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A NOTE ON THE DISTRlBUTION OF SUMSETS 

JORG BRUDERN & ALBERTO PERELLI 

1. Introduction 

Let AC N denote a set of natural numbers, and let v(n) denote the number of 
solutions of a+ b = n with a, b EA. In many cases where A is a specific set, it is 
conjectured that there is an asymptotic formula for v(n). For example, when A 
is the sequence of primes, Hardy and Littlewood [1] predict the validity of 

(1.1) 

but this is still not known. Their suggestion is backed by the Siegel-Walfisz-theorem 
(or any weaker variant thereof) which describes the distribution of primes in arith
metic progressions, so that the contribution of the major arcs in the circle method 
integral for v(n) can be evaluated and yields the right hand side of (1.1 ). 

Returning to the general situation, a similar heuristics applies as soon as a 
suitable analogue of the Siegel-Walfisz-theorem controls the distribution of A in 
arithmetic progressions. One is then lead to expect an asymptotic formula 

v(n) ~ J(n)S(n) (1.2) 

where J(n) and S(n) denote the formal singular integral and singular series, 
respectively, of the problem at hand (for comparison with (1.1), J(n) replaces 
n(logn)-2 , and S(n) replaces the Euler product). However, it is well known that 
the singular series S(n) has average value 1 in any plausible concrete case, and 
we may therefore hope that the sum 

L (v(n) - J(n)) (1.3) 
nEE 

is small for any sufficiently large "random" set & . The purpose of this note is to 
show that this is indeed the case for a large class of sets A. It turns out that no 
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information is needed concerning the distribution of A in arithmetic progressions; 
a sufficiently "smooth" asymptotic formula for the counting function is enough. 

Before we can state the result, we need to introduce the concept of a re,gular 
arithmetical function. Let M : N ---+ [O, oo) denote an arithmetical function and 
define t(n) = M(n) - M(n - 1) where for convenience we put M(O) 0. The 
function M is called regular when t is monotonically decreasing, non-negative and 
satisfies the inequalities 

t(n):::::: M(n). 
n 

(1.4) 

Note that for natural numbers x S y S 2x one always has 

M(x):::::: M(y) (1.5) 

when M is a regular function. In fact, (1.4) asserts that t(n) S cM(n)n- 1 holds 
for all n with an absolute constant c > 0. Hence 

M(y) - M(x) = L t(n) Sc L M~n). 
x<nSy x<nSy 

From t(n) :2: 0 we see that M is increasing, and therefore, 

y-x 
M(y) - M(x) S cM(y)--. 

X 

For y S (1 + :JJx, this implies M(x) S M(y) S 2M(x), and (1.5) follows by 
repeated application of this. 

Typical examples of regular arithmetic functions are 

nA(lognt(loglogn)'1 

when O <A< 1,µ E JR, or when A= 1,µ < O,r, E JR. If an arithmetic function 
M is the restriction of a differentiable function M : [1, oo) ---+ [O, oo), then by the 
mean value theorem, the condition (1.4) may be replaced by M

1 

(x) :::::: M£x) for 
all x E (1, oo); this is often useful when checking regularity in concrete cases. We 
are now ready to state the result. 

Theorem. Let 1 s N S X denote natural numbers. Let A C N, write A(x) = 
#An [1, x], and let M be a regular arithmetic function such that 

R(x) = A(x) - M(x) 

satisfies R(x) o(M(x)) as x---+ oo. Then 

x ( 1 (max IR(y)I)½) 
&c{X~ .. ,2X} I~ (v(n) - J(n))j « N(N )M(X) ./N + ,9x X 

#Sc=N 
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where 
J(n) L t(k)t(l). 

k+l=n 

For the argument to follow it is useful to have at hand a lower bound for 
J(n). Since t(k) 2:: 0 for all k, we have 

J(n) 2:: L t(k)t(l). 
k+l=n 

¼n<k<¾n 

From (1.4) and (1.5), we find 

M(n)2 

J(n) » -.,,.-
n2 I: 

k+l=n 
¼n<k<¾n 

1 
M(n)2 

»-
n 

(1.6) 

Let S(X, N) denote the collection of all sets e C { X + 1, ... , 2X} with N ele
ments. If we consider the sum (1.3) in the light of the lower bound (1.6), then for 
a set e E S( X, N) one would aim for 

L (v(n)- J(n)) = o(NM(X)2x- 1
) 

nEe 

as this is then certainly non-trivial. 

