguish between individual functions and
their corresponding equivalence classes. We shall use the well known identification
(L1(λ))∗ = L∞(λ), [7, 64B, 64G, 64H], [9, 243G],[11, Theorems 20.16 and 20.19].

Corollary 2.6. With u : h(Y ) → R and (T,S , λ) as in Proposition 2.5, the
following statements hold.

(i) Let ψ ∈ L∞(λ) be a function such that
∫
T
fψ dλ = 0 for all f ∈ h(Y ).

Then ψ = 0 (λ-a.e.).
(ii) If v : h(Y )→ R is another conical measure such that v 6 u on h(Y ), then

there is a unique positive function ϕ ∈ L∞(λ) such that

v(f) =

∫
T

fϕ dλ, f ∈ h(Y ). (2.24)

Proof.

(i) This is a consequence of Proposition 2.5(ii) because the assumption says
that the continuous linear functional g 7→

∫
T
gψ dλ on L1(λ) vanishes on

the dense linear subspace h(Y )|T of L1(λ).
(ii) We define a linear functional η : h(Y )|T → R by

η(f |T ) := v(f), f ∈ h(Y ).

To see that η is well-defined, take f1, f2 ∈ h(Y ) such that f1|T = f2|T
(λ-a.e.) on T . Since (f1 − f2)|T = 0 (λ-a.e.), it follows that

0 6 v((f1 − f2) ∨ 0) 6 u((f1 − f2) ∨ 0) =

∫
T

((f1 − f2) ∨ 0) dλ = 0



Conical measures and closed vector measures 205

and hence, that v((f1−f2)∨0) = 0. Similarly, we have v((f2−f1)∨0) = 0.
Thus

v(f1 − f2) = v((f1 − f2) ∨ 0− ((f2 − f1) ∨ 0)) = 0,

so that v(f1) = v(f2). This ensures that η is well defined. Moreover, it is
clear that η is linear.
Take f ∈ h(Y )|T such that f |T > 0 (λ-a.e.). Then v((−f)∨0) = 0 because
((−f) ∨ 0) = 0 (λ-a.e. on T ) and so

0 6 v((−f) ∨ 0) 6 u((−f) ∨ 0) =

∫
T

((−f) ∨ 0) dλ = 0.

Hence,

η(f |T ) = v(f) = v((f ∨ 0)− ((−f) ∨ 0)) = v(f ∨ 0) > 0.

This implies that η is a positive linear functional.
Next, since v : h(Y )→ R is a positive linear functional, it follows that

|η(f |T )| = |v(f)| 6 v(|f |) 6 u(|f |) =

∫
T

|f | dλ =

∫
T

|f |T dλ

for every f ∈ h(Y ) and hence, that η is continuous on h(Y )|T for the in-
duced norm from L1(λ). So, η admits a unique continuous linear extension
η̃ : L1(λ)→ R as h(Y )|T is dense in L1(λ) by Proposition 2.5(ii). Accord-
ing to the discussion prior to the Corollary we have (L1(λ))∗ = L∞(λ) and
so there is ϕ ∈ L∞(λ) such that 〈g, η̃〉 =

∫
T
gϕ dλ for g ∈ L1(λ).

To see that ϕ > 0 (λ-a.e.), fix g ∈ (L1(λ))+. Select functions fn ∈
h(Y ) with n ∈ N such that limn→∞

∫
T
|fn − g| dλ = 0; see Proposition

2.5(ii). Since |(fn ∨ 0)− g| 6 |fn − g| pointwise on T , it then follows that
limn→∞

∫
T
|(fn ∨ 0)− g| dλ = 0, in other words, limn→∞(fn ∨ 0)|T = g in

the norm of L1(λ). So we have, as η is positive, that∫
T

gϕ dλ = 〈g, η̃〉 = 〈 lim
n→∞

(fn ∨ 0)|T , η̃〉 = lim
n→∞

η((fn ∨ 0)|T ) > 0.

Since g ∈ L1(λ) is an arbitrary positive function, it then follows that ϕ > 0
(λ-a.e.). Moreover, (2.24) clearly holds as∫

T

fϕ dλ = 〈f |T , η̃〉 = η(f |T ) = v(f), f ∈ h(Y ).

Finally, take another positive function ϕ1 ∈ L∞(λ) satisfying v(f) =∫
T
fϕ1 dλ for all f ∈ h(Y ), so that

∫
T
f(ϕ − ϕ1) dλ = 0 for all f ∈ h(Y ).

Applying part (i) with ψ := (ϕ − ϕ1) yields ϕ = ϕ1 (λ-a.e.), which com-
pletes the proof. �
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3. Kluvánek’s characterization of closed vector measures

The aim of this section is to prove Theorem 2 of Section 1, which is a correct
version of Kluvánek’s characterization of closed vector measures (cf. Assertions
K-1 and K-2 in Section 1). Throughout this section, let X be a complex lcHs and
m be an X-valued vector measure defined on a measurable space (Ω,Σ), unless
stated otherwise.

The real vector space ca(Σ) of all R-valued, σ-additive measures on Σ is a vector
lattice (or Riesz space, [1]) for the setwise order, so that µ1 > µ2 if and only if
µ1(A) > µ2(A) for all A ∈ Σ. Its positive cone ca+(Σ) consists of all positive
measures and the modulus of each µ ∈ ca(Σ) in the lattice sense coincides with its
total variation measure |µ| : Σ → [0,∞). Let Hm denote the order ideal in ca(Σ)
generated by {|〈m,x∗〉| : x∗ ∈ X∗} ⊆ ca+(Σ). Since α|〈m,x∗〉| = |〈m,αx∗〉| for all
α > 0, it follows that a measure µ ∈ ca(Σ) belongs to Hm if and only if

|µ| 6
n∑
j=1

|〈m,x∗j 〉|, on Σ, (3.1)

for some x∗1, . . . , x∗n ∈ X∗ and n ∈ N, [1, p.4].
Let Y denote the algebraic dual of the real vector space Hm (i.e., Y is the space

of all linear functionals y : Hm → R). We equip Y with the pointwise convergence
topology σ(Y,Hm) on Hm, that is, the lcHs-topology generated by the seminorms

pµ(y) := |〈µ, y〉| = |y(µ)|, y ∈ Y,

as µ varies through Hm. Then Y is a weakly complete, real lcHs, [4, II Theo-
rem 22.16], and there is a natural vector space isomorphism from Hm onto Y ∗. It
is the assignment sending each µ ∈ Hm ⊆ ca(Σ) to the continuous linear functional
µ̃ ∈ Y ∗ ⊆ h(Y ) given by

〈y, µ̃〉 := 〈µ, y〉 = y(µ), y ∈ Y.

Then a function f ∈ h(Y ), expressed as (2.12) in Section 2, now has the form

f =

k∨
j=1

µ̃j −
l∨

j=k+1

µ̃j (3.2)

for some µ1, . . . , µl ∈ Hm and l ∈ N with l > 2. In particular, each µj , 1 6 j 6 l,
satisfies a condition of the form (3.1).

The following result is a special case of [15, Lemma 7]. The spaces Hm and Y
are as defined above.

Lemma 3.1. There exists a unique vector-lattice homomorphism Φ : h(Y )→ Hm

satisfying Φ(µ̃) = µ for every µ ∈ Hm. Consequently, for each f ∈ h(Y ) of the
form (3.2), the element Φ(f) ∈ Hm is expressed as

Φ(f) =

k∨
j=1

µj −
l∨

j=k+1

µj .
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According to [1, Theorem 1.17(vi)], the vector-lattice homomorphism Φ ob-
tained in Lemma 3.1 above satisfies

|Φ(f)| = Φ(|f |), f ∈ h(Y ). (3.3)

Moreover, Φ is positive, [1, p.9], so that the linear functional u : h(Y )→ R defined
by

u(f) := Φ(f)(Ω), f ∈ h(Y ), (3.4)

is a conical measure. Now, let us take the decomposable (scalar) measure λ defined
on the measure space (T,S ) with T ⊆ Y and representing u via Proposition 2.5,
so that (2.14) holds for f ∈ h(Y ). In view of (3.4), we have

Φ(f)(Ω) =

∫
T

f dλ, f ∈ h(Y ). (3.5)

Next, given any set E ∈ Σ, consider the linear functional vE : h(Y )→ R specified
by

vE(f) := Φ(f)(E), f ∈ h(Y ). (3.6)

Then vE is positive and hence, is also a conical measure. Moreover, given f ∈
h(Y )+, since Φ(f) ∈ ca+(Σ), it follows that

vE(f) = Φ(f)(E) 6 Φ(f)(Ω) = u(f),

which implies, in the order of M+(Y ), that 0 6 vE 6 u.
Lemmas 3.2 and 3.4 below are taken from Theorem 8 and its proof in [15]. The

setting in [15] is more general. However, the arguments there are rather sketchy and
seem to have gaps. We shall provide detailed proofs of these two lemmas which are
needed to prove Theorem 2 in Section 1. The order ideal Hm ⊆ ca(Σ), the weakly
complete lcHs Y , the homomorphism Φ : h(Y )→ Hm, the decomposable measure
λ on (T,S ) with T ⊆ Y , and the conical measure vE , for E ∈ Σ, are as specified
above.

Lemma 3.2. The following statements hold.

