## A NOTE ON THE DISTRIBUTION OF SUMSETS

Jörg Brüdern \& Alberto Perelli

## 1. Introduction

Let $\mathcal{A} \subset \mathbb{N}$ denote a set of natural numbers, and let $\nu(n)$ denote the number of solutions of $a+b=n$ with $a, b \in \mathcal{A}$. In many cases where $\mathcal{A}$ is a specific set, it is conjectured that there is an asymptotic formula for $\nu(n)$. For example, when $\mathcal{A}$ is the sequence of primes, Hardy and Littlewood [1] predict the validity of

$$
\begin{equation*}
\nu(n) \sim \frac{n}{(\log n)^{2}} \prod_{p \mid n} \frac{p}{p-1} \prod_{p \nmid n}\left(1-\frac{1}{(p-1)^{2}}\right), \tag{1.1}
\end{equation*}
$$

but this is still not known. Their suggestion is backed by the Siegel-Walfisz-theorem (or any weaker variant thereof) which describes the distribution of primes in arithmetic progressions, so that the contribution of the major arcs in the circle method integral for $\nu(n)$ can be evaluated and yields the right hand side of (1.1).

Returning to the general situation, a similar heuristics applies as soon as a suitable analogue of the Siegel-Walfisz-theorem controls the distribution of $\mathcal{A}$ in arithmetic progressions. One is then lead to expect an asymptotic formula

$$
\begin{equation*}
\nu(n) \sim J(n) \mathfrak{S}(n) \tag{1.2}
\end{equation*}
$$

where $J(n)$ and $\mathfrak{S}(n)$ denote the formal singular integral and singular series, respectively, of the problem at hand (for comparison with (1.1), $J(n)$ replaces $n(\log n)^{-2}$, and $\mathfrak{S}(n)$ replaces the Euler product). However, it is well known that the singular series $\mathfrak{S}(n)$ has average value 1 in any plausible concrete case, and we may therefore hope that the sum

$$
\begin{equation*}
\sum_{n \in \mathcal{E}}(\nu(n)-J(n)) \tag{1.3}
\end{equation*}
$$

is small for any sufficiently large "random" set $\mathcal{E}$. The purpose of this note is to show that this is indeed the case for a large class of sets $\mathcal{A}$. It turns out that no
information is needed concerning the distribution of $\mathcal{A}$ in arithmetic progressions; a sufficiently "smooth" asymptotic formula for the counting function is enough.

Before we can state the result, we need to introduce the concept of a regular arithmetical function. Let $M: \mathbb{N} \rightarrow[0, \infty)$ denote an arithmetical function and define $t(n)=M(n)-M(n-1)$ where for convenience we put $M(0)=0$. The function $M$ is called regular when $t$ is monotonically decreasing, non-negative and satisfies the inequalities

$$
\begin{equation*}
t(n)=\frac{M(n)}{n} . \tag{1.4}
\end{equation*}
$$

Note that for natural numbers $x \leq y \leq 2 x$ one always has

$$
\begin{equation*}
M(x) \asymp M(y) \tag{1.5}
\end{equation*}
$$

when $M$ is a regular function. In fact, (1.4) asserts that $t(n) \leq \mathrm{c} M(n) n^{-1}$ holds for all $n$ with an absolute constant $\mathrm{c}>0$. Hence

$$
M(y)-M(x)=\sum_{x<n \leq y} t(n) \leq \mathrm{c} \sum_{x<n \leq y} \frac{M(n)}{n} .
$$

From $t(n) \geq 0$ we see that $M$ is increasing, and therefore,

$$
M(y)-M(x) \leq \mathrm{c} M(y) \frac{y-x}{x} .
$$

For $y \leq\left(1+\frac{1}{2 c}\right) x$, this implies $M(x) \leq M(y) \leq 2 M(x)$, and (1.5) follows by repeated application of this.

