Functiones et Approximatio XXIX (2001), 99-102

COMPLETE M-CONVEX ALGEBRAS WHOSE POSITIVE ELEMENTS ARE TOTALLY ORDERED

A. EL KINANI, M.A. NEJJARI & M. OUDADESS

Abstract: We show that unitary and complete l. m. c. a.'s endowed with certain orders are actually locally C^* -algebras's or even reduce to the complex field. Keywords: Positive elements, l. m. c. a., locally C^* -algebra.

1. Introduction

The aim of this note is to extend to locally *m*-convex algebras the results of [3]. The matter is then to study the structure of unitary and complete l. m. c. a.'s whose positive elements are totally ordered; and this relatively to the orders defined by the cones $A_+ = \{x \in Sym(A) : Spx \subset R_+\}$ and $P = \{x \in A : V(x) \subset R_+\}$. In a locally C^* -algebra (which is of course hermitian), we always have $A_+ = P$. As a converse, we show that, in a complex unital hermitian and complete *m*-convex algebra, if $A_+ \subset P$, then it is a locally C^* -algebra (Theorem 3.1). It is also known that in a locally C^* -algebra, the cone of positive elements is partially ordered and $A_+ = P$. One may ask whether or not it can be totally ordered. In fact, the last condition appears to be restrictive as propositions 3.2 and 3.4 show.

2. Preliminaries

Let $(A, (|.|_{\lambda})_{\lambda})$ be a complex unitary and complete locally *m*-convex algebra (l.m.c.a. in short). It is known that $(A, (|.|_{\lambda})_{\lambda})$ is the projective limit of the normed algebras $(A_{\lambda}, ||.||_{\lambda})$, where $A_{\lambda} = A/N_{\lambda}$ with $N_{\lambda} = \{x \in A : |x|_{\lambda} = 0\}$; and $||x_{\lambda}||_{\lambda} = |x|_{\lambda}, x_{\lambda} \equiv x + N_{\lambda}$. An element x of A is written $x = (x_{\lambda})_{\lambda} = (\pi_{\lambda}(x))_{\lambda}$, where $\pi_{\lambda} : A \longrightarrow A_{\lambda}$ is the canonical surjection. The algebra $(A, (|.|_{\lambda})_{\lambda})$ is also the projective limit of the Banach algebras $\widehat{A_{\lambda}}$, the completions of A_{λ} 's. The norm in $\widehat{A_{\lambda}}$ will also be denoted by $||.||_{\lambda}$. The numerical range of an element

²⁰⁰⁰ Mathematics Subject Classification: 46K99, 46H20.

 $a \in A$ is denoted by V(a). Recall that $V(a) = \bigcup_{\lambda} V(\widehat{A_{\lambda}}, a_{\lambda})$, where $V(\widehat{A_{\lambda}}, a_{\lambda})$

is the numerical range of a_{λ} in the Banach algebra $\widehat{A_{\lambda}}$. We consider the subsets $P = \{x \in A : V(x) \subset R_+\}$ and $H = \{x \in A : V(x) \subset R\}$. The first subset is said to be the cone of positive elements, of A, relatively to the numerical range. Let $(A, (|.|_{\lambda})_{\lambda})$ be a *l.m.c.a.* endowed with an involution $x \mapsto x^*$. The set of all hermitian elements (i.e., all x such that $x = x^*$) will be denoted by Sym(A). We say that the algebra A is hermitian if the spectrum of every element of Sym(A). We say that the algebra A is hermitian if the spectrum of every element of Sym(A). We say that the algebra A is symmetric if $e + xx^*$ is invertible, for every x in A. Put $A_+ = \{x \in Sym(A), Spx \subset R_+\}$, the set of all positive elements, of A, relatively to the involution. If A is symmetric then A_+ is a convex cone. A locally C^* -algebra ([4]) is a complete l.m.c.a. $(A, (|.|_{\lambda})_{\lambda})$ endowed with an involution $x \mapsto x^*$ such that, for every λ , $|x^*x|_{\lambda} = |x|_{\lambda}^2$, for every $x \in A$. Concerning involutive l.m.c.a. c. a. 's, the reader is refered to [2]. In the sequel, all algebras are complex. The spectral radius will be denoted by ϱ that is $\varrho(x) = \sup\{|z| : z \in Spx\}$, where Spx is the spectrum of x.

3. Structure results

It is not always true that $A_+ \subset P$ as the following result shows.

