COMPLETE M-CONVEX ALGEBRAS WHOSE POSITIVE ELEMENTS ARE TOTALLY ORDERED

A. El Kinani, M.A. NejJari \& M. Oudadess

Abstract

We show that unitary and complete l. m. c. a.'s endowed with certain orders are actually locally $C^{* *}$-algebras's or even reduce to the complex field. Keywords: Positive elements, l. π n. c. a., locally C^{*}-algebra.

1. Introduction

The aim of this note is to extend to locally m-convex algebras the results of [3]. The matter is then to study the structure of unitary and complete $l . m$. c. a.'s whose positive elements are totally ordered; and this relatively to the orders defined by the cones $A_{+}=\left\{x \in \operatorname{Sym}(A): \operatorname{Spx} \subset R_{+}\right\}$and $P=\left\{x \in A: V(x) \subset R_{+}\right\}$. In a locally C^{*}-algebra (which is of course hermitian), we always have $A_{+}=P$. As a converse, we show that, in a complex unital hermitian and complete m-convex algebra, if $A_{+} \subset P$, then it is a locally C^{*}-algebra (Theorem 3.1). It is also known that in a locally C^{*}-algebra, the cone of positive elements is partially ordered and $A_{+}=P$. One may ask whether or not it can be totally ordered. In fact, the last condition appears to be restrictive as propositions 3.2 and 3.4 show.

2. Preliminaries

Let $\left(A,\left(\mid \|_{\lambda}\right)_{\lambda}\right)$ be a complex unitary and complete locally m-convex algebra (l.m.c.a. in short). It is known that $\left(A,\left(\mid \|_{\lambda}\right)_{\lambda}\right)$ is the projective limit of the normed algebras $\left(A_{\lambda},\|\cdot\|_{\lambda}\right)$, where $A_{\lambda}=A / N_{\lambda}$ with $N_{\lambda}=\left\{x \in A:|x|_{\lambda}=0\right\}$; and $\left\|x_{\lambda}\right\|_{\lambda}=|x|_{\lambda}, x_{\lambda} \equiv x+N_{\lambda}$. An element x of A is written $x=\left(x_{\lambda}\right)_{\lambda}=\left(\pi_{\lambda}(x)\right)_{\lambda}$, where $\pi_{\lambda}: A \longrightarrow A_{\lambda}$ is the canonical surjection. The algebra $\left(A,\left(|\cdot|_{\lambda}\right)_{\lambda}\right)$ is also the projective limit of the Banach algebras $\widehat{A_{\lambda}}$, the completions of A_{λ} 's. The norm in $\widehat{A_{\lambda}}$ will also be denoted by $\|.\|_{\lambda}$. The numerical range of an element
$a \in A$ is denoted by $V(a)$. Recall that $V(a)=\bigcup_{\lambda} V\left(\widehat{A_{\lambda}}, a_{\lambda}\right)$, where $V\left(\widehat{A_{\lambda}}, a_{\lambda}\right)$ is the numerical range of a_{λ} in the Banach algebra $\widehat{A_{\lambda}}$. We consider the subsets $P=\left\{x \in A: V(x) \subset R_{+}\right\}$and $H=\{x \in A: V(x) \subset R\}$. The first subset is said to be the cone of positive elements, of A, relatively to the numerical range. Let $\left(A,\left(|\cdot|_{\lambda}\right)_{\lambda}\right)$ be a $l . m . c . a$. endowed with an involution $x \longmapsto x^{*}$. The set of all hermitian elements (i.e., all x such that $x=x^{*}$) will be denoted by $\operatorname{Sym}(A)$. We say that the algebra A is hermitian if the spectrum of every element of $\operatorname{Sym}(A)$ is real ([2]). It is said to be symmetric if $e+x x^{*}$ is invertible, for every x in A. Put $A_{+}=\left\{x \in \operatorname{Sym}(A), S p x \subset R_{+}\right\}$, the set of all positive elements, of A, relatively to the involution. If A is symmetric then A_{+}is a convex cone. A locally C^{*}-algebra ([4]) is a complete l.m.c.a. $\left(A,\left(1 .\left.\right|_{\lambda}\right)_{\lambda}\right)$ endowed with an involution $x \longmapsto x^{*}$ such that, for every $\lambda,\left|x^{*} x\right|_{\lambda}=|x|_{\lambda}^{2}$, for every $x \in A$. Concerning involutive $l . m$. c. a. 's, the reader is refered to [2]. In the sequel, all algebras are complex. The spectral radius will be denoted by ϱ that is $\varrho(x)=\sup \{|z|: z \in S p x\}$, where $S p x$ is the spectrum of x.