Typical examples of regular arithmetic functions are

$$
n^{\lambda}(\log n)^{\mu}(\log \log n)^{\eta}
$$

when $0<\lambda<1, \mu \in \mathbb{R}$, or when $\lambda=1, \mu<0, \eta \in \mathbb{R}$. If an arithmetic function $M$ is the restriction of a differentiable function $M:[1, \infty) \rightarrow[0, \infty)$, then by the mean value theorem, the condition (1.4) may be replaced by $M^{\prime}(x) \asymp \frac{M(x)}{x}$ for all $x \in(1, \infty)$; this is often useful when checking regularity in concrete cases. We are now ready to state the result.
Theorem. Let $1 \leq N \leq X$ denote natural numbers. Let $\mathcal{A} \subset \mathbb{N}$, write $A(x)=$ $\# \mathcal{A} \cap[1, x]$, and let $M$ be a regular arithmetic function such that

$$
R(x)=A(x)-M(x)
$$

satisfies $R(x)=o(M(x))$ as $x \rightarrow \infty$. Then

$$
\sum_{\substack{\mathcal{E} \subset\left\{\begin{array}{l}
X+1, \ldots, 2 X\} \\
\# \mathcal{E}=N
\end{array}\right.}}\left|\sum_{n \in \mathcal{E}}(\nu(n)-J(n))\right| \ll N\binom{X}{N} M(X)\left(\frac{1}{\sqrt{N}}+\left(\frac{\max _{y \leq 2 X}|R(y)|}{X}\right)^{\frac{1}{2}}\right)
$$

where

$$
J(n)=\sum_{k+l=n} t(k) t(l)
$$

For the argument to follow it is useful to have at hand a lower bound for $J(n)$. Since $t(k) \geq 0$ for all $k$, we have

$$
J(n) \geq \sum_{\substack{k+l=n \\ \frac{1}{4} n<k<\frac{3}{4} n}} t(k) t(l)
$$

From (1.4) and (1.5), we find

$$
\begin{equation*}
J(n) \gg \frac{M(n)^{2}}{n^{2}} \sum_{\substack{k+l=n \\ \frac{1}{4} n<k<\frac{3}{4} n}} 1 \gg \frac{M(n)^{2}}{n} \tag{1.6}
\end{equation*}
$$

Let $S(X, N)$ denote the collection of all sets $\mathcal{E} \subset\{X+1, \ldots, 2 X\}$ with $N$ elements. If we consider the sum (1.3) in the light of the lower bound (1.6), then for a set $\mathcal{E} \in S(X, N)$ one would aim for

$$
\begin{equation*}
\sum_{n \in \mathcal{E}}(\nu(n)-J(n))=o\left(N M(X)^{2} X^{-1}\right) \tag{1.7}
\end{equation*}
$$

as this is then certainly non-trivial.
Corollary. In addition to the assumptions in the Theorem, suppose that

$$
\max _{y \leq 2 x}|R(x)|=o\left(\frac{M(X)^{2}}{X}\right)
$$

and that $N=N(X)$ is an increasing function such that $\frac{X^{2}}{N(X) M(X)^{2}} \rightarrow 0$ as $X \rightarrow \infty$. Then, for all but $o\left(\binom{X}{N}\right)$ of the sets $\mathcal{E} \subset S(X, N)$, the bound (1.7) is valid.

To prove this, it suffices to note that the conditions in the corollary imply that

$$
\sum_{\mathcal{E} \in \mathcal{S}(X, N)}\left|\sum_{n \in \mathcal{E}}(\nu(n)-J(n))\right|=o\left(N\binom{X}{N} \frac{M(X)^{2}}{X}\right)
$$

by the Theorem. Note that one cannot expect that (1.3) is small for all sets $\mathcal{E}$ on the sole assumption that $N$ is large. This can be seen, for example, in the case where $\mathcal{A}$ is the set of primes excluding 2 . Then $\nu(n)=0$ whenever $2 \nmid n$, and hence (1.7) certainly fails as soon as a positive proportion of the numbers in $\mathcal{E}$ are odd.