(i) Given E ∈ Σ, there is a unique positive function ϕE ∈ L∞(λ) such that

Φ(f)(E) = vE(f) =

∫
T

fϕE dλ, f ∈ h(Y ). (3.7)

(ii) The following results hold for each set E ∈ Σ.

(a) vE ∧ vΩ\E = 0 in the lattice M+(Y ).

(b) ϕE ∧ ϕΩ\E = 0 (λ-a.e.) on T .

(c) ϕE + ϕΩ\E = 1 (λ-a.e.) on T .

(d) ϕE is {0, 1}-valued (λ-a.e.) on T .

(iii) The identity ϕE ∧ ϕF = ϕE∩F holds (λ-a.e.) on T for all E,F ∈ Σ.
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(iv) Let g ∈ (L1(λ))+ and let λg denote its corresponding indefinite integral:
E 7→

∫
E
g dλ on Σ. Then, the linear space span{ϕE : E ∈ Σ} is dense in

the real Banach space L1(λg).

Proof.
(i) The first equality in (3.7) is exactly (3.6) whereas the second equality is

a special case of Corollary 2.6(ii), after recalling (3.4) and that 0 6 vE 6 u.
(ii) (a) Fix E ∈ Σ and let w := vE ∧ vΩ\E ∈ M+(Y ). Given any µ ∈ Hm, we

first show that
w(|µ̃|) = 0, (3.8)

where |µ̃| is the modulus in h(Y ) of µ̃ ∈ Y ∗ ⊆ h(Y ). To see this, define
the restriction measures µE and µΩ\E on Σ by

µE(F ) := µ(E ∩ F ) and µΩ\E(F ) := µ((Ω \ E) ∩ F ), F ∈ Σ,

respectively. Clearly, both µE and µΩ\E belong to the order ideal
Hm; see (3.1). For ease of notation, write µ̃E := (µE)∼ and µ̃Ω\E :=
(µΩ\E)∼. Since µ̃E ∈ h(Y ) and w 6 vΩ\E in M+(Y ), it follows from
(3.6) that the vector-lattice homomorphism Φ satisfies

0 6 w(µ̃E ∨ 0) 6 vΩ\E(µ̃E ∨ 0) = Φ(µ̃E ∨ 0)(Ω \ E)

= (Φ(µ̃E) ∨ Φ(0))(Ω \ E) = (µE ∨ 0)(Ω \ E)

= sup
F∈Σ∩(Ω\E)

µE(F ) = 0,

which gives w(µ̃E ∨ 0) = 0. Similarly, we have w((−µ̃E) ∨ 0) = 0 and
so

w(|µ̃E |) = w((µ̃E ∨ 0) + ((−µ̃E) ∨ 0)) = 0.

Interchanging the roles of E and Ω \ E gives w(|µ̃Ω\E |) = 0. Accord-
ingly, (3.8) holds because

|µ̃| = |(µE + µΩ\E)∼| = |µ̃E + µ̃Ω\E | 6 |µ̃E |+ |µ̃Ω\E |

implies that

0 6 w(|µ̃|) 6 w(|µ̃E |) + w(|µ̃Ω\E |) = 0.

Next, let f ∈ h(Y ) be of the form (3.2). Then, w(f) = 0 as

0 6 |w(f)| 6 w(|f |) 6 w

(
k∨
j=1

|µ̃j |

)
+ w

(
l∨

j=k+1

|µ̃j |

)

=

l∑
j=1

w(|µ̃j |) = 0,

where we have applied (3.8) with µj in place of µ for each j = 1, . . . , n.
Thus, w = 0, that is, (a) holds.
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(b) Fix E ∈ Σ and let ϕE , ϕΩ\E be as in part (i). Since ϕE ∧ ϕΩ\E ∈
(L∞(λ))+ and h(Y )|T ⊆ L1(λ) (see Proposition 2.5(i)), we can define
a conical measure z by

z(f) :=

∫
T

f(ϕE ∧ ϕΩ\E) dλ, f ∈ h(Y ).

It is clear from (3.7) that 0 6 z 6 vE and 0 6 z 6 vΩ\E inM+(Y ). An
appeal to (a) ensures that z = 0. By Corollary 2.6(i) with (ϕE ∧ϕΩ\E)
in place of ϕ, we have (b).

(c) Again let E ∈ Σ and ϕE , ϕΩ\E be as in part (i). It follows from (3.5),
(3.7) and part (i) above that, for every f ∈ h(Y ), we have∫

T

f(ϕE + ϕΩ\E − 1) dλ = Φ(f)(E) + Φ(f)(Ω \ E)− Φ(f)(Ω) = 0,

because Φ(f) ∈ ca(Σ). By Corollary 2.6(i) with (ϕE + ϕΩ\E − 1) in
place of ϕ, we can conclude that ϕE + ϕΩ\E − 1 = 0 (λ-a.e.), that is,
(c) holds.

(d) This is immediate from (b) and (c).
(iii) First, given disjoint sets G(1), G(2) ∈ Σ, we claim that

ϕG(1) + ϕG(2) = ϕG(1)∪G(2) (λ-a.e.) and ϕG(1) ∧ ϕG(2) = 0 (λ-a.e.).
(3.9)

Indeed, the first identity can be proved as for (ii)(c) above.
Next, since Ω \ G(2) is the disjoint union of G(1) and Ω \ (G(1) ∪ G(2)),
we can apply the first identity with Ω \ (G(1) ∪G(2)) in place of G(2) to
obtain

ϕΩ\G(2) = ϕG(1) + ϕΩ\(G(1)∪G(2)) (λ-a.e.).

In particular, 0 6 ϕG(1) 6 ϕΩ\G(2), which gives ϕG(1) ∧ ϕG(2) = 0 because

0 6 ϕG(1) ∧ ϕG(2) 6 ϕΩ\G(2) ∧ ϕG(2) = 0 (λ-a.e.)

by (ii)(b) with E := G(2). Hence, (3.9) is verified.
By (3.9) we have ϕE = ϕE∩F + ϕE\F and ϕF = ϕF∩E + ϕF\E as well as
ϕE\F ∧ϕF\E = 0. Now apply [1, Theorem 1.1(6)] to obtain (iii) as follows:

ϕE ∧ ϕF = (ϕE∩F + ϕE\F ) ∧ (ϕE∩F + ϕF\E)

= ϕE∩F + (ϕE\F ∧ ϕF\E) = ϕE∩F (λ-a.e.).

(iv) Note first that the λ-essentially bounded functions ϕE with E ∈ Σ (see
part (i) above) belong to L1(λg) because λg is a positive, finite measure
on S . Let ξ : L1(λg) → R be a continuous linear functional such that
〈ϕE , ξ〉 = 0 for all E ∈ Σ. Our aim is to deduce that ξ = 0. Since λg being
a positive, finite measure guarantees that L∞(λg) = (L1(λg))

∗ is valid,
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we can select an individual bounded function ψ0 representing the linear
functional ξ. That is,

〈φ, ξ〉 =

∫
T

φψ0g dλ, φ ∈ L1(λg),

and there exist a λg-null set A ∈ S and a positive number M such that
|ψ0(t)| 6M for all t ∈ T \A. The function ψ1 := ψ0χT\A (defined pointwise
on T ) is clearly bounded and S -measurable. Moreover, ψ1 also represents
ξ because ψ1 = ψ0 (λg-a.e.). In particular, since ψ1g ∈ L1(λ), we have∫

T

ϕEψ1g dλ =

∫
T

ϕEψ0g dλ = 〈ϕE , ξ〉 = 0, E ∈ Σ. (3.10)

By Proposition 2.5(ii), the function ψ1g can be approximated in L1(λ) by
elements of h(Y )|T . So, fix any ε > 0 and select f ∈ h(Y ) such that∫

T

|ψ1g − f | dλ <
ε

2
. (3.11)

Now, (3.3) gives Φ(|f |)(Ω) = |Φ(f)|(Ω), so that∫
T

|f | dλ = |Φ(f)|(Ω) (3.12)

by (3.5) with |f | ∈ h(Y ) in place of f . The Hahn Decomposition Theorem,
[29, 6.14], applied to Φ(f) ∈ ca(Σ) provides a set F ∈ Σ satisfying

|Φ(f)|(Ω) = |Φ(f)(F )|+ |Φ(f)(Ω \ F )|. (3.13)

Observe that Φ(f)(F ) =
∫
T
fϕF dλ by (3.7) and that Φ(f)(Ω \ F ) =∫

T
fϕΩ\F dλ by (3.7) with Ω \ F in place of E. Therefore, from (ii)(c)

above, as well as (3.10), (3.11), (3.12) and (3.13), it follows that∫
T

|f | dλ = |Φ(f)(F )|+ |Φ(f)(Ω \ F )| =

∣∣∣∣∣
∫
T

fϕF dλ

∣∣∣∣∣+

∣∣∣∣∣
∫
T

fϕΩ\F dλ

∣∣∣∣∣
=

∣∣∣∣∣
∫
T

ϕF (f − ψ1g) dλ

∣∣∣∣∣+

∣∣∣∣∣
∫
T

ϕΩ\F (f − ψ1g) dλ

∣∣∣∣∣
6
∫
T

(ϕF + ϕΩ\F )|f − ψ1g| dλ =

∫
T

|f − ψ1g| dλ <
ε

2
.

