ON SOME RESULTS CONNECTED WITH ARTIN CONJECTURE

 Kazimierz WiertelakAbstract: In the present paper we derive an upper bond for the number of primes p, for which a is a primitive root $\bmod p$.
Keywords: Artin conjecture, primitive root mod p,

1. Introduction

Let a be a rational integer and let

$$
A=A(a)=\{p \mid p \text { is a prime number and } a \text { is a primitive root } \bmod p\} .
$$

In 1927 Artin conjectured that $A(a)$ is infinite, provided that a is neither -1 nor a perfect square. More precisely, denoting by $N_{a}(x)$ the number of primes $p \leq x$ for which $a \in A$, he conjectured that

$$
N_{a}(x) \sim c(a) \frac{x}{\log x} \quad(x \rightarrow \infty)
$$

where $c(a)$ is a positive constant. This conjecture has been proved by C. Hooley [2] under the assumption that the Riemann hypothesis holds for fields of the type $Q(\sqrt[k]{a}, \sqrt[k]{1})$. He proved, that

$$
\begin{equation*}
N_{a}(x)=c(a) \frac{x}{\log x}+O\left(\frac{x \log \log x}{\log ^{2} x}\right) \quad(x \rightarrow \infty), \tag{1.1}
\end{equation*}
$$

and also determined the value of the constant $c(a)$.
Vinogradow in [3], proved unconditionaly, that

$$
\begin{equation*}
N_{a}(x) \leq c(a) \frac{x}{\log x}+O\left(\frac{x}{\log ^{\frac{5}{4} x}}(\log \log x)^{2}\right), \tag{1.2}
\end{equation*}
$$

where the constant in O depends on a.

In the following a denotes an integer, $a \neq-1$ or is not a perfect square, H denotes the largest integer with the property that a is a perfect H-th power, p and q denotes prime numbers, and $M=\prod_{p \mid a} p$.

In the present paper we prove the following theorem:
Theorem. If $x \geq \exp M$, then

$$
\begin{equation*}
N_{a}(x) \leq c(a) \frac{x}{\log x}+O\left(H \frac{x}{\log x} \frac{\log ^{2} \log \log x}{\log \log x}\right) \tag{1.3}
\end{equation*}
$$

where the constant in O is numerical and $c(a)$ is the same constant as in the estimates (1.1) and (1.2).
2. Let us fix the following notation.

Set

$$
B(l, a)=\left\{p \mid p \equiv 1(\bmod l) \text { and } a^{\frac{p-1}{l}} \equiv 1(\bmod p)\right\}
$$

where l is a positive integer,

$$
\begin{aligned}
A(\xi, \eta) & =\bigcap_{\xi \leq q \leq \eta}(B(1, a)-B(q, a)) \quad(1 \leq \xi \leq \eta), \\
M(x, l, a) & =\sum_{\substack{p \leq x \\
p \in B(l, a)}} 1 \\
N(x, \xi, \eta) & =\sum_{\substack{p \leq x \\
p \in A(\xi, \eta)}} 1
\end{aligned}
$$

Note that (see [1]) $A \subseteq A(\xi, \eta)$ for all $\xi \leq \eta$, so that for $x \geq 1$, we have

$$
N_{a}(x) \leq N(x, \xi, \eta) \quad(1 \leq \xi \leq \eta) .
$$

In particular, we see that

$$
\begin{equation*}
N_{a}(x)=N(x, 1, x) \leq N(x, 1, \xi) \tag{2.1}
\end{equation*}
$$

for $1 \leq \xi \leq x$.
3. The proof of the theorem will rest on the following lemmas:

Lemma 3.1. If $\xi \geq 1$ and

$$
S(\xi)=\left\{l \mid l=1 \text { or } l=q_{1} q_{2} \ldots q_{r}, q_{i} \text { distinet primes, } \quad q_{j} \leq \xi \quad(1 \leq j \leq r)\right\},
$$

then for $x \geq 2$ we have the equality

$$
\begin{equation*}
N(x, 1, \zeta)=\sum_{l \in S(\xi)} \mu(l) M(x, l, a) . \tag{3.1}
\end{equation*}
$$

Proof. With the notation of section 2, we have:

$$
\begin{aligned}
N(x, 1, \xi) & =\sum_{\substack{p \leq x \\
p \in B(1, a)}} 1-\sum_{p \in \bigcup_{p \leq x}^{p \leq} B(q, a)} 1=\sum_{l \in S(\xi)} \mu(l) \sum_{\substack{p \leq x \\
p \in B(l, a)}} 1= \\
& =\sum_{l \in S(\xi)} \mu(l) M(x, l, a) .
\end{aligned}
$$

Lemma 3.2. Let $a=a_{1} a_{2}^{2}, a_{1}$ square - $f r e e, l$ square free,

$$
\varepsilon(l)= \begin{cases}2 & \text { if } 2 a_{1} \mid l \text { and } a_{1} \equiv 1(\bmod 1) \\ 1 & \text { otherwise },\end{cases}
$$

and let (H, l) be the greatest common divisor of H, l (H is determinet in section 1).