The Theorem and its corollary provide non-trivial results only when $\sqrt{x}=$ $o(M(x))$. This is not surprising since whenever $M(x)=o(\sqrt{x})$, one has $\nu(n)>0$
for at most $\ll M(x)^{2}$ of the integers $n \leq x$, and hence $\nu(n)$ vanishes for almost all $n$ in this case, forcing the sum $\sum_{n \in \mathcal{E}} \nu(n)$ to vanish also for most sets $\mathcal{E}$ with $\# \mathcal{E}=o(x)$.

Before we move on to establish the theorem, it perhaps worth to stress again that the estimates in the Theorem do not depend on the distribution of $\mathcal{A}$ in arithmetic progressions. If, on the contrary, one has a result of Siegel-Walfisz type available for $\mathcal{A}$, then it also possible to study the sums

$$
\begin{equation*}
\sum_{n \in \mathcal{E}}(\nu(n)-\mathfrak{S}(n) J(n)) \tag{1.8}
\end{equation*}
$$

The correction by the singular series should make the individual terms smaller. Indeed, if the asymptotic formula (1.2) holds for almost all $n$, then it is easy to count the sets $\mathcal{E} \in \mathcal{S}(X, N)$ where (1.8) exceeds $\varepsilon N M(X)^{2} X^{-1}$ in size: let $\mathcal{B}$ be the set of all $n \leq X$ for which (1.2) fails whence $\# \mathcal{B}=o(X)$; then for any $\mathcal{E} \in \mathcal{S}(X, N)$ where (1.8) is large, one must have $\#(\mathcal{E} \cap \mathcal{B}) \geq \varepsilon N$. A simple combinatorial counting argument gives an estimate for the number of all such $\mathcal{E} \in \mathcal{S}(X, N)$ in terms of $\varepsilon, N$ and $\# \mathcal{B}$, which is non-trivial throughout the range $1 \leq N \leq X$, and is much superior to the Theorem in the ranges where the Theorem is applicable.

We illustrate this last point with an example and consider the set $\mathcal{A}$ of all natural numbers that are the sum of two cubes of natural numbers. In this case, $\nu(n)$ is intrinsically related to Waring's problem for four cubes. Therefore, we also introduce the functions $r_{s}(n)$ to denote the number of solutions of $n=x_{1}^{3}+x_{2}^{3}+$ $\ldots+x_{s}^{3}$ in natural numbers $x_{i}$. In particular, we have $\mathcal{A}=\left\{n: r_{2}(n)>0\right\}$. A recent result of Heath-Brown [2] (improving earlier work of Hooley [3, 4]) shows that $\tau_{2}(n)=2$ holds for all but $O\left(X^{4 / 9+\varepsilon}\right)$ of the numbers $n \leq X$ with $n \in \mathcal{A}$. Since $r_{2}(n) \ll n^{\varepsilon}$ holds for any $\varepsilon>0$, one finds that

$$
A(X)=\frac{1}{2} \sum_{n \leq X} r_{2}(n)+O\left(X^{4 / 9+\varepsilon}\right)=\frac{3 \Gamma\left(\frac{4}{3}\right)^{2}}{4 \Gamma\left(\frac{2}{3}\right)} X^{\frac{2}{3}}+O\left(X^{\frac{4}{9}+\varepsilon}\right)
$$

with the aid of Gauss lattice point argument to evaluate the sum of $r_{2}(n)$. Returning now to the function $\nu(n)$ in the special case under consideration, we have

$$
\nu(n)=\frac{1}{4} r_{4}(n)+E(n)
$$

where

$$
E(n) \ll n^{\varepsilon} \#\left\{(a, b) \in \mathcal{A}^{2}: a+b=n, r_{2}(b) \neq 2\right\} .
$$