Corollary. In addition to the assumptions in the Theorem, suppose that 

(
M(X)2 

max IR(x)l = o --) 
y$2x X 

(1.7) 

and that N N(X) is an increasing function such that N(X~(X)2 -+ 0 a.s 

X -+ oo. Then, for all but o((~)) of the sets e C S(X, N), the bound (1. 7) is 
valid. 

To prove this, it suffices to note that the conditions in the corollary imply 
that 

I: I I: (v(n)- J(n))I = o(N(;) Mr)2) 
eES(X,N) nEe 

by the Theorem. Note that one cannot expect that (1.3) is small for all sets e on 
the sole assumption that N is large. This can be seen, for example, in the case 
where A is the set of primes excluding 2. Then v( n) 0 whenever 2 f n, and 
hence (1. 7) certainly fails as soon as a positive proportion of the numbers in e are 
odd. 

The Theorem and its corollary provide non-trivial results only when y'x = 
o(M(x)). This is not surprising since whenever M(x) = o(Jx), one has v(n) > 0 
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for at most « M(x)2 of the integers n s x, and hence v(n) vanishes for almost 
all n in this case, forcing the sum LnEe v(n) to vanish also for most sets e with 
#& = o(x). 

Before we move on to establish the theorem, it perhaps worth to stress again 
that the estimates in the Theorem do not depend on the distribution of A in 
arithmetic progressions. If, on the contrary, one has a result of Siegel-Walfisz type 
available for A, then it also possible to study the sums 

L (v(n) - 6(n)J(n)). (1.8) 
nEe 

The correction by the singular series should make the individual terms smaller. 
Indeed, if the asymptotic formula (1.2) holds for almost all n, then it is easy 
to count the sets e E S(X, N) where (1.8) exceeds E:NM(X) 2 x-1 in size: let 
B be the set of all n s X for which (1.2) fails whence #B o(X); then for 
any e E S(X, N) where (1.8) is large, one must have #(& n B) ~ E:N. A simple 
combinatorial counting argument gives an estimate for the number of all such 
e E S(X, N) in terms of E:, N and #B, which is non-trivial throughout the range 
1 S N S X, and is much superior to the Theorem in the ranges where the Theorem 
is applicable. 

We illustrate this last point with an example and consider the set A of all 
natural numbers that are the sum of two cubes of natural numbers. In this case, 
v(n) is intrinsically related to Waring's problem for four cubes. Therefore, we also 
introduce the functions r 8 (n) to denote the number of solutions of n x1 + x~ + 
... + x~ in natural numbers x,. In particular, we have A {n : r2(n) > O}. 
A recent result of Heath-Brown [2] (improving earlier work of Hooley [3, 4]) shows 
that r2 (n) = 2 holds for all but O(X4/ 9+e) of the numbers n s X with n EA. 
Since r2 ( n) « ne holds for any E: > 0, one finds that 

A(X) = ~ L r2(n) + O{X4/9H) 
nsX 

with the aid of Gauss lattice point argument to evaluate the sum of r2(n). Retur
ning now to the function v(n) in the special case under consideration, we have 

1 
v(n) = :f4(n) + E(n) 

where 

The aforementioned result of Heath-Brown then shows that 

L IE(n)I « A(X)x4/9+e « x10/9+e. 

n:::;X 

(1.9) 
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Moreover, as a consequence of Theorem 2 of Vaughan [5], the asymptotic formula 

where 

6(n)-t, t, q-• (t,,(•~) )' e( _ aqn) 

