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SOME PROPERTIES OF THE GENERALIZED 
FAVARD-DURRMEYER OPERATORS 
GRZEGORZ NOWAK & PAULINA PYCH-TABERSKA 

Abstract: The Durrmeyer modification Fnf of the generalized Favard operators in some weigh
ted function spaces are considered. The rate of convergence of F'nf(x) at the Lebesgue points x 
of f is estimated. In particular, a corresponding estimate in the class of functions / of bounded 
p-th power variation is deduced. 
Keywords: Favard-Durrmeyer operator, rate of convergence, Lebesgue point, p-th power va
riation 

1. Preliminaries 

Let X 0 (R) be the space of all measurable real-valued functions f on the real line 
R := (-oo, oo), with the norm 

11/11"' := sup lf(x) exp(-ux2 )1 < oo, 
xER 

where u > 0. For functions f E Xu(R) consider first the generalized Favard 
opera tors defined by 

00 

Fnf(x) := L J(k/n)Pn,k(x;,), 
k=-oo 

where x E R, n E N, 

Pn,k(x; ,) 

and , hn)~=l is a positive sequence convergent to O (see [4]). In the special 
case where ,~ = K/ 2n with a positive constant K, Fn become the known discrete 
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Favard operators introduced in [3]. Some properties of operators Fnf for continu
ous functions on R can be found e.g. in [4] and [5]. In this paper we deal with the 
Durrmeyer type modification of the operators Fn, defined by 

CX) 100 
Fnf(x) := n L Pn,k(x;,) J(t)Pn,k(t; ,)dt. 

k=-oo -oo 

(1.1) 

We will examine the rate of convergence of Fnf(x), mainly, at those points x ER 
at which 

lim -h
1 t (f(x + t) - f(x))dt = 0. 

h->O ) 0 

The general estimate will be expressed in terms of the quantity 

Wx(o;J):= sup l-h1 
t(f(x+t)-f(x))dtl, (o>0). 

O<lhls;& Jo 
Some analogous results for the generalized Favard-Kantorovich operators are pre
sented in [6]. 

Throughout the paper, the symbols K(· • •), K;(· · ·) (j 1, 2, ... ) will mean 
some positive constants depending only on the parameters indicated in parenthe
ses. 

2. Main result 

As is known ([2], pp. 126, 204; [4], p. 388), for all n E N, x E R, 

where 

and 

00 

L Pn,k(x;,) = l+Sn(x), 
k=-oo 

CX) 

Sn(x) := 2 L exp(-21r2j2n2
,~) cos(21rnjx) 

j=l 

IBn(x)I::; (1rn,n)-2
. 

It is easy to see that for all n E N, v E N, k E Z := {0, ±1, ±2, ... } , 

00 

J Pn,k(t;,)dt = ~' 
-oo 

00 J (~ -tf" Pn,k(t;,)dt 
(2v-1)!! 2v 

n 1n 
-oo 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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and, by the Schwarz inequality, 

Joo I k 1
11 J(2v - 1)!! 11 

-oo ;:;: - t Pn,k(t; 1 )dt '.5 n In· (2.5) 

In view of Lemma 2.1 in [5], if v E N and n1; 2::, c for all n E N, with a positive 
absolute constant c, then 

where Ac max{l, (2rn2)- 1}. Further, from (2.1} and (2.3) it follows that 

00 

L Pn,k(x;,) '.5 3Ac for all n E N,x ER, (2.6) 
k=-oo 

and consequently, 

00 

L I~ -xl 11 

Pn,k(x; 1 ) '.5 15Ac(2/etl2
~ 1:. (2.7) 

k=-oo 

Let f E X(T(R) with some u > 0. Then the operators (1.1) are well defined 
for all x E R and n E N such that 16u1~ '.5 1. Indeed, using the obvious inequality 
(a+ b)2 '.5 2(a2 + b2 ) and denoting by ../2, the sequence ( ../2,n)~=l we easily 
observe that 

and 

Pn,k(t; 1 )exp(ut
2

) '.5 n,n~exp(2uk
2
/n

2
)exp(-( 2~~ - 2u) (~ - tf) 

'.5 V2exp(2uk2 /n2 )Pn,k(t; ../2,) 

Pn,k(t; 1 ) exp(2uk2 /n2
} '.5 V2exp(4ux2 )Pn,k(x; ../2,). 