The aforementioned result of Heath-Brown then shows that

$$
\begin{equation*}
\sum_{n \leq X}|E(n)| \ll A(X) X^{4 / 9+\varepsilon} \ll X^{10 / 9+\varepsilon} \tag{1.9}
\end{equation*}
$$

Moreover, as a consequence of Theorem 2 of Vaughan [5], the asymptotic formula

$$
r_{4}(n)=\Gamma\left(\frac{4}{3}\right)^{3} \mathfrak{S}(n) n^{1 / 3}+O\left(n^{1 / 3}(\log n)^{-1 / 4}\right)
$$

where

$$
\mathfrak{S}(n)=\sum_{q=1}^{\infty} \sum_{\substack{a=1 \\(a, q)=1}}^{q} q^{-4}\left(\sum_{x=1}^{q} e\left(\frac{a x^{3}}{q}\right)\right)^{4} e\left(-\frac{a n}{q}\right)
$$

is the singular series for four cubes, holds for all but $O\left(X(\log X)^{-\frac{1}{4}}\right)$ of the natural numbers $n \leq X$. Combining this with (1.9), it follows that

$$
\begin{equation*}
\nu(n)-\frac{1}{4} \Gamma\left(\frac{4}{3}\right)^{3} \mathfrak{S}(n) n^{1 / 3} \ll n^{1 / 3}(\log n)^{-1 / 4} \tag{1.10}
\end{equation*}
$$

holds for all but $O\left(X(\log X)^{-\frac{1}{4}}\right)$ of the natural numbers $n \leq X$. We now carry out the counting argument alluded to in the previous paragraph. Let $E$ denote the exact number of $n$ in the interval $X<n \leq 2 X$ for which (1.10) fails. Then, for any $\varepsilon>0$, the inequality

$$
\left|\sum_{n \in \mathcal{E}}\left(\nu(n)-\mathscr{S}(n) n^{1 / 3}\right)\right|>\varepsilon N X^{1 / 3}
$$

can hold for sets $\mathcal{E} \in \mathcal{S}(X, N)$ only if at least $\varepsilon N$ elements of $\mathcal{E}$ are counted by $E$. Thus, the number of such sets $\mathcal{E} \in \mathcal{S}(X, N)$ does not exceed

$$
\sum_{j>\in N}\binom{E}{j}\binom{X-E}{N-j} \ll\binom{X}{N} 2^{N}(E / X)^{\varepsilon N} .
$$

## 2. A simple lemma

In this section, we consider the mean square of the exponential sums

$$
K_{\mathcal{E}}(\alpha)=\sum_{n \in \mathcal{E}} e(\alpha n)
$$

when $\mathcal{E}$ varies over $\mathcal{S}(X, N)$.
Lemma. For $\alpha \in \mathbb{R}$ we have

$$
\sum_{\mathcal{E} \in S(X, N)}\left|K_{\mathcal{E}}(\alpha)\right|^{2} \ll\binom{X}{N}\left(N+N^{2}(1+X\|\alpha\|)^{-2}\right)
$$

where $\|\alpha\|$ denotes the distance of $\alpha$ to the nearest integer.

Proof. For brevity, all sums over $\mathcal{E}$ are over all $\mathcal{E} \in \mathcal{S}(X, N)$. We open the square and start from

$$
\begin{equation*}
\sum_{\mathcal{E}}\left|K_{\mathcal{E}}(\alpha)\right|^{2}=\binom{X}{N} N+\sum_{\mathcal{E}} \sum_{\substack{n, m \in \mathcal{E} \\ n \neq m}} \mathrm{e}(\alpha(n-m)) \tag{2.1}
\end{equation*}
$$