This and (3.11) imply that∫
T

|ψ1g| dλ 6
∫
T

|f − ψ1g| dλ+

∫
T

|f | dλ < ε

2
+
ε

2
= ε.

Since ε > 0 is arbitrary, we conclude that
∫
T
|ψ1g| dλ =

∫
T
|ψ1|g dλ = 0,

that is, ψ1 = 0 (λg-a.e.). As ψ1 represents ξ ∈ (L1(λg))
∗, we then have
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〈φ, ξ〉 =
∫
T
φψ1g dλ = 0, for φ ∈ L1(λg), that is, ξ = 0. So, we have proved

that every continuous linear functional on L1(λg) vanishing on the subset
{ϕE : E ∈ Σ} ⊆ L1(λg) is necessarily the zero functional. So, part (iv)
follows from the Hahn-Banach Theorem. �

Remark 3.3. We have obtained part (i) of Lemma 3.2 as a special case of an
elementary fact, namely Corollary 2.6(ii). On the other hand, its proof as given in
[15, Proof of Theorem 8], uses the Radon-Nikodým derivative (depending on E) of
the scalar measure λE (representing the conical measure vE) with respect to the
decomposable measure λ.

Regarding (ii)(a) of Lemma 3.2, on which subsequent arguments are dependent,
our proof uses the assumption that Hm is an order ideal of ca(Σ). It seems to be
open whether or not this assumption can be weakened to the requirement that
Hm is merely a vector sublattice of ca(Σ) as stated in [15, pp. 91-92 & proof of
Theorem 8].

We now turn our attention to the measure algebra (S
/
N0(λ), λ̄) of the de-

composable measure space (T,S , λ) and the corresponding quotient map

πλ : S → S
/
N0(λ);

see Section 2 for the notation and relevant definitions. Given g ∈ L1(λ), define
a pseudometric dg on S by dg(A,B) :=

∫
A4B |g| dλ for A,B ∈ S . Let ρ(λ)

be the uniformity generated by all the pseudometrics dg with g varying through
L1(λ). The associated Hausdorff uniform space is S

/
N0(λ) and its corresponding

uniformity ρ̂(λ) is generated by the pseudometrics

d̂g : (πλ(A), πλ(B)) 7→ dg(A,B), A,B ∈ S , (3.14)

with g varying through L1(λ). This is a consequence of the fact that sets A,B ∈ S
satisfy λ(A4B) = 0 if and only if dg(A,B) = 0 for all g ∈ L1(λ), which follows
from the fact that χE ∈ L1(λ) whenever λ(E) < ∞ and λ is decomposable; see
the proof of Proposition 213J in [9].

It is worth noting that there exists a lcHs-valued vector measure ν on S such
that the uniformity τ(ν) on S induced by ν (see Section 2) satisfies τ(ν) = ρ(λ)
and τ̂(ν) = ρ̂(λ). For example, this is the case for the vector measure ν : S →
CL1(λ) defined by

ν(A) :=

(∫
A

g dλ

)
g∈L1(λ)

, A ∈ S .

Recall that the weakly complete lcHs Y (hence, also the vector lattice h(Y ))
is specified via a vector measure m : Σ → X defined in the measurable space
(Ω,Σ). We proceed to define a map γ : Σ → S

/
N0(λ). Given E ∈ Σ, take any

function ϕE ∈ L∞(λ) satisfying (3.7). Via Lemma 3.2(ii)(d), select A ∈ S such
that ϕE = χA (λ-a.e.). Define γ(E) := πλ(A) ∈ S

/
N0(λ). This definition does
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not depend on the choice of such a set A ∈ S because, for any other set B ∈ S
satisfying ϕE = χB (λ-a.e.), we have χA = χB (λ-a.e.) and hence, πλ(A) = πλ(B).

Recall the identities N0(mσ) = N0(m), qmσ = qm and Σ
/
N0(mσ) = Σ

/
N0

(m); see (2.8).

Lemma 3.4. The following statements hold for the map γ : Σ→ S
/
N0(λ).

(i) The map γ is a σ-homomorphism between B.a.’s such that

γ−1({0}) = N0(mσ) = N0(m). (3.15)

(ii) Equip each of Σ, Σ
/
N0(m) and S

/
N0(λ) with the uniformities τ(mσ),

τ̂(mσ) and ρ̂(λ), and their associated topologies, respectively.
(a) The map γ is uniformly continuous and has dense range in S

/
N0(λ).

(b) In view of (3.15) define a map γ̂ : Σ
/
N0(m)→ S

/
N0(λ) by

γ̂(qm(E)) := γ(E), E ∈ Σ.

Then, γ̂ is a uniform isomorphism onto its range, that is, γ̂ is bi-
uniformly continuous when its range is equipped with the uniformity
induced by ρ̂(λ).

(iii) The set function ιm := λ̄ ◦ γ on Σ is a [0,∞]-valued measure such that

N0(ιm) = N0(m). (3.16)

Proof.
(i) To prove that γ is a B.a. homomorphism, let E,F ∈ Σ. Then ϕE , ϕF ∈

L∞(λ). Select sets A,B ∈ S satisfying ϕE = χA (λ-a.e.) and ϕF = χB
(λ-a.e.), so that γ(E) = πλ(A) and γ(F ) = πλ(B); recall the discussion
prior to this lemma. Now, it follows from Lemma 3.2(iii) that

ϕE∩F = ϕE ∧ ϕF = χA ∧ χB = χA∩B (λ-a.e.)

and hence, that

γ(E ∩ F ) = πλ(A ∩B) = πλ(A) ∧ πλ(B) = γ(E) ∧ γ(F ) (3.17)

in S
/
N0(λ) because πλ is a B.a. homomorphism. Moreover, as ϕE = χA

(λ-a.e.), we have

ϕΩ\E = 1− ϕE = 1− χA = χT\A (λ-a.e.)

via Lemma 3.2(ii)(c). So, γ(Ω \ E) = πλ(T \ A), of which the right-side
equals the complement of πλ(A) in S

/
N0(λ). This together with (3.17)

imply that γ is a B.a. homomorphism. An immediate consequence is that
its range R(γ) is a Boolean subalgebra of S

/
N0(λ).

In order to verify that γ is a B.a. σ-homomorphism, take an increasing
sequence {E(n)}∞n=1 in Σ and let E :=

⋃∞
n=1E(n). Select sets A(n) ∈ S
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for n ∈ N with ϕE(n) = χA(n) (λ-a.e.), so that γ(E(n)) = πλ(A(n)) in
S
/
N0(λ). Set A :=

⋃∞
n=1A(n) ∈ S . The claim is that∫

T

fϕE dλ =

∫
T

fχA dλ, f ∈ h(Y ). (3.18)

Indeed, first suppose that f ∈ h(Y )+. Since Φ(f) ∈ ca(Σ), we have limn→∞
Φ(f)(E(n)) = Φ(f)(E). Moreover, χA(n)(t) ↑ χA(t) for λ-a.e. t ∈ T because
it follows from (3.9), with G(1) := E(n+ 1) \E(n) and G(2) := E(n), that

χA(n+1) = ϕE(n+1) = ϕE(n+1)\E(n) + ϕE(n) > ϕE(n) = χA(n)

holds λ-a.e. on T for every n ∈ N. So the Monotone Convergence Theorem
for λ ensures the validity of (3.18) as∫

T

fϕE dλ = Φ(f)(E) = lim
n→∞

Φ(f)(E(n)) = lim
n→∞

∫
T

fϕE(n) dλ

= lim
n→∞

∫
T

fχA(n) dλ =

∫
T

fχA dλ,

in which we have used Lemma 3.2(i). So, (3.18) is valid for f ∈ h(Y )+.
Since each f ∈ h(Y ) is given by f = f+ − f− with f+, f− ∈ h(Y )+,
[1, Theorem 1.1(2)], the identity (3.18) actually holds for all f ∈ h(Y ).
Consequently, we can apply Corollary 2.6(i) with (ϕE − χA) in place of ψ
there to deduce that ϕE = χA (λ-a.e.). Therefore

γ(E) := πλ(A) = πλ

( ∞⋃
n=1

A(n)

)
=

∞∨
n=1

πλ(A(n)) =

∞∨
n=1

γ(E(n))

in S
/
N0(λ) as πλ is a B.a. σ-homomorphism. So, γ is also a B.a.

σ-homomorphism.
To obtain (3.15), let us first verify that the following three conditions for
any set E ∈ Σ are equivalent:

(i-a) γ(E) = 0;

(i-b) Φ(f)(E) = 0 for all f ∈ h(Y ); and

(i-c) |〈m,x∗〉|(E) = 0 for all x∗ ∈ X∗.
(i-a)⇔(i-b). Select A ∈ S satisfying ϕE = χA (λ-a.e.) so that γ(E) =
πλ(A). Then, we have

(i-a)⇔ A ∈ N0(λ)⇔ ϕE = 0 (λ-a.e.).