Hence, in view of (2.1) - (2.4) 

00 00 

IFnf(x)I '.5 2nllfll<T exp(4ux2
) L Pn,k(x; V2,) j Pn,k(t; V2,)dt 

k=-oo -oo 

'.5 2(1 + (7rn1n)-2 )llfll(1'exp(4ux2
). 

Theorem 2.1. Let f E X<T(R), u > 0 and let 1 = (1n)~=l be a positive sequence 
convergent to O and satisfying the condition n1~ 2::, c, where c is a positive 
absolute constant. Then, given any numbers q E N, e 2::, 0, we have 

IF f(x) _ f(x)I < K(q c) ~ Wx((r + lhni f) + lf(x)I 
n - ' ~ (r + l)q exp(er2,;) (rrn,n) 2 

for all x E R and n E N such that 16u1~ '.5 1, 8{J")'~ '.5 1. 
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Proof. In view of (2.1) and (2.4) 

oo Joo 
Fnf(x) - J(x) = n L Pn,k(x; 1 ) (J(t) - J(x))Pn,k(t; 1 )dt + J(x)Sn(x). 

k=-oo -oo 

Clearly, if f E Xu(R) and t ER, then 

11t (J(u) - J(x))dul $ It - xi llfllu(2exp(o-x2
) + exp(o-t2)) 

and, under the assumption 160-7~ $ 1, 

Hence, from the definition of Pn,k(x; 1 ) it follows at once that for any k E Z, 

Consequently, integration by parts gives 

Fnf(x) - J(x) 

= -n f: Pn,k(x; 1 ) J00 

(1t (J(u) - J(x))du )P~,k(t; ,)dt + J(x)Sn(x). 
k=-00 -oo X 

Observing that P~,k(t; 1 ) = Pn,k(t; 1 ) (~ - t) /i;1 , applying (2.3) and the definition 
of Wx(o; j) We get 

IFnf(x) - J(x)I 

$; f: Pn,k(x; 1 ) J1~-tlPn,k(t; 1 )jt-xlwx(!t-xl)dt+ (~~~j2 
n k=-oo -oo 

00 

= : L Zr(A) + IJ(x)l(1rn1n)-2
, 

In r=O 

(2.8) 

where A is an arbitrary positive number, 

Ir,>.(x) = {t ER: rA $It-xi< (r + l}A} and Wx(o) = Wx(o; 1). 
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Using (2.6) and (2.5) with 11 = 1 we obtain Zo(A) $ 3AcAwx(A)n- 1
1n. 

Given any {} 2 0, q EN we have for r 2 1 

Clearly, 

(I k lq+l I k lq+l) It - xlq+1 $ 2q ;:;: - x + ;; - t 

and 

exp((l(t - x)2
) $ exp ( 2{}( ~ - x) 2 ) exp ( 2{}( ~ - t) 

2

). 

Moreover, if 8n~ $ 1, then 

Pn,k(x; 1 )exp(2{}(~ - x) 2

) = ~ exp(-(
2

\ - 2{}) (~ - x )2) 
n n1n 21r In n 

1 ( 1 (k )2) <---exp -- --x 
- n1nv'2ii' 41~ n 

= v'2Pn,k(x; v'21), 

From the above inequalities and the estimates (2.5), (2.6), (2.7) it follows that 

00 J"° k k~oo Pn,k(x; 1) _J;; -tlPn,k(t; 1)\t - xlq+l exp((l(t - x)2 )dt 

2q+l 
00 

( ..---- I k lq+l ) $-;:;- L Pn,k(x; v'21) J(2q + 3)!!(v'2'Yn)q+2 + ;;: - X v'21n 
k=-oo 

2q+l 
$ - 1~+ 2(3AcJ(2q + 3)!!(v'2)q+2 + 15Acv'2J(2q ·+ 2)!(2/e)<q+l)/2). 