The first term on the right is acceptable. In the remaining sum, we exchange summation and note that for any pair $n \neq m$ with $X<n, m \leq 2 X$ there are exactly $\binom{X-2}{N-2}$ sets $\mathcal{E} \in \mathcal{S}(X, N)$ with $n \in \mathcal{E}, m \in \mathcal{E}$. It follows that

$$
\sum_{\mathcal{E}} \sum_{\substack{n, m \in \mathcal{E} \\ n \neq m}} \mathrm{e}(\alpha(n-m))=\sum_{\substack{X<n, m \leq 2 X \\ n \neq m}} \mathrm{e}(\alpha(n-m))\binom{X-2}{N-2} .
$$

We add terms with $n=m$ to the right hand side. Then, by a standard estimate,

$$
\begin{aligned}
\sum_{\mathcal{E}} \sum_{\substack{n, m \in \mathcal{E} \\
n \neq m}} \mathrm{e}(\alpha(n-m)) & =\binom{X-2}{N-2}\left(\left|\sum_{X<n \leq 2 X} \mathrm{e}(\alpha n)\right|^{2}-X\right) \\
& \ll\binom{X-2}{N-2}\left(X^{2}(1+X\|\alpha\|)^{-2}\right) .
\end{aligned}
$$

The Lemma now follows from (2.1) on noting that

$$
\binom{X-2}{N-2} X^{2}=\frac{X N(N-1)}{X-1}\binom{X}{N} \ll N^{2}\binom{X}{N} .
$$

## 3. Proof of the theorem

We shall compare the exponential sums

$$
S(\alpha)=\sum_{\substack{n \in \mathcal{A} \\ n \leq 2 X}} \mathrm{e}(\alpha n), \quad T(\alpha)=\sum_{n \leq 2 X} t(n) \mathrm{e}(\alpha n)
$$

in various ways. From $S(0)=A(2 X)$ and $T(0)=M(2 X)$ we see that $S(0)$ and $T(0)$ are close to each other. Partial summation shows that

$$
S(\alpha)-T(\alpha)=\mathrm{e}(2 \alpha X) R(2 X)-2 \pi i \alpha \int_{1}^{2 X} \mathrm{e}(\alpha \tau) R([\tau]) d \tau
$$

where $[\tau]$ is the integer part of $\tau$. On writing

$$
R^{*}(X)=\max _{m \leq 2 X}|R(m)|
$$

we infer that

$$
\begin{equation*}
S(\alpha)-T(\alpha) \ll(1+X|\alpha|) R^{*}(X) \tag{3.1}
\end{equation*}
$$

It will also be convenient to have at hand the mean square of $S(\alpha)$ and $T(\alpha)$. By Parseval's identity and (1.5), we have

$$
\begin{equation*}
\int_{-1 / 2}^{1 / 2}|S(\alpha)|^{2} d \alpha=A(2 X) \ll M(X) \tag{3.2}
\end{equation*}
$$

We may argue similarly for $T(\alpha)$, recalling that $t(n)$ is decreasing and non-negative. This leads to the bound

$$
\begin{equation*}
\int_{-1 / 2}^{1 / 2}|T(\alpha)|^{2} d \alpha=\sum_{n \leq 2 X} t(n)^{2} \leq t(1) \sum_{n \leq 2 X} t(n) \ll M(X) \tag{3.3}
\end{equation*}
$$

We are now ready for the main argument. Let $\mathcal{E} \in \mathcal{S}(X, N)$. Then, by orthogonality,

$$
\sum_{n \in \mathcal{E}}(\nu(n)-J(n))=\int_{-1 / 2}^{1 / 2}\left(S(\alpha)^{2}-T(\alpha)^{2}\right) K_{\mathcal{E}}(-\alpha) d \alpha
$$