Via Corollary 2.6(i), with ψ := ϕE , the identity ϕE = 0 (λ-a.e.) is equiv-
alent to the condition that

∫
T
fϕE dλ = 0 for all f ∈ h(Y ). The latter is

equivalent to (i-b) via (3.7).
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(i-b)⇒(i-c). Choose any x∗ ∈ X∗. Then |〈m,x∗〉| ∈ Hm and, with f :=
|〈m,x∗〉|∼ ∈ Y ∗ ⊆ h(Y ), we have via Lemma 3.1 that Φ(f) = |〈m,x∗〉|.
Accordingly Φ(f)(E) = |〈m,x∗〉|(E). So (i-b) implies (i-c).
(i-c)⇒(i-b). Fix any f ∈ h(Y ). As Φ(f) ∈ Hm, there exists n ∈ N and
x∗1, . . . , x

∗
n ∈ X∗ such that

|Φ(f)| 6
n∑
j=1

|〈m,x∗j 〉| on Σ; (3.19)

see (3.1) with µ := Φ(f). Then (i-c) implies (i-b) because

|Φ(f)(E)| 6 |Φ(f)|(E) 6
n∑
j=1

|〈m,x∗j 〉|(E).

So we have established all the stated equivalences.
Now, (3.15) holds because (2.4) implies that (i-c) holds if and only if
E ∈ N0(m) and because of the equivalence (i-a)⇔(i-c). Part (i) is thereby
established.

(ii) To verify (a), fix g ∈ L1(λ). Let ε > 0. By Proposition 2.5(ii) select f ∈
h(Y ) such that

∫
T
|g − f | dλ < ε. Given any E,F ∈ Σ, choose A,B ∈ S

satisfying ϕE = χA (λ-a.e.) and ϕF = χB (λ-a.e.). Since γ(E) = πλ(A)
and γ(F ) = πλ(B), it follows from (3.14) that

d̂g(γ(E), γ(F )) =

∫
A4B

|g| dλ

6
∫
A4B

|g − f | dλ+

∫
A4B

|f | dλ

< ε+

∫
A4B

|f | dλ.

(3.20)

We claim that ∫
A4B

|f | dλ = |Φ(f)|(E4F ). (3.21)

To verify this note that (3.9), with G(1) := E \ F and G(2) := E ∩ F , and
Lemma 3.2(iii) imply that

ϕE\F = ϕE − ϕE∩F = ϕE − (ϕE ∧ ϕF ) = χA − (χA ∧ χB) = χA\B

holds λ-a.e. on T. Similarly, ϕF\E = χB\A (λ-a.e.). Clearly χA\B+χB\A =
χA4B . Again via (3.9), with G(1) := E \ F and G(2) := F \ E, we also
have ϕE4F = ϕE\F +ϕF\E . It follows that ϕE4F = χA4B (λ-a.e.). Hence,
(3.21) holds, via (3.3) and (3.7) with E4F in place of E, because

|Φ(f)|(E4F ) = Φ(|f |)(E4F ) =

∫
T

|f |ϕE4F dλ =

∫
T

|f |χA4B dλ.
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Now, take x∗1, . . . , x∗n ∈ X∗ satisfying (3.19). Then, (3.20) and (3.21) yield

d̂g(γ(E), γ(F )) 6 ε+

n∑
j=1

|〈m,x∗j 〉|(E4F ).

Since the function g ∈ L1(λ), the sets E,F ∈ Σ, and ε > 0 are arbitrary,
this inequality verifies the uniform continuity of γ (via the definition of
τ(mσ)).
To prove that R(γ) is dense in S

/
N0(λ) fix g ∈ (L1(λ))+ and ε > 0. Let

A ∈ S . Then there exists an individual function ψ ∈ span{ϕE : E ∈ Σ}
such that ∫

T

|χA − ψ|g dλ <
ε

2
;

see Lemma 3.2(iv). Let B := {t ∈ T : |1− ψ(t)| 6 1
2} ∈ S . It is routine to

verify that |χA(t)− χB(t)| 6 2|χA(t)− ψ(t)| for each t ∈ T and hence,∫
T

|χA − χB |g dλ 6 2

∫
T

|χA − ψ|g dλ < ε. (3.22)

To see that πλ(B) ∈ R(γ), let us write ψ =
∑n
j=1 ajϕE(j) for some

a1, . . . , an ∈ R and E(1), . . . , E(n) ∈ Σ with n ∈ N. Select A(1), . . . , A(n)
from S satisfying χA(j) = ϕE(j) (λ-a.e.) and hence, πλ(A(j)) = γ(E(j))
for j = 1, . . . , n. Since Σ and S are σ-algebras, πλ and γ are B.a. ho-
momorphisms, and R(γ) is a Boolean subalgebra of S

/
N0(λ), it follows

that there exist distinct real numbers b1, . . . , bl and pairwise disjoint sets
B(1), . . . , B(l) ∈ S with T =

⋃l
k=1B(k) such that

∑n
j=1 ajχA(j) =∑l

k=1 bkχB(k) pointwise on T and such that πλ(B(k) ∈ R(γ) for k =

1, . . . , l. So, we may assume that ψ =
∑l
k=1 bkχB(k) pointwise on T . Let

K ⊆ {1, . . . , l} denote the subset of all those k’s satisfying |1 − bk| 6 1
2 .

Then the set B equals
⋃
k∈K B(k), from which it follows that

πλ(B) = πλ

( ⋃
k∈K

B(k)

)
=
∨
k∈K

πλ(B(k)) ∈ R(γ) (3.23)

as both πλ and γ are B.a. σ-homomorphisms and because R(γ) is a Boolean
subalgebra of S

/
N0(λ). An appeal to (3.14) and (3.22) gives

d̂g(πλ(A), πλ(B)) = dg(A,B) =

∫
T

|χA − χB |g dλ < ε.

This together with (3.23) imply that R(γ) is dense in S
/
N0(λ) because

A ∈ S is arbitrary.
Next let us verify (b). It is clear from (3.15) that γ̂ is injective. The uniform
continuity of γ̂ follows from that of γ (cf. part (a)) and the definition of
τ̂(mσ); see the discussion prior to Proposition 2.4. To prove that γ̂ admits
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a uniformly continuous inverse, let x∗ ∈ X∗ and set µ := |〈m,x∗〉| ∈ Hm.
Consider the function f := µ̃ ∈ Y ∗ ⊆ h(Y ), which satisfies Φ(f) = Φ(µ̃) =
µ. Then, given E,F ∈ Σ, we have

|Φ(f)|(E4F ) = |µ|(E4F ) = |〈m,x∗〉|(E4F ). (3.24)

For ease of notation, let us write df (·, ·) := df |T (·, ·), after noting that
f |T ∈ h(Y )|T ⊆ L1(λ). Take A,B ∈ S satisfying πλ(A) = γ(E) and
πλ(B) = γ(F ). From (3.14), (3.21) and (3.24) we have

d̂f (γ(E), γ(F )) = df (A,B) =

∫
A4B

|f | dλ = |Φ(f)|(E4F )

= |〈m,x∗〉|(E4F ).

(3.25)

Recall that τ̂(mσ) is generated by the pseudometrics (2.10), with x∗ vary-
ing through X∗. So, (3.25) implies that γ̂ admits a uniformly continuous
inverse because

d̂f (γ(E), γ(F )) = d̂f (γ̂(qm(E)), γ̂(qm(F ))), E, F ∈ Σ.

(iii) Let {En}∞n=1 be a sequence of pairwise disjoint sets in Σ. Since γ is
a B.a. σ-homomorphism (see part (i) above), it follows that the se-
quence {γ(En)}∞n=1 is also pairwise disjoint and satisfies γ(

⋃∞
n=1En) =∨∞

n=1 γ(En) in S
/
N0(λ). So, we have

ιm

( ∞⋃
n=1

En

)
= λ̄

(
γm

( ∞⋃
n=1

En

))
= λ̄

( ∞∨
n=1

γ(En)

)

=

∞∑
n=1

λ̄(γ(En)) =

∞∑
n=1

ιm(En)

from (2.1) with ῑ := λ̄ and an := En for n ∈ N. Thus, ιm : Σ → [0,∞] is
a measure.
Next, by (2.1) with ῑ := λ̄ and (3.15), we have

N0(ιm) = (ιm)−1({0}) = γ−1
((
λ̄
)−1

({0})
)

= γ−1({0}) = N0(m).

This completes the proof of Lemma 3.4. �

We now come to the proof of our main result, namely Theorem 2 (see Section 1).

Proof of Theorem 2. (i)⇒(ii). Let the notation be as in Lemma 3.4 and define
ι : Σ→ [0,∞] to be the scalar measure ιm := λ̄◦γ : Σ→ [0,∞]; see Lemma 3.4(iii).
We first show that γ is surjective. By Proposition 2.4 the vector measuremσ : Σ→
Xσ(X,X∗) is also closed and hence, Σ

/
N0(m) = Σ

/
N0(mσ) is τ̂(mσ)-complete. Re-

call the uniform isomorphism γ̂ : Σ
/
N0(m) → S

/
N0(λ), considered as mapping
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onto its range; see Lemma 3.4(ii)(b). Since the domain Σ
/
N0(m) = Σ

/
N0(mσ)

of γ̂ is τ(mσ)-complete, its range R(γ̂) is then also ρ̂(λ)-complete and hence, is
a closed set in the Hausdorff uniform space S

/
N0(λ). So, R(γ) which equals

R(γ̂) is closed in S
/

N0(λ). This implies that R(γ) = S
/
N0(λ) as we already

know that R(γ) is dense in S
/
N0(λ); see Lemma 3.4(ii)(a). We have thereby

established the surjectivity of γ.
Fixing x∗ ∈ X∗, let us show that |〈m,x∗〉| is truly continuous with respect

to ι. To this end, we may assume that |〈m,x∗〉| is not the zero measure. First, we
have |〈m,x∗〉| << ι. This is a consequence of (2.2) (with ξ := |〈m,x∗〉|), (2.4) and
(3.16). Define f := |〈m,x∗〉|∼ ∈ Y ∗ ⊆ h(Y ) and recall that |〈m,x∗〉| ∈ Hm. Then,∫

Ω
|f | dλ <∞ by Proposition 2.5(i) and Φ(f) = |〈m,x∗〉| on Σ by Lemma 3.1.
Let us observe the general fact that, given any E ∈ Σ,∫

A

|f |dλ = |〈m,x∗〉|(E), ∀A ∈ S satisfying πλ(A) = γ(E). (3.26)

This is a consequence of the definition of γ(E) together with (3.3) and (3.7) as
follows: ∫

A

|f | dλ =

∫
T

|f |ϕE dλ = Φ(|f |)(E) = |Φ(f)|(E) = |〈m,x∗〉|(E).