n 

Hence 
Wx((r + l)A) q+2 1 

Zr(A) $ K1(q,c) ( 2 \ 2 )'Yn n- for r > 0. 
rq A q exp {lr ,I\ 

Choosing A 'Yn and using (2.8) we get the desired result immediately. • 
It is easy to see that under the assumptions / E X(T(R) and ~ > 0 we have 

(see e.g. [6]). Consequently, 

wx((r + lhni /) $ exp(2,n2 )(1 + exp(4o-r2
1~)) exp(40-1~)ll/ll(T• 
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From this inequality it follows at once that the right-hand side of the estimate 
given in Theorem 2.1 ( with q 2:: 2, {! 2:: 4o-) converges to 0 as n - oo, at every 
Lebesgue point x of f. 

3. Corollaries 

Let f E Xer(R) be continuous on R and let D.(o; /)er be its weighted modulus of 
continuity defined by 

n(o; /)er := sup II!(·+ h) - /(·)!lo- (o > 0). 
lhl~o 

Then, given any x E R and r E N we have 

(see [6], p. 149). This inequality and Theorem 2.1 with q = 3, {! 2o- lead to 

Corollary 3.1. If the sequence 1 = bn)~=l satisfies the conditions of Theorem 
2.1 and if f E Xer(R) is continuous on R, then 

for all n E N such that 16o-1 ~ :5 1. 

For some m E No let Cm(R) be the space of all continuous functions f on 
R such that 

11/11~ := sup lf(x)(l + x2m)-1
1 < oo. 

a:ER 

Clearly, Cm(R) C Xer(R) for arbitrary m E No, o- > 0. Moreover, for any x ER 
and r E No there holds the inequality 

wa:((r+ l)o;/) :5 (1 + (2x)2
m + (2ro)2m)(r + l)w(o;/)m, 

( see [ 6]), where 
w(o; f)m := sup II!(·+ h) - JOll~-

lhl9 

Consequently, from Theorem 2.1 (with {! = 0, q = 2m + 3) it follows 

Corollary 3.2. If the sequence 1 = (,n)~ 1 satisfies the conditions of Theorem 
2.1 and if f E Cm( R), then 

IIFnf - Jll~ S: K(c, m) ( w(,n; /)m + 111/11~) 

for all n EN. 
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Finally, let us suppose that f E X(J'(R) with some <J > 0 and that at a fixed 
point x E R the one-sided limits f (x+ ), f (x-) exist. Introduce the functions 

{ 

J(t) - J(x+) 
9x(t) := 0 

J(t) - J(x-) 

if t > x, 
if t x, 
if t < x, 

{ 

1 if t > x, 
sgnx (t) := 0 if t = x, 

-1 if t < x. 

Then, it is easy to verify that 

1 1 
J(t) = 2(J(x+) + J(x- )) + gx(t) + 2(f(x+) - J(x-)) sgnx (t) 

+ (!(x)- ~J(x+)-1/(x-)}>x(t), 

where c5x(x) = 1 and t5x(t) = 0 if t =/= x. Hence 

~ 1 ~ 
Fnf(x) = 2(f(x+) + J(x-))(1 + Bn(x)) + Fngx(x) 

1 ~ 
+ 

2
(J(x+ )- f(x-))Fn sgnx (x), 

where Bn(x) is defined by (2.2) and estimated in (2.3). As is shown in [1] (p. 104), 

In order to estimate IFngx(x)I = IFngx(x) - 9x(x)I we use Theorem 2.1 (with 
f2 = 0 and q ~ 2). Consequently, by a simple calculation (cf. e.g. [6], p. 150) we 
obtain that under the assumptions of Theorem 2.1, 

for all n E N such that 16<J1~ ::; 1 . 
In particular, let us consider the class BVp(R) of all functions f of bounded 

p-th power variation on R and let us denote by Vp(f; I} or Vp(J; a, b) the total 
p-th variation of f on the interval I = [a, b] ( defined as in [6]). The obvious 
inequality 