However, by Cauchy's inequality and the Lemma, we have

$$
\sum_{\mathcal{E} \in \mathcal{S}(X, N)}\left|K_{\mathcal{E}}(-\alpha)\right| \ll\binom{X}{N}\left(\sqrt{N}+N(1+X|\alpha|)^{-1}\right)
$$

whenever $|\alpha| \leq \frac{1}{2}$. Since (3.2) and (3.3) imply that

$$
\int_{-1 / 2}^{1 / 2}\left|S(\alpha)^{2}-T(\alpha)^{2}\right| d \alpha \ll M(X)
$$

it follows that

$$
\begin{align*}
\sum_{\mathcal{E} \in \mathcal{S}(X, N)} \mid & \sum_{n \in \mathcal{E}}(\nu(n)-J(n)) \mid \\
& \ll\binom{X}{N} M(X) \sqrt{N}+\binom{X}{N} N \int_{-1 / 2}^{1 / 2} \frac{\left|S(\alpha)^{2}-T(\alpha)^{2}\right|}{1+X|\alpha|} d \alpha \tag{3.4}
\end{align*}
$$

We are now reduced to estimate the integral on the right hand side. Let $\delta \geq 1$ be a parameter to be chosen later. We split the integral into the ranges $|\alpha| \leq \delta / X$ and $\delta / X \leq|\alpha| \leq \frac{1}{2}$. In the first case, (3.1) yields

$$
\frac{\left|S(\alpha)^{2}-T(\alpha)^{2}\right|}{1+X|\alpha|} \ll R^{*}(X)(|S(\alpha)|+|T(\alpha)|) \ll R^{*}(X) M(X)
$$

here we used the trivial bounds $|S(\alpha)| \leq S(0),|T(\alpha)| \leq T(0)$. This shows that

$$
\int_{-\delta / X}^{\delta / X} \frac{\left|S(\alpha)^{2}-T(\alpha)^{2}\right|}{1+X|\alpha|} d \alpha \ll \delta X^{-1} R^{*}(X) M(X) .
$$

On the complementary part, we have

$$
\int_{\delta / X \leq|\alpha| \leq \frac{1}{2}} \frac{\left|S(\alpha)^{2}-T(\alpha)^{2}\right|}{1+X|\alpha|} d \alpha \leq \delta^{-1} \int_{-1 / 2}^{1 / 2}\left|S(\alpha)^{2}-T(\alpha)^{2}\right| d \alpha \ll \frac{M(X)}{\delta} .
$$

Hence we choose $\delta$ by $\delta^{2}=X R^{*}(X)^{-1}$ to deduce that

$$
\begin{equation*}
\int_{-1 / 2}^{1 / 2} \frac{\left|S(\alpha)^{2}-T(\alpha)^{2}\right|}{1+X|\alpha|} d \alpha \ll M(X) R^{*}(X)^{\frac{1}{2}} X^{-\frac{1}{2}} \tag{3.5}
\end{equation*}
$$

(here it is essential to note that $M(X) \ll X$, and so $R^{*}(X)=o(M(X))$ gives $R^{*}(X)=o(X)$ whence $\delta=\delta(X) \rightarrow \infty$ as $\left.X \rightarrow \infty\right)$. The Theorem is now available from (3.4) and (3.5).

## References

[1] G.H. Hardy and J.E. Littlewood, Some problems of 'Partitio Numerorum': III. The expression of a number as a sum of primes, Acta Math. 44 (1922), 1-70.
[2] D.R. Heath-Brown, The density of rational points on cubic surfaces, Acta Arith. 79 (1997), 17-30.
[3] C. Hooley, On the representation of a number as the sum of two cubes, Math. Z. 82 (1963), 259-266.
[4] C. Hooley, On the numbers that are representable as the sum of two cubes, J. Reine Angew. Math. 314 (1980), 146-173.
[5] R.C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 122-170.

Address: Jörg Brüdern, Mathematisches Institut A, Pfaffenwaldring 57, D-70567 Stuttgart Alberto Perelli, Dipartimento di Maternatica, Via Dodecaneso 35, I-16146 Genova
E-mail: bruedernemathematik.uni-stuttgart.de; perelligdima.unige.it
Received: 1 October 2001