Now select E ∈ Σ with |〈m,x∗〉|(E) > 0 and choose A ∈ S satisfying πλ(A) =
γ(E). As λ is decomposable and

∫
A
|f | dλ > 0 by (3.26), there exists α ∈ A such

that
∫
A∩T (α)

|f | dλ > 0. Since γ is surjective, there exists F ∈ Σ with γ(F ) =

πλ(A ∩ T (α)). As γ and πλ are both B.a. homomorphisms and γ(E) = πλ(A), we
have

γ(E ∩ F ) = γ(E) ∧ γ(F ) = γ(E) ∧ πλ(A ∩ T (α))

= γ(E) ∧ πλ(A) ∧ πλ(T (α)) = πλ(A ∩ T (α)).

So, from (3.26) with E ∩ F in place of E and A ∩ T (α) in place of A, it follows
that

|〈m,x∗〉|(E ∩ F ) =

∫
A∩T (α)

|f | dλ > 0. (3.27)

On the other hand, we have

0 < ι(E ∩ F ) 6 ι(F ) <∞. (3.28)

To see this, note that ι(E ∩ F ) > 0 via (3.27) because |〈m,x∗〉| << ι. Moreover,
we also have

ι(F ) = λ̄ ◦ γ(F ) = λ̄ ◦ πλ(A ∩ T (α)) = λ(A ∩ T (α)) 6 λ(T (α)) <∞.
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So, (3.28) holds. This, together with (3.27), ensures that |〈m,x∗〉| is truly con-
tinuous with respect to ι as we already know that |〈m,x∗〉| << ι. Now, from
Lemma 2.1(ii) with ξ := 〈m,x∗〉, we conclude that 〈m,x∗〉 is also truly continuous
with respect to ι.

Finally, let us show that ι is localizable. First the B.a. Σ
/
N0(ι) is complete be-

cause Σ
/
N0(ι) = Σ

/
N0(m) as B.a.’s (via (3.16) with ι in place of ιm) and because

the B.a. Σ
/
N0(m) is complete for the closed vector measure m (see Lemma 2.2).

To see that ι is semifinite, take any E ∈ Σ with ι(E) = ∞. Then E 6∈ N0(m)
and hence, there exists x∗ ∈ X∗ such that E 6∈ N0(〈m,x∗〉) (see (2.4)), that is,
|〈m,x∗〉|(E) > 0. By the first part of this proof there exists F ∈ Σ satisfying
(3.28), which implies that ι is semifinite as (E ∩F ) ⊆ E. Thus, ι is localizable. So,
we have deduced (ii) from (i).

(ii)⇒(iii). Let x∗ ∈ X∗. Since 〈m,x∗〉 is truly continuous with respect to ι, there
is a ι-integrable function φx∗ : Ω → C such that 〈m,x∗〉(E) =

∫
E
φx∗ dι for each

E ∈ Σ; see Lemma 2.1(i). Define a function F : Ω→ (X∗)a by 〈F (ω), x∗〉 := φx∗(ω)
for each ω ∈ Ω and x∗ ∈ X∗. Then, 〈F, x∗〉 is ι-integrable for each x∗ ∈ X∗ and
satisfies (1.1).

(iii)⇒(ii). For each x∗ ∈ X∗, set φx∗ := 〈F, x∗〉. Then the function φx∗ : Ω→ C
is ι-integrable and 〈m,x∗〉(E) =

∫
E
φx∗ dι for E ∈ Σ. Again, by Lemma 2.1(i), the

measure 〈m,x∗〉 is truly continuous with respect to ι. So, the implication (iii)⇒(ii)
is established.

(ii)⇒(i). This is precisely Theorem 1 of Section 1.
Finally, in the proof of (i)⇒(ii), we have chosen ι := ιm, for which we have

N0(ι) = N0(ιm) = N0(m); see (3.16). The proof of Theorem 2 is thereby complete.
�

Remark 3.5. Let us return to the discussion immediately after Theorem 2 in
Section 1. In the notion from there, letH1 denote the order ideal in ca(Σ) generated
by

{|〈m,x∗〉| : x∗ ∈ X∗} ∪ {δω : ω ∈ Ω}.

Denote the algebraic dual of H1 by Y1 (which is a weakly complete lcHs for
σ(Y1, H1)) and let h(Y1) be the vector lattice generated by (Y1)∗ in RY . As in
Lemma 3.1 we can define Φ1 : h(Y1) → H1 which then induces the conical mea-
sure u1 via

u1(f) := Φ1(f)(Ω), f ∈ h(Y1).

Apply Proposition 2.5 to select a decomposable measure (T1,S1, λ1) representing
u1 and then a B.a. σ-homomorphism γ1 : Σ → S1

/
N0(λ1) as in Lemma 3.4.

However, since now {δω : ω ∈ Ω} ⊆ H1, it turns out that γ−1
1 ({0}) = {∅},

which prevents γ1 from factoring through the quotient B.a. Σ
/
N0(m). This is

what causes the difficulty mentioned in Section 1. It is in contrast with our B.a.
σ-homomorphism γ : Σ → S

/
N0(λ) which does factor through Σ

/
N0(m) as

γ = γ̂ ◦ qm; see Lemma 3.4(ii)(b). Since the proof of Corollary 13 given in [15]
requires a B.a. isomorphism defined on Σ

/
N0(m), it appears to be the case that

Theorem 12 of [15] (and its proof) are not applicable to establish Corollary 13.
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We also point out that the proof of Corollary 13 in [15] relies on the fact that
m is a closed vector measure if and only if so is mσ, without any explanation.
This fact is exactly our Proposition 2.4; it first appeared in [26], albeit with an
incorrect proof, and does not seem to have appeared before 1984.

4. Appendices

A. Proof of Theorem 1

The standing assumption throughout Section 4 is that m is a vector measure,
defined on a measurable space (Ω,Σ), with values in a (complex) lcHs X.

The sequential completion X̃ of X is defined as the smallest sequentially closed
linear subspace of the quasi-completion of X, [17, pp.296-297], [24, p.14]. So, the
initial topology on X is the induced topology by X̃. Let JX : X → X̃ denote the
natural embedding. Since X is dense in X̃, the dual space (X̃)∗ of X̃ is identified
with the dual space X∗ of X. In precise terms, the linear map ξ∗ 7→ ξ∗ ◦ JX for
ξ∗ ∈ (X̃)∗ is a linear isomorphism from (X̃)∗ onto X∗.

Every p ∈ P(X) admits a unique extension p̃ ∈ P(X̃) and conversely, every
continuous seminorm on X̃ is realized as such an extension. In other words,

P(X̃) = {p̃ : p ∈P(X)}.

We will require the identity

U◦p = {ξ∗ ◦ JX : ξ∗ ∈ U◦p̃ }, p ∈P(X). (A.1)

To establish (A.1) let ξ∗ ∈ (X̃)∗. Then the following conditions are equivalent.

(a) ξ∗ ◦ JX ∈ U◦p .
(b) |〈x, ξ∗ ◦ JX〉| 6 p(x), x ∈ X.
(c) |〈JX(x), ξ∗〉| 6 p̃(JX(x)), x ∈ X.
(d) |〈ξ, ξ∗〉| 6 p̃(ξ), ξ ∈ X̃.

Indeed, (a)⇔(b) is clear by the definition of U◦p . Further, the equivalence (b)⇔(c)
can be obtained via the definition of p̃. To verify the implication (c)⇒(d), let ξ ∈ X̃.
Then there exists a net {xκ} in X convergent to ξ in X̃, i.e., limκ JX(xκ) = ξ in
X̃, because X is dense in X̃. Then (c) implies (with xκ in place of x) that

|〈ξ, ξ∗〉| = |〈lim
κ
JX(xκ), ξ∗〉| = lim

κ
|〈JX(xκ), ξ∗〉| 6 lim

κ
p̃(JX(xκ)) = p̃(ξ).

We have thereby established (d). The reverse implication (d)⇒(c) is clear because
J(x) ∈ X̃ for all x ∈ X. The four equivalences (a)–(d) easily imply (A.1).

The composition
JX ◦m : Σ→ X̃

is a vector measure because JX is continuous and linear.

Lemma A.1. The following statements hold.
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(i) For every p ∈P(X),

p(m)(E) = p̃(JX ◦m)(E), E ∈ Σ. (A.2)

(ii) The identity N0(m) = N0(JX ◦ m) holds, so that we have Σ
/
N0(m) =

Σ
/
N0(JX ◦m) as B.a.’s.