Suppose further that $t \geq 1, \quad 0<\alpha \leq 1, \quad c_{1}>0$ is a sufficiently small numerical constant and $c_{2} \geq 0$ is an arbitrary numerical constant.
If

$$
\left(l^{3} M\right)^{\varphi(l)} \leq \exp \left(\left(\frac{c_{1}}{c_{2}+1}\right)^{2} \frac{\log ^{\alpha} x}{\log ^{t} \log x}\right),
$$

then

$$
\begin{align*}
& \left|M(x, l, a)-\frac{\varepsilon(l)(H, l)}{l \varphi(l)} \pi(x)\right| \leq c_{3} \frac{(H, l) \sqrt{M}}{\prod_{p l l}\left(1-\frac{1}{p}\right)} \frac{x}{(\log x)^{2}}+ \tag{3.2}\\
& +c_{4} x \exp \left(-\left(1,7 c_{2}+1,2\right) \sqrt{\alpha} \log ^{\frac{\frac{1-\alpha}{2}}{2}} x \log ^{\frac{1+t}{2}} \log x\right) .
\end{align*}
$$

Proof. The lemma follows from Lemma (5.5) and Corollary (5.1) of [4] and from the following identities:

$$
\begin{aligned}
& M(x, 2 m+1,-a)=M(x, 2 m+1, a) \\
& M(x, 2 m,-a)= \\
& \quad=2 M\left(x, 4 m, a^{2}\right)+M\left(x, 2 m, a^{2}\right)-M\left(x, 4 m, a^{4}\right)-M(x, 2 m, a) .
\end{aligned}
$$

4. Proof of Theorem. From Lemma 3.2 for $t=1, \alpha=1, c_{2}=1$ and from (3.1) for $\xi=\frac{1}{3} \log \log x$, we have

$$
\begin{align*}
N(x, 1, \xi)= & \sum_{l=1}^{\infty} \mu(l) \frac{\varepsilon(l)(H, l)}{l \varphi(l)} \pi(x)+O\left(\sum_{l>\xi} \frac{H}{l \varphi(l)} \pi(x)\right)+ \\
& +O\left(\frac{H \sqrt{M} x}{\log ^{2} x} \sum_{l \in S(\xi)} \frac{1}{\varphi(l)}\right)+O\left(\frac{x}{\log ^{2,9} x} 2^{\xi}\right) . \tag{4.1}
\end{align*}
$$

From [2] (equality 29) we get

$$
\begin{equation*}
\sum_{l=1}^{\infty} \mu(l) \frac{\varepsilon(l)(H, l)}{l \varphi(l)}=c(a) . \tag{4.2}
\end{equation*}
$$

Note that $l<e^{2 \xi}$ for all $l \in S(\xi)$, hence we have

$$
\begin{equation*}
\sum_{l \in S(\xi)} \frac{\sqrt{M} l}{\varphi(l)}=O\left(\sum_{l \in S(\xi)} \sqrt{M} \log \log l\right)=O\left(\sqrt{M} 2^{\xi} \log 2 \xi\right)=O\left(\log ^{\frac{\epsilon}{7}} x\right) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{l>\xi} \frac{1}{l \varphi(l)}=O\left(\sum_{l>\xi} \frac{\log \log l}{l^{2}}\right)= \tag{4.4}\\
& =O\left(\frac{\log ^{2} \xi}{\xi} \sum_{l>\xi} \frac{\log \log l}{l \log ^{2} l}\right)=O\left(\frac{(\log \log \log x)^{2}}{\log \log x}\right)
\end{align*}
$$

From (4.1), (4.2), (4.3) and (4.4), we get

$$
N(x, 1, \xi)=c(a) \frac{x}{\log x}+O\left(H \frac{x}{\log x} \frac{(\log \log \log x)^{2}}{\log \log x}\right)
$$

and Theorem follows from inequality (2.1).

References

[1] L.J. Goldstein, On the Generalized density Hypothesis, I, Analytic number theory, (Philadelphia, Pa. 1980), pp. 107-128, Lecture Notes in Math. 899, Springer, Berlin - New York, 1981.
[2] C. Hooley, On Artin's conjecture, J. Reine Angew. Math. 225 (1967), 209-220.
(3) A.I. Vinogradov, Artin's L-series and his conjectures (Russian), Trudy Math. Inst. Steklov. 112 (1971), 123-140.
[4] K. Wiertelak, On the density of some sets of primes, IV, Acta Arithmetica 43 (1984), 177-189.

Address; Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Received: 28 March 2000