Theorem 3.1. Let $(A, (|.|_{\lambda})_{\lambda})$ be an involutive commutative, unitary, complete and hermitian l. m. c. a. If $A_{+} \subset P$, then A is a locally C^{*}-algebra for an equivalent family of semi-norms.

Proof. Since the algebra is hermitian, we have $Sym(A) = A_+ - A_+$ for $h = (h^2 + e) - (h^2 - h + e)$, for every $h \in Sym(A)$. On the other hand, A_+ satisfies the following condition

$$(\mathbf{e}+u)^{-1} \in A_+$$
; for every $u \in A_+$. (1)

Now $P_{\lambda} = \pi_{\lambda}(P) \subset \widehat{P}_{\lambda}$ where $\widehat{P}_{\lambda} = \left\{ a \in \widehat{A_{\lambda}} : V(\widehat{A_{\lambda}}, a) \subset R_{+} \right\}$. But \widehat{P}_{λ} is normal; whence the normality of P follows and so the one of A_{+} . The convex cone $\pi_{\lambda}(A_{+})$, in $\widehat{A_{\lambda}}$, is stable by product, normal and satisfies (1). By ([1], proposition 12, p. 258), we have $\pi_{\lambda}(A_{+}) \subset \left\{ u \in \widehat{A_{\lambda}} : Spu \subset R_{+} \right\}$. The closed convex cone $K_{\lambda} = \overline{\pi_{\lambda}(A_{+})}$ satisfies also these properties. Put $B_{\lambda} = K_{\lambda} - K_{\lambda}$, a real subalgebra, of $\widehat{A_{\lambda}}$, generated by K_{λ} . It is closed by ([1], theorem 2, p. 260). We now show that the complex subalgebra $B_{\lambda} + iB_{\lambda}$ is closed in $\widehat{A_{\lambda}}$. Using the normality of K_{λ} , one obtains that, for every λ , there is $\beta_{\lambda} > 0$ such that, for every $h \in B_{\lambda}$, $\|h\|_{\lambda} \leq \beta_{\lambda} \|h + ik\|_{\lambda}$, for every $k \in B_{\lambda}$. Whence the closedness of $B_{\lambda} + iB_{\lambda}$. But $A_{\lambda} = \pi_{\lambda}(A) \subset B_{\lambda} + iB_{\lambda}$. Hence $B_{\lambda} + iB_{\lambda}$ is dense in $\widehat{A_{\lambda}}$. Whence $B_{\lambda} + iB_{\lambda} = \widehat{A_{\lambda}}$. By ([1], theorem 2, p. 260), we have $Sph \subset R$, for every $h \in B_{\lambda}$. Moreover $B_{\lambda} \cap iB_{\lambda} = \{0\}$, due to the normality of K_{λ} . Hence a hermitian involution $(h + ik)^* =$

h-ik, is defined on $\widehat{A_{\lambda}}$. At last, again the normality of K_{λ} implies $||h||_{\lambda} \leq \alpha \varrho(h)$, for some $\alpha > 0$ and every h in B_{λ} . We conclude by a result of Ptak ([6]; (8,4) Theorem).

If the order is total, we do not need the commutativity and the conclusions show that this condition is very strong.

We begin with the order associated to A_+ .

Proposition 3.2. Let $(A, (|.|_{\lambda})_{\lambda})$ be an involutive, unitary and complete *l. m. c. a.* If (A_{+}, \leq) is totally ordered, then $A_{+} = R_{+}$.

Proof. We first show that $\rho(x) < +\infty$, for every $x \in A_+$. Since the order is total on A_+ , we have $x \leq n$ or $n \leq x$, for every $n \in N^*$. If Spx is unbounded, then $n \leq x$, for every n; a contradiction with $Spx \neq \emptyset$ ([5]). Suppose now that $x \in A_+$ and $0 \in Spx$. For every $\alpha > 0$, one gets $x \leq \alpha$, for otherwise $\alpha < 0$. Whence $Spx = \{0\}$ and hence x = 0. On the other hand, if $x \in A_+$ and $0 \notin Spx$, put $m = \inf \{\beta : \beta \in Spx\}$. Then one has $0 \in Sp(x - m)$ otherwise x - m would be invertible and $\rho((x - m)^{-1}) = +\infty$; a contradiction for $(x - m)^{-1} \in A_+$. Hence $x = m \in A_+$.

An interesting application of this proposition is contained in the following result.