(iii) The uniformities τ̂(m) and τ̂(JX ◦m) coincide on Σ
/
N0(m).

(iv) The vector measure m is closed if and only if so is the vector measure
JX ◦m : Σ→ X̃.

Proof.

(i) We acquire (A.2) from (A.1) as follows:

p(m)(E) = sup{|〈m,x∗〉|(E) : x∗ ∈ U◦p }
= sup{|〈m, ξ∗ ◦ JX〉|(E) : ξ∗ ∈ U◦p̃ }
= sup{|〈JX ◦m, ξ∗〉|(E) : ξ∗ ∈ U◦p̃ } = p̃(JX ◦m)(E).

(ii) This follows from (i) once we recall the definitions of N0(m) and N0(JX◦m)
from Section 2; see also (2.4).

(iii) By (i) we have p(m) = p̃(JX ◦m) on Σ and hence, via part (ii), that p̂(m) =
(p̃)̂ (JX ◦m) on Σ

/
N0(m) whenever p ∈P(X). So, the uniformities τ̂(m)

and τ̂(JX ◦m) coincide; see also [24, Lemma 2.5(iii)].
(iv) This follows from (iii) and the definition of a closed vector measure. �

Lemma A.2. Given p ∈P(X), there exists x∗p ∈ X∗ such that µ := |〈m,x∗p〉| has
the property

lim
µ(E)→0

p(m)(E) = 0. (A.3)

Proof. Let Xp denote the Banach space completion of the quotient normed space
X
/
p−1({0}) with respect to the norm induced by p. By Λp : X → Xp we denote

the corresponding quotient map. Then, we have

U◦p = {ξ∗ ◦ Λp : ξ∗ ∈ B[X∗p ]}. (A.4)

Here, B[X∗p ] denotes the closed unit ball of the dual Banach space X∗p of Xp.
The composition Λp ◦ m : Σ → Xp is also a vector measure because Λp is

continuous and linear. Let ‖Λp ◦ m‖ : Σ → [0,∞) denote the semivariation of
Λp ◦m with respect to the norm on Xp, [5, Definition I.1.4], that is,

‖Λp ◦m‖(E) := sup{|〈Λp ◦m, ξ∗〉|(E) : ξ∗ ∈ B[X∗p ]}, E ∈ Σ.

It follows from (A.4) that

p(m)(E) = ‖Λp ◦m‖(E), E ∈ Σ; (A.5)

see also the formula (2.11) with f := χE in [24, p.11]. Via [5, Theorem I.2.1]
and Rybakov’s Theorem, [5, Theorem IX.2.2], there exists ξ∗ ∈ X∗p such that
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limν(E)→0 ‖Λp ◦m‖(E) = 0 with ν := |〈Λp ◦m, ξ∗〉|. Then x∗p := ξ∗ ◦Λp belongs to
X∗ and µ := |〈m,x∗p〉| is precisely ν. It follows from (A.5) that

lim
µ(E)→0

p(m)(E) = lim
ν(E)→0

‖Λp ◦m‖(E) = 0,

which is precisely (A.3). �

A Σ-measurable function f : Ω → C is called m-integrable if the following
two conditions are satisfied: f is 〈m,x∗〉-integrable for every x∗ ∈ X∗ and, given
E ∈ Σ, there exists a unique vector

∫
E
f dm ∈ X such that

〈
∫
E

f dm, x∗〉 =

∫
E

f d〈m,x∗〉, x∗ ∈ X∗.

In this case, the indefinite integral of f with respect to m is the X-valued set
function

mf : E 7→
∫
E

f dm, E ∈ Σ.

It follows from the Orlicz-Pettis Theorem, [19, Theorem 1], that mf is σ-additive.
By L 1(m) we denote the complex vector space of all m-integrable functions

on Ω. Every C-valued, Σ-simple function on Ω is m-integrable. Indeed, for every
E ∈ Σ, its characteristic function χE is m-integrable with

∫
F
χE dm = m(E ∩ F )

for F ∈ Σ. Furthermore, if f ∈ L 1(m) and E ∈ Σ, then fχE ∈ L 1(m) and∫
F
fχE dm :=

∫
E∩F f dm for F ∈ Σ.

Given p ∈ P(X), define a function p(m)1 : L 1(m) → [0,∞) by p(m)1(f) :=
p(mf )(Ω) < ∞ for f ∈ L 1(m). Then,

p(m)1(f) = sup

{∫
Ω

|f | d|〈m,x∗〉| : x∗ ∈ U◦p
}
, f ∈ L 1(m), (A.6)

[16, Lemma II.2.2(ii)], [24, p.11], by which it is clear that p(m)1 is a seminorm.
Equip L 1(m) with the locally convex topology (called the mean convergence topol-
ogy) generated by the seminorms p(m)1 with p varying through P(X). Its asso-
ciated lcHs is the quotient space

L1(m) := L 1(m)
/
N (m)

with respect to the closed linear subspace

N (m) :=
⋂

p∈P(X)

p(m)−1
1 ({0}).

It is clear that a function f ∈ L 1(m) belongs to N (m) if and only if mf is the
zero vector measure, that is,

∫
E
f dm = 0 for all E ∈ Σ. Moreover, a Σ-measurable

function f : Ω→ C is equal to 0 outside of some m-null set if and only if f is both
m-integrable and m-null. Given p ∈P(X), define p̄(m)1 : L1(m)→ [0,∞) by

p̄(m)1(f + N (m)) := p(m)1(f), f ∈ L 1(m).

The topology in the lcHs L1(m) is, of course, generated by the seminorms p̄(m)1

with p varying through P(X).
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Define
Σ(m) := {χE + N (m) : E ∈ Σ} ⊆ L1(m).

In [16, p.25 and p.71], the identification of Σ(m) with Σ
/
N0(m) is adopted and

the vector measure m is defined to be closed when Σ(m) is a complete subset of
the lcHs L1(m). Recalling our definition of a closed vector measure from Section
2, we shall formally verify in Lemma A.3(i) below that the two definitions are
equivalent.

Lemma A.3. The following statements hold for the vector measure m : Σ→ X.

(i) The vector measure m is closed if and only if Σ(m) is a complete subset
of the lcHs L1(m).

(ii) If Σ(m) is relatively weakly compact in L1(m), then m is a closed vector
measure. The converse holds if, in addition, X is sequentially complete.

(iii) The following assertions are equivalent.

(a) The vector measure m : Σ→ X is closed.

(b) The vector measure JX ◦m : Σ→ X̃ is closed.

(c) The subset Σ(JX ◦ m) := {χE + N (JX ◦m) : E ∈ Σ} is relatively
weakly compact in the lcHs L1(JX ◦m).

Proof.

(i) Via (A.6) with f := χE and the definition of p(m) as given Section 2, we
have

p(m)(E) = p(m)1(χE), E ∈ Σ, (A.7)

for each p ∈ P(X). So, the quotient map qm : Σ → Σ
/
N0(m) (see Sec-

tion 2) induces the canonical map

qm(E) := E + N0(m) 7→ (χE + N (m)), E ∈ Σ, (A.8)

from Σ
/
N0(m) onto Σ(m), which is well defined and is a bijection. More-

over, we have, via (A.7) for each p ∈P(X), that

p̂(m)(qm(E4F )) := p(m)(E4F ) = p(m)1(χE4F ) = p(m)1(χE − χF )

= p̄(m)1((χE + N (m))− (χF + N (m)))

whenever E,F ∈ Σ. This implies that the canonical map (A.8) is a uniform
isomorphism with respect to τ̂(m) on Σ

/
N0(m) and the uniformity on

Σ(m) induced by L1(m). Thus, Σ
/
N0(m) is τ̂(m)-complete if and only if

Σ
/
N0(m) is a complete subset of L1(m). This establishes (i).

(ii) See [22, Proposition 2.4 and Remark 2.6(vi)].
(iii) For (a)⇔(b), see Lemma A.1(iv). The equivalence (b)⇔(c) follows from

part (ii) above with X̃ in place of X and JX ◦m instead of m. �
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From now on, let us identify L 1(m) with L1(m) except when precise arguments
require a distinction between those two spaces. So, we treat an equivalence class
f + N (m) in L1(m) as the function f , and functions which are equal outside of
an m-null set will be identified.

To consider the weak topology on L1(m) later, we will require the following
result.

Lemma A.4. Let η ∈ (L1(m))∗.
(i) The set function νη : Σ → C defined by νη(E) := 〈χE , η〉, for E ∈ Σ, is

σ-additive.
(ii) Every m-integrable function f is also νη-integrable and 〈f, η〉 =

∫
Ω
f dνη.

(iii) Suppose that ι : Σ → [0,∞] is a scalar measure such that 〈m,x∗〉 is truly
continuous with respect to ι for all x∗ ∈ X∗. Then, νη is also truly continu-
ous with respect to ι. Consequently, νη admits a Radon-Nikodým derivative
ψη ∈ L1(ι) with respect to ι, that is,

νη(E) =

∫
E

ψη dι, E ∈ Σ.