3. Structure results

It is not always true that $A_{+} \subset P$ as the following result shows.
Theorem 3.1. Let $\left(A,\left(|\cdot|_{\lambda}\right)_{\lambda}\right)$ be an involutive commutative, unitary, complete and hermitian l. m. c. a. If $A_{+} \subset P$, then A is a locally C^{*}-algebra for an equivalent family of semi-norms.

Proof. Since the algebra is hermitian, we have $\operatorname{Sym}(\boldsymbol{A})=A_{+}-A_{+}$for $h=$ $\left(h^{2}+e\right)-\left(h^{2}-h+e\right)$, for every $h \in S y m(A)$. On the other hand, A_{+}satisfies the following condition

$$
\begin{equation*}
(e+u)^{-1} \in A_{+} ; \text {for every } u \in A_{+} . \tag{1}
\end{equation*}
$$

Now $P_{\lambda}=\pi_{\lambda}(P) \subset \widehat{P}_{\lambda}$ where $\widehat{P}_{\lambda}=\left\{a \in \widehat{A_{\lambda}}: V\left(\widehat{A_{\lambda}}, a\right) \subset R_{+}\right\}$. But \widehat{P}_{λ} is normal; whence the normality of P follows and so the one of A_{+}. The convex cone $\pi_{\lambda}\left(A_{+}\right)$, in $\widehat{A_{\lambda}}$, is stable by product, normal and satisfies (1). By ([1], proposition 12, p. 258), we have $\pi_{\lambda}\left(A_{+}\right) \subset\left\{u \in \widehat{A_{\lambda}}: S p u \subset R_{+}\right\}$. The closed convex cone $K_{\lambda}=\overline{\pi_{\lambda}\left(A_{+}\right)}$satisfies also these properties. Put $B_{\lambda}=K_{\lambda}-K_{\lambda}$, a real subalgebra, of $\widehat{A_{\lambda}}$, generated by K_{λ}. It is closed by ([1], theorem 2, p. 260). We now show that the complex subalgebra $B_{\lambda}+i B_{\lambda}$ is closed in $\widehat{A_{\lambda}}$. Using the normality of K_{λ}, one obtains that, for every λ, there is $\beta_{\lambda}>0$ such that, for every $h \in B_{\lambda}$, $\|h\|_{\lambda} \leq \beta_{\lambda}\|h+i k\|_{\lambda}$, for every $k \in B_{\lambda}$. Whence the closedness of $B_{\lambda}+i B_{\lambda}$. But $A_{\lambda}=\pi_{\lambda}(A) \subset B_{\lambda}+i B_{\lambda}$. Hence $B_{\lambda}+i B_{\lambda}$ is dense in $\widehat{A_{\lambda}}$. Whence $B_{\lambda}+i B_{\lambda}=\widehat{A_{\lambda}}$. By ([1], theorem 2, p. 260), we have $S p h \subset R$, for every $h \in B_{\lambda}$. Moreover $B_{\lambda} \cap$ $i B_{\lambda}=\{0\}$, due to the normality of K_{λ}. Hence a hermitian involution $(h+i k)^{*}=$
$h-i k$, is defined on $\widehat{A_{\lambda}}$. At last, again the normality of K_{λ} implies $\|h\|_{\lambda} \leq \alpha \varrho(h)$, for some $\alpha>0$ and every h in B_{λ}. We conclude by a result of Ptàk ([6]; $(8,4)$ Theorem).

If the order is total, we do not need the commutativity and the conclusions show that this condition is very strong.

We begin with the order associated to A_{+}.
Proposition 3.2. Let $\left(A,\left(|\cdot|_{\lambda}\right)_{\lambda}\right)$ be an involutive, unitary and complete l. m. c. a. If $\left(A_{+}, \leq\right)$is totally ordered, then $A_{+}=R_{+}$.

Proof. We first show that $\rho(x)<+\infty$, for every $x \in A_{+}$. Since the order is total on A_{+}, we have $x \leq n$ or $n \leq x$, for every $n \in N^{*}$. If $S p x$ is unbounded, then $n \leq x$, for every n; a contradiction with $S p x \neq \emptyset([5])$. Suppose now that $x \in A_{+}$ and $0 \in S p x$. For every $\alpha>0$, one gets $x \leq \alpha$, for otherwise $\alpha<0$. Whence $S p x=\{0\}$ and hence $x=0$. On the other hand, if $x \in A_{+}$and $0 \notin S p x$, put $m=\inf \{\beta: \beta \in S p x\}$. Then one has $0 \in S p(x-m)$ otherwise $x-m$ would be invertible and $\rho\left((x-m)^{-1}\right)=+\infty ;$ a contradiction for $(x-m)^{-1} \in A_{+}$. Hence $x=m \in A_{+}$.

An interesting application of this proposition is contained in the following result.