Corollary 3.3. Let $(A, (|.|_{\lambda})_{\lambda})$ be an involutive, unitary and complete *l. m.* c. *a*. If (A_{+}, \leq) is totally ordered, then

(i) $\{x \in Sym(A) : Spx \subset R\} = R$,

(ii) If A is hermitian, then A = C.

Proof. (i) Every $x \in Sym(A)$ with $Spx \subset R$ can be written $x = (x^2 + e) - (x^2 - x + e)$. And then the assertion (ii) follows immediately from (i).

We now examine the order associated to P.

Proposition 3.4. Let $(A, (|.|_{\lambda})_{\lambda})$ be a unitary and complete *l. m. c. a.* If (P, \leq) is totally ordered, then $P = R_+$.

Proof. Let $x \in P$ and $r = \inf \{\alpha : \alpha \in V(x)\}$. Then, for every $n \in N^*$, we have $x \leq r + \frac{1}{n}$; otherwise there is $n_0 \in N^*$ such that $r + \frac{1}{n_0} < x$, i.e. $V(x - r - \frac{1}{n_0}) \subset R_+$. Due to the definition of $V(x - r - \frac{1}{n_0})$, one immediately checks that $r + \frac{1}{n_0} < \alpha$, for every α in V(x). Hence $r + \frac{1}{n_0} \leq r$; a contradiction. Now $x \leq r + \frac{1}{n}$ means $\beta \leq r + \frac{1}{n}$, for every β in V(x). So $V(x) \subset [r, r + \frac{1}{n}]$, for every n. And since V(x) is non void, we get $V(x) = \{\beta_0\}$. Whence $x = \beta_0$.

We have the following consequence.

Corollary 3.5. Let $(A, (|.|_{\lambda})_{\lambda})$ be a unitary and complete l. m. c. a. If (P, \leq) is totally ordered and A = H + iH, then A is isomorphic to C.

Proof. Since every $h \in H$ can be written $h = \frac{1}{2} [(h+e)^2 - (h^2+e)]$, it is sufficient to show that $h^2 \in P$, for every $h \in H$. Let $p, q \in H$ such that

 $h^2 = p + iq$. We have $h_{\lambda}^2 = p_{\lambda} + iq_{\lambda}$ in $\widehat{A_{\lambda}}$ for every λ , with $p_{\lambda}, q_{\lambda} \in H_{\lambda}$, where $H_{\lambda} = \left\{ u \in \widehat{A_{\lambda}} : V(\widehat{A_{\lambda}}, u) \subset R \right\}$. The identity $h_{\lambda}h_{\lambda}^2 = h_{\lambda}^2h_{\lambda}$ yields $h_{\lambda}p_{\lambda} - p_{\lambda}h_{\lambda} = i(q_{\lambda}h_{\lambda} - h_{\lambda}q_{\lambda})$. Whence $h_{\lambda}p_{\lambda} - p_{\lambda}h_{\lambda} \in H_{\lambda} \cap iH_{\lambda}$ ([1], lemma 2, p. 206). Hence $h_{\lambda}p_{\lambda} = p_{\lambda}h_{\lambda}$; and so $p_{\lambda}q_{\lambda} = q_{\lambda}p_{\lambda}$. We then have $V(h_{\lambda}^2) \subset Co(Sph_{\lambda}^2) \subset R_+$, where Co stands for the convex hull. The first inclusion is due to [1], lemma 4, p. 206. It follows that $V(h^2) \subset R_+$.

References

- F.F. Bonsall, J. Duncan, Complete normed algebras, Ergebnisse der Mathematik, Band 80, Springer Verlag (1973).
- [2] M. Fragoulopoulou, Symmetric Topological *-Algebras Applications, Shriftenreihe der Mathematischen Instituts und der Graduiertenkollegs der Universität Munster, 3 Serie, Heft 9 (1993).
- [3] A. El Kinani, M. Oudadess, Banach algebras whose positive elements are totally ordered, Maghreb Math. Rev., Vol. 3, N° 2, December (1994), 117-120.
- [4] A. Inoue, Locally C*-algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A, 25 (1971), 197-235.
- [5] E. A. Michael, Locally multiplicatively- convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- [6] V. Ptàk, Banach algebras with involution, Manuscripta Math. 6 (1972), 245-290.

Address: Ecole Normale Supérieure, B.P.5118-Takaddoum, 10105 Rabat, Maroc Received: 15 May 2001