Proof.
(i) The finite additivity of νη follows from the linearity of η and the identity

χE∪F = χE+χF whenever E,F ∈ Σ are disjoint. To prove the σ-additivity
of νη, select p ∈P(X) such that

|〈f, η〉| 6 p(m)1(f), f ∈ L1(m), (A.9)

which is possible as η : L1(m)→ C is continuous and linear. So, we have

|νη(E)| = |〈χE , η〉| 6 p(m)1(χE) = p(m)(E), E ∈ Σ, (A.10)

by (A.7) and (A.9) with f := χE . Let En ↓ ∅ in Σ. Then (A.10),
with En in place of E for n ∈ N, gives limn→∞ νη(En) = 0 because
limn→∞ p(m)(En) = 0, [16, Lemma II.1.3], [18, Theorem 1.3]. Thus, νη
is σ-additive.

(ii) If E ∈ N0(m), then Σ∩E ⊆ N0(m) and hence, χF∩E ∈ N (m) for F ∈ Σ
via (A.7) with F ∩ E in place of E, which implies that

N0(m) ⊆ N0(νη) (A.11)

as η vanishes on N (m).
Via [24, Lemma 2.7(i)] we can find Σ-simple functions sn : Ω → C for
n ∈ N such that |sn| 6 |f | for n ∈ N and limn→∞ sn = f pointwise outside
of an m-null set E(0) and such that

lim
n→∞

sn = f (A.12)

in the mean convergence topology. We may assume the E(0) = ∅, that is,
limn→∞ sn = f pointwise on Ω, because we can identify sn with snχΩ\E(0)
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and f with fχΩ\E(0) as elements of L1(m). Now, given E ∈ Σ, we have
from (A.12) that limn→∞ snχE = fχE for the mean convergence topology
in L1(m) and hence, the continuity of η yields

lim
n→∞

∫
E

sn dνη = lim
n→∞

〈snχE , η〉 = 〈fχE , η〉

because each sn for n ∈ N is clearly νη-integrable and satisfies
∫
E
sn dνη =

〈snχE , η〉. So, it follows from [18, Lemma 2.3] that f is νη-integrable and∫
Ω
f dνη = 〈f, η〉.

(iii) Let p ∈ P(X) be as in (A.9). Via Lemma A.2, select x∗p ∈ X∗ satisfying
(A.3). Then (A.10) implies, with µ := |〈m,x∗p〉|, that limµ(E)→0 νη(E) = 0.
That is, νη << µ and hence,

N0(〈m,x∗p〉) ⊆ N0(νη). (A.13)

Since 〈m,x∗p〉 is truly continuous with respect to ι by assumption, there is
a sequence {En}∞n=1 in Σ such that ι(En) < ∞ for each n ∈ N and such
that (Ω \

⋃∞
n=1En) is 〈m,x∗p〉-null; apply Lemma 2.1(i) with ξ := 〈m,x∗p〉.

So, (Ω \
⋃∞
n=1En) is also νη-null by (A.13). Again by Lemma 2.1(i), now

with ξ := νη, the measure νη is truly continuous with respect to ι.
The remaining part of (iii) follows via Lemma 2.1(i) with ξ := νη. �

Assume, for the moment, that the lcHs X is sequentially complete and that
ι : Σ → [0,∞] is a localizable measure such that 〈m,x∗〉 is truly continuous with
respect to ι for every x∗ ∈ X∗. Then N0(ι) ⊆ N0(m) via (2.4). Next, every
individual function g ∈ L∞(ι) is m-integrable. Indeed, choose a positive number
M > 0 and a ι-null set E ∈ Σ such that |g(ω)| 6 M for every ω ∈ (Ω \ E). Then
E ∈ N0(m) as N0(ι) ⊆ N0(m) and hence, gχE ∈ N (m). So, g = gχΩ\E + gχE ∈
L1(m) because the bounded function gχΩ\E is m-integrable, [16, Lemma II.3.1],
[18, p.161].

Let Ψ : L∞(ι) → L1(m) be the natural map which assigns to each g ∈ L∞(ι)
the m-integrable function g in L1(m). Recalling that L∞(ι) and L1(m) are the
quotient spaces modulo ι-null andm-null functions, respectively, we need to ensure
that Ψ is well defined. This can be seen once we observe that, if g1 and g2 are
two individual functions in L∞(ι) such that g1 = g2 pointwise ι-a.e., then the m-
integrable functions g1 and g2 coincide pointwise outside of an m-null set because
N0(ι) ⊆ N0(m).

Let ι : Σ → [0,∞] be a localizable measure. Then the canonical map Jι from
L∞(ι) to (L1(ι))∗ is a bijective, isometric isomorphism, [9, Theorem 243G(b)], and
so the weak∗ topology σ(L∞(ι), L1(ι)) is well defined on L∞(ι).

Lemma A.5. Let m : Σ → X be a vector measure, with X a sequentially com-
plete lcHs, and ι : Σ → [0,∞] be a localizable measure such that 〈m,x∗〉 is truly
continuous with respect to ι for every x∗ ∈ X∗.

(i) The linear map Ψ : L∞(ι) → L1(m) is continuous with respect to the
weak∗ topology σ(L∞(ι), L1(ι)) on L∞(ι) and the weak topology σ(L1(m),
(L1(m))∗) on L1(m).
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(ii) The image Ψ(B[L∞(ι)]) of the closed unit ball B[L∞(ι)] is weakly compact
in L1(m).

(iii) The vector measure m is closed.

Proof.

(i) Let η ∈ (L1(m))∗. Then, it follows from Lemma A.4 above that

〈Ψ(g), η〉 =

∫
Ω

g dνη =

∫
Ω

gψη dι = 〈ψη, g〉, g ∈ L∞(ι),

with ψη ∈ L1(ι). This implies (i) as L∞(ι) = (L1(ι))∗ and because the
seminorms generating σ(L∞(ι), L1(ι)) are given by

g 7→ |〈g, ψ〉| =
∣∣∣∣∫

Ω

gψ dι

∣∣∣∣ , g ∈ L∞(ι),

for each ψ ∈ L1(ι), and those generating σ(L1(m), (L1(m))∗) are given by

h 7→ |〈h, η〉|, h ∈ L1(m),

for each η ∈ (L1(m))∗.
(ii) This is a consequence of both part (i) and the fact that B[L∞(ι)] is weak∗

compact in L∞(ι) by Alaoglu’s Theorem.
(iii) Since {χE : E ∈ Σ} ⊆ B[L∞(ι)] and Σ(m) = Ψ({χE : E ∈ Σ}) in L1(m),

part (iii) follows from (ii) and Lemma A.3(iii). �

Proof of Theorem 1. Given ξ∗ ∈ (X̃)∗, we have 〈JX◦m, ξ∗〉 = 〈m, ξ∗◦JX〉 on Σ.
So, 〈JX ◦ m, ξ∗〉 is truly continuous with respect to ι because so is 〈m, ξ∗ ◦ JX〉
by assumption (as ξ∗ ◦ JX ∈ X∗). This allows us to apply Lemma A.5 with X̃ in
place of X and JX ◦m in place of m to deduce that JX ◦m : Σ → X̃ is a closed
vector measure. So, m is also closed by Lemma A.1(iv). �

B. Relevant examples

Theorem 1 has its origins in Theorem IV.7.3 of [16]. But, as noted in Section 1,
this latter result is incorrect because of the use of a Radon-Nikodým Theorem
which is not applicable to the localizable measures being used in [16]; see the
following paragraph. Our Theorem 1 is an analogous result but, with stronger
assumptions, which turn out to be genuinely necessary. To be precise, let (Ω,Σ) be
a measurable space. In order to be able to distinguish the two notions, throughout
this Appendix B we will call our localizable measures (as defined in Section 2)
F -localizable, whereas those in Assertion K-1 will be called K-localizable. Every
F -localizable measure is clearly K-localizable; see Section 1. The converse is not
valid, in general; see Example B.1 below.

In [16, p.10] it is stated that the class of K-localizable measures coincides
with that of the localizable measures in the sense of [30, Definition 2.6]. This
is incorrect and arises because the measure spaces (defined on certain rings of



226 Susumu Okada, Werner J. Ricker

sets) and measurable sets considered in [30] (see Definitions 2.1 and 2.4 there) are
different to those considered in [16]. To see this let Ω be any uncountable set, Σ be
the σ-algebra of all countable-cocountable subsets of Ω and ι : Σ→ [0,∞] be the
counting measure. Then N0(ι) = {∅} and so Σ

/
N0(ι) ' Σ is not a complete B.a.

Observe that Σf := {A ∈ Σ : ι(A) <∞} is a conditional ring of sets (consisting of
all the finite subsets of Ω). The restriction ιf of ι to Σf is clearly a measure (on Ω)
in the sense of [30, Definition 2.1]. It is routine to check that every subset of Ω is
measurable in the sense of [30, Definition 2.2]; denote this family of measurable
sets by Σ̃f (i.e., Σ̃f = 2Ω for this example). If we extend ιf to the set function
ι̃f : Σ̃f → [0,∞] by

ι̃f (K) := sup{ιf (E) : E ∈ Σf , E ⊆ K}, K ∈ Σ̃f ,

then ι̃f is σ-additive on Σ̃f , [30, Theorem 2.1]. Observe that Σf ⊆ Σ̃f and
Σf ⊆ Σ. For this example ι̃f is precisely the counting measure on 2Ω and so
the B.a. Σ̃f

/
N0(ι̃f ) ' 2Ω is complete, that is, (Ω,Σf , ιf ) is localizable in the sense

of Definition 2.6 in [30]. Note that Σ ⊆ Σ̃f properly and that the B.a. Σ
/
N0(ι) is

not complete whereas Σ̃f
/
N0(ι̃f ) is complete. To see that ι is not K-localizable,

first observe that f ∈ L1(ι) if and only if {ω ∈ Ω : f(ω) 6= 0} is a countable set
and ‖f‖L1(ι) =

∑
ω∈Ω |f(ω)| < ∞. Let Λ be any non-measurable subset of Ω, in

which case χΛ 6∈ L∞(ι). Define ξ by

〈f, ξ〉 :=
∑
ω∈Ω

f(ω)χΛ(ω) =

∫
Ω

fχΛ dι, f ∈ L1(ι).