Wx(t5; J) ::; Vp(J; x - O, x + c5) (c5 > O} 

and some easy computations lead to 
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Corollary 3.3. If the sequence 'Y = ('Yn)~=l satisfies the conditions of Theorem 
2.1 and if f E BVv(R), p ~ 1, then for all x ER and n EN, 

IFnf(x) -1(/(x+) + /(x-))1 
µ 

S K3(q, c)'Y~-l L kq-2Vp(gx; Ik) 
k=O 

1 
+ 21/(x+) + f(x-)l(nc)- 1 + 21/(x+) - f(x-)l(n1n)-1, 

where q ~ 2, µ [1/'Yn}, Io R, Ik [x - 1/k, x + 1/k] if k = 1, ... , µ. 

Clearly, in view of the continuity of gx at x, the right-hand side of the 
inequality given in Corollary 3.3 converges to 0 as n -+ oo. Moreover, in some 
classes of functions this inequality cannot be essentially improved. To see this, let 
us first mention some properties of the functions 

co 1= Hn,r(x) := n L Pn,k(x; 1 ) (x 
k=-co -co 

tYPn,k(t; ,)dt, 

where r E No, n E N, x E R. It is easy to verify that with Sn ( x) as defined by 
(2.2) we have the recursion formula 

Hn,o(x) = 1 + Sn(x), Hn,1 = 1!S~(x), 

Hn,r+1(x) = 1~H~,r(x) - 2r1!Hn,r-1(x). 

From this formula, by the method of induction, it follows the representation 

Hn,2r(x) 
r-1 

'Y~r ( do,r (1 + Sn(x)) + L dt,r'Y~l(si21-1>(x) + si21)(x)) + ,~r si2r-l)(x))' 
!=l 

where d1 ,r (l 0, ... , r - 1) are real numbers independent of n and x. More

over, under the assumption n1~ ~ c for all n E N, the functions siv)(x) (v = 
0, 1, ... , 2r -1) are bounded uniformly in x ER and n E N. Consequently, 

(3.1) 

and 
lim ,;;2

r Hn 2r(X) = do r 
n--HX) ' t 

(3.2) 

uniformly in x ER. 
Now, let us fix a point xo and a positive number o: and let us denote by 

U ( o:, xo) the class of all functions f E Blip ( R), continuous at Xo and such that 
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Vp(f;x0 -o,x0 +o) s; oa for o E (0, l]. From Corollary 3.3 with q > max(2, a+l) 
it follows that for f E U(a, xo) and n EN, 

IFnf(xo) - f(xo)I $ K5(a, c)(l + Vp(f; R)h~ + l/(xo)I. (3.3) 
nc 

On the other hand, the function fa(t) := ½It - xol°' if Jt - xol $ 1, fa(t) = 1/2 
otherwise on R, belongs to U ( a, xo) and 

for any o E (0, 1]. Let T be a positive number such that T +a= 2r, where r E N. 
Then 

Fnf a(xo) - fa(xo) 

1 oo 

1
xo+o 

2 2no-T L Pn,k(xo;,) (t - xo)2rPn,k(t;,)dt 
k=-oo xo-o 

1 
00 1 -o°'-2

r ( Hn,2r(xo) - n L Pn,k(xo; ,) (t - xo)2rPn,k(t; ,)dt) 
2 k=-oo lt-xol>o 

2:: ~ oa-2r(Hn,2r(xo) - o-2 Hn,2r+2(xo)). 

From (3.2) it follows that 

Hn,2r(xo) 2 ~do,r')'~r 

for sufficiently large n. Applying inequality (3.1) for Hn,2r+2(xo) and putting 

o = 2,;JK4 (c, r + 1) /~we obtain that 

Fnfa(xo) - f a(xo) 2 2°'-2r-3(K4(c, r + 1))-r+a/2(do,r)Hr-a/2,~ (3.4) 

for sufficiently large n. Inequalities (3.3) and (3.4) ensure that in the classes 
U(a, x0 ) with O < a s; 2, or U(a, xo) := {! E U(a, xo): f(xo) = O} with ar
bitrary a > 0, the estimate given in Corollary 3.3 is the best concerning the 
order. 
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