Corollary 3.3. Let $\left(A,\left(|\cdot|_{\lambda}\right)_{\lambda}\right)$ be an involutive, unitary and complete l. m. c. a. If $\left(A_{+}, \leq\right)$is totally ordered, then
(i) $\{x \in \operatorname{Sym}(A): \operatorname{Spx} \subset R\}=R$,
(ii) If A is hermitian, then $A=C$.

Proof. (i) Every $x \in \operatorname{Sym}(A)$ with $S p x \subset R$ can be written $x=\left(x^{2}+e\right)-\left(x^{2}-\right.$ $x+e$). And then the assertion (ii) follows immediately from (i).

We now examine the order associated to P.
Proposition 3.4. Let $\left(A,\left(\mid \|_{\lambda}\right)_{\lambda}\right)$ be a unitary and complete l. m. c. a. If (P, \leq) is totally ordered, then $P=R_{+}$.

Proof. Let $x \in P$ and $r=\inf \{\alpha: \alpha \in V(x)\}$. Then, for every $n \in N^{*}$, we have $x \leq r+\frac{1}{n}$; otherwise there is $n_{0} \in N^{*}$ such that $r+\frac{1}{n_{0}}<x$, i.e. $V\left(x-r-\frac{1}{n_{0}}\right) \subset R_{+}$. Due to the definition of $V\left(x-r-\frac{1}{n_{0}}\right)$, one immediately checks that $r+\frac{1}{n_{0}}<\alpha$, for every α in $V(x)$. Hence $r+\frac{1}{n_{0}} \leq r ;$ a contradiction. Now $x \leq r+\frac{1}{n}$ means $\beta \leq r+\frac{1}{n}$, for every β in $V(x)$. So $V(x) \subset\left[r, r+\frac{1}{n}\right]$, for every n. And since $V(x)$ is non void, we get $V(x)=\left\{\beta_{0}\right\}$. Whence $x=\beta_{0}$.

We have the following consequence.
Corollary 3.5. Let $\left(A,\left(\left.l\right|_{\lambda}\right)_{\lambda}\right)$ be a unitary and complete l. m. c. a. If (P, \leq) is totally ordered and $A=H+i H$, then A is isomorphic to C.
Proof. Since every $h \in H$ can be written $h=\frac{1}{2}\left[(h+e)^{2}-\left(h^{2}+\mathrm{e}\right)\right]$, it is sufficient to show that $h^{2} \in P$, for every $h \in \frac{H}{H}$. Let $p, q \in H$ such that
$h^{2}=p+i q$. We have $h_{\lambda}^{2}=p_{\lambda}+i q_{\lambda}$ in $\widehat{A_{\lambda}}$ for every λ, with $p_{\lambda}, q_{\lambda} \in H_{\lambda}$, where $H_{\lambda}=\left\{u \in \widehat{A_{\lambda}}: V\left(\widehat{A_{\lambda}}, u\right) \subset R\right\}$. The identity $h_{\lambda} h_{\lambda}^{2}=h_{\lambda}^{2} h_{\lambda}$ yields $h_{\lambda} p_{\lambda}-p_{\lambda} h_{\lambda}=$ $i\left(q_{\lambda} h_{\lambda}-h_{\lambda} q_{\lambda}\right)$. Whence $h_{\lambda} p_{\lambda}-p_{\lambda} h_{\lambda} \in H_{\lambda} \cap i H_{\lambda}$ ([1], lemma 2, p. 206). Hence $h_{\lambda} p_{\lambda}=p_{\lambda} h_{\lambda}$; and so $p_{\lambda} q_{\lambda}=q_{\lambda} p_{\lambda}$. We then have $V\left(h_{\lambda}^{2}\right) \subset C o\left(S p h_{\lambda}^{2}\right) \subset R_{+}$, where Co stands for the convex hull. The first inclusion is due to [1], lemma 4, p. 206. It follows that $V\left(h^{2}\right) \subset R_{+}$.

References

[1] F.F. Bonsall, J. Duncan, Complete normed algebras, Ergebnisse der Mathematik, Band 80, Springer Verlag (1973).
[2] M. Fragoulopoulou, Symmetric Topological *-Algebras Applications, Shriftenreihe der Mathematischen Instituts und der Graduiertenkollegs der Universität Munster, 3 Serie, Heft 9 (1993).
[3] A. El Kinani, M. Oudadess, Banach algebras whose positive elements are totally ordered, Maghreb Math. Rev., Vol. 3, ${ }^{\circ}$ 2, December (1994), 117-120.
[4] A. Inoue, Locally C^{*}-algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A, 25 (1971), 197-235.
[5] E. A. Michael, Locally multiplicatively- convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
[6] V. Ptàk, Banach algebras with involution, Manuscripta Math. 6 (1972), 245-290.

[^0]
[^0]: Address: Ecole Normale Supérieure, B.P.5118-Takaddoum, 10105 Rabat, Maroc
 Received: 15 May 2001