The inequality |〈f, ξ〉| 6 ‖f‖L1(ι) for f ∈ L1(ι) shows that ξ is a continuous linear
functional on L1(ι). But, ξ does not belong to the range of Jι. Hence, ι is not
K-localizable. The following example illustrates that Assertion K-1 is invalid.

Example B.1. Let Ω := [0, 1] and Σ be the Borel σ-algebra of Ω. Then Σ $ 2Ω.
Let X be the complete lcHs CΩ equipped with the pointwise convergence topology.
Then the set function m : E 7→ χE on Σ is an X-valued vector measure with
N0(m) = {∅}.

(i) Define a scalar measure ι1 : Σ → [0,∞] by ι1(E) := ∞ if E 6= ∅ and
by ι1(∅) := 0. Then L1(ι1) = {0}, which implies that ι1 is K-localizable.
However, ι1 fails to be F -localizable as it is not semifinite. Since N0(ι1) =
{∅}, it is clear that the B.a. Σ

/
N0(ι1) ' Σ also fails to be complete.

Accordingly, the K-localizability of ι1 is not equivalent to Σ
/
N0(ι1) being

complete, as is claimed to be the case on p. 10 of [14].
(ii) Given x∗ ∈ X∗, we surely have 〈m,x∗〉 << ι1. We claim that 〈m,x∗〉 is not

truly continuous with respect to ι1 whenever x∗ ∈ X∗ \ {0}. Indeed, for
such an x∗ there exists a non-empty finite set F ⊆ Ω and scalars αω, for
ω ∈ F , such that x∗ =

∑
ω∈F αωχ{ω} and hence, 〈m,x∗〉 =

∑
ω∈F αωδω.

This easily implies the stated claim.
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(iii) Via Lemma 2.2 the vector measure m : Σ → X is not closed, because
N0(m) = {∅} and so the B.a. Σ

/
N0(m) ' Σ fails to be complete. So, even

though the assumptions of Assertion K-1 are satisfied, the conclusion is
not.

(iv) There also exist K-localizable measures (other than ι1) which exhibit the
same features but whose L1-space is non-trivial. For example, let Λ := { 1

n :
n ∈ N} and define ι2 by

ι2(E) := ι1(E \ Λ) +
∑
ω∈Λ

δω(E), E ∈ Σ.

Then a function f : Ω→ C is ι2-integrable if and only if it is Σ-measurable
and satisfies f(ω) = 0 for ω 6∈ Λ with ‖f‖1 =

∑
ω∈Λ |f(ω)| <∞. Moreover,

g ∈ L∞(ι2) if and only if g is Σ-measurable and supω∈Ω |g(ω)| < ∞. It
then follows routinely that if ξ ∈ (L1(ι2))∗, then g :=

∑
ω∈Λ〈χ{ω}, ξ〉χ{ω}

belongs to L∞(ι2) and satisfies

〈f, ξ〉 =

∫
Ω

fg dι2 =
∑
ω∈Λ

〈χ{ω}, ξ〉f(ω), f ∈ L1(ι2).

This shows that Jι2 is surjective (see Section 1), that is, ι2 is K-localizable.
Moreover, L1(ι2) is isometrically isomorphic to the sequence space `1 and
so, is surely non-trivial. Since ι2 is not semifinite it is not F -localizable. In
addition, N0(ι2) = {∅} implies that 〈m,x∗〉 << ι2 for every x∗ ∈ X∗. As
in part (ii) it follows that if x∗ ∈ X∗ satisfies x∗(ω) 6= 0 for some ω ∈ Ω\Λ,
then 〈m,x∗〉 is not truly continuous with respect to ι2. Of course, m is still
not a closed measure!

We also point out that, in Theorem 1, it is not possible to weaken the assump-
tion of F -localizability of ι to its semifiniteness (we still maintain true continuity).

Example B.2. Let m : Σ→ X be the vector measure in Example B.1.
(i) Let ι3 : Σ → [0,∞] denote the counting measure, which is clearly semifi-

nite. Of course, N0(ι3) = {∅}. Hence, the B.a. Σ
/
N0(ι3) ' Σ is not com-

plete, that is, ι3 is not F -localizable. Although 〈m,x∗〉 is truly continuous
with respect to ι3 for all x∗ ∈ X∗, the vector measure m is not closed.
Since the canonical map Jι3 is injective (as ι3 is semifinite) and ι3 is not
F -localizable, we know from Section 1 that Jι3 is not surjective, that is,
(L1(ι3))∗ is genuinely larger than L∞(ι3). This can also be seen directly.
Let g be any scalar function on Ω satisfying supω∈Ω |g(ω)| <∞ such that g
is not Σ-measurable. In particular, g 6∈ L∞(ι3). Define the linear functional
ξ by

〈f, ξ〉 :=
∑
ω∈Ω

f(ω)g(ω) =

∫
Ω

fg dι3, f ∈ L1(ι3).

The inequality |〈f, ξ〉| 6
(

supw∈Ω |g(w)|
)
‖f‖L1(ι3) for f ∈ L1(ι3), shows

that ξ is continuous on L1(ι3) but ξ does not belong to the range of Jι3 .
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(ii) The non-closed vector measure m can be extended to a closed vector mea-
sure on the larger σ-algebra 2Ω. Indeed, let m̄ : 2Ω → X be the set function
E 7→ χE on 2Ω, which is an extension of m. By ι4 we denote the counting
measure on 2Ω, which is an extension of ι3 and still satisfies N0(ι4) = {∅}.
Since ι4 is decomposable, it is also F -localizable. For every x∗ ∈ X∗, the
measure 〈m̄, x∗〉 is truly continuous with respect to ι4. Hence, by Theo-
rem 1 (or Theorem 2) applied to “m”:= m̄ and ι := ι4 it follows that m̄ is
a closed vector measure.

C. Proof of Proposition 2.4

Given is a continuous linear map S from X into a (complex) lcHs Z. It was noted
in Appendix A that S ◦m : Σ → Z is again a vector measure. The linear map S
admits a unique continuous linear extension S̃ : X̃ → Z̃, which can be proved as
in [17, §23,1.(4)]. Then we have S̃ ◦JX = JZ ◦S as an equality between continuous
linear maps from X into Z̃.

Lemma C.1. If the vector measure m : Σ → X is closed, then so is the vector
measure S ◦m : Σ→ Z.

Proof. Every function integrable with respect to the vector measure JX ◦ m :
Σ→ X̃ is necessarily integrable with respect to the vector measure S̃ ◦ (JX ◦m),
[24, Lemma 2.8(ii)]. So, via [24, Lemma 2.8 and Remark 2.9], the canonical map
[S̃]JX◦m which assigns to f ∈ L1(JX ◦m) the same function f ∈ L1(S̃ ◦ (JX ◦m))
is continuous and linear from L1(JX ◦m) into L1(S̃ ◦ (JX ◦m)) with respect to
the mean convergence topologies.

Now, sincem is closed, it follows from Lemma A.3(iii) that the subset Σ(JX◦m)
is relatively weakly compact in L1(JX ◦m). So, its image [S̃]JX◦m(Σ(JX ◦m)) is
also relatively weakly compact in L1(S̃ ◦ (JX ◦ m)) because [S̃]JX◦m is weakly
continuous, [17, §20,4.(5)]. It is clear from the definition of [S̃]JX◦m that the rela-
tively weakly compact set [S̃]JX◦m(Σ(JX ◦m)) equals Σ(S̃ ◦ JX ◦m) and hence,
the vector measure S̃ ◦JX ◦m : Σ→ Z is closed by Lemma A.3(ii) with S̃ ◦JX ◦m
in place of m. Via the identity S̃ ◦JX = JZ ◦S, we have S̃◦ JX◦ m = JZ ◦ (S ◦m),
so that JZ ◦ (S ◦m) is a closed vector measure. Apply Lemma A.1(iv) with (S ◦m)
in place of m and Z in place of X to conclude that S ◦ m is a closed vector
measure. �

Proof of Proposition 2.4. The ‘if’ portion has been verified in the proof of
[26, Proposition 2] without referring to [15, Corollary 13] or [16, Theorem IV.7.3].
So, it suffices to prove the ‘only if’ portion. To this end, assume that m is a closed
vector measure. Let iσ : X → Xσ(X,X∗) be the identity map. Now apply Lemma
C.1 with Z := Xσ(X,X∗) and S := iσ to deduce that iσ ◦ m : Σ → Xσ(X,X∗) is
a closed vector measure. On the other hand, mσ = iσ ◦m by definition. So, mσ is
closed. �
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