(a,q)=l 

is the singular series for four cubes, holds for all but O(X (log X)-¼) of the natural 
numbers n $ X. Combining this with (1.9), it follows that 

v(n) - ir(;) 3 
<5(n)n113 « n 113 (logn)-l/4 (1.10) 

holds for all but O(X(logX)-¼) of the natural numbers n $ X. We now carry 
out the counting argument alluded to in the previous paragraph. Let E denote 
the exact number of n in the interval X < n $ 2X for which (1.10) fails. Then, 
for any e > 0, the inequality 

IL (v(n) - <5(n)nl/3) I > eNXl/3 
nEe 

can hold for sets e E S(X, N) only if at lea.st eN elements of e are counted by 
E. Thus, the number of such sets e E S(X, N) does not exceed 

2. A simple lemma 

In this section, we consider the mean square of the exponential sums 

when e varies over S(X, N). 

Lemma. For a E JR we have 

Ke(a) = L e(an) 
nEe 

L IKe(a)l
2 « (~) (N + N 2 (1 + Xjjo:11)-2

) 

eES(X,N) 

where l!o:11 denotes the distance of a to the nearest integer. 
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Proof. For brevity, all sums over e are over all e E S(X, N). We open the square 
and start from 

LIKe(a)l
2 

= (~)N+ L L e(a(n-m)). 
e e n,mEB 

(2.1) 

n#m 

The first term on the right is acceptable. In the remaining sum, we exchange 
summation and note that for any pair n =/- m with X < n, m S 2X there are 
exactly (~=;) sets e E S(X, N) with n Ee, m Ee. It follows that 

L L e(a(n - m)) 
e n,mEe 

n:;,fm 

L e(a(n-m))(~=~). 
X<n,m::;'.2X 

nc;6m 

We add terms with n = m to the right hand side. Then, by a standard estimate, 

L L e(a(n -m)) 
e n,mEB 

nc;6m 

The Lemma now follows from (2.1) on noting that 

(X -2)x2 = XN(N -1) (X) N2(x). 
N-2 X-1 N « N 

3. Proof of the theorem 

We shall compare the exponential sums 

S(a) = L e(an), T(a) = L t(n)e(an) 
nEA 

n::;'.2X 
n::;'.2X 

in various ways. From S(O) = A(2X) and T(O) = M(2X) we see that S(O) and 
T(O) are close to each other. Partial summation shows that 

{2X 
S(a) - T(a) = e(2aX)R(2X) - 21ria Ji e(ar)R([r])dr 

where [r] is the integer part of T. On writing 

R*(X) = max IR(m)I 
m::;'.2X 
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we infer that 
S(a) -T(a) « (1 + Xlal)R*(X). (3.1) 

It will also be convenient to have at hand the mean square of S(a) and 
T(a). By Parseval's identity and (1.5), we have 

J
l/2 

IS(a)l 2da 
-1/2 

A(2X) « M(X). (3.2) 

We may argue similarly for T( a), recalling that t( n) is decreasing and non-negative. 
This leads to the bound 

!
1/2 

!T(a)l2da = L t(n) 2 ~ t(l) L t(n) « M(X). 
- 1/ 2 n::;2x n:9X 

(3.3) 

We are now ready for the main argument. Let & E S(X, N). Then, by 
orthogonality, 

J
l/2 L (v(n) - J(n)) = (S(a)2 -T(a)2 )Ke(-a)da. 

nEB -1/2 

However, by Cauchy's inequality and the Lemma, we have 

L IKe(-a)I « (!) (m + N(l + x1a1)- 1
) 

BES(X,N) 

whenever la! ~ ½. Since (3.2) and (3.3) imply that 

it follows that 

J
l/2 

IS(a)2 -T(a)2 lda « M(X), 
-1/2 

L II:(v(n) J(n))I 
BES(X,N) nEB 

« (x)M(X)JFi + (x)Njl/2 IS(a)2 -T(a)21da. (3.4) 
N N _1; 2 l+XJal 

We are now reduced to estimate the integral on the right hand side. Let fJ 2:: 1 be 
a parameter to be chosen later. We split the integral into the ranges !al ~ o/ X 
and o/X ~!al~½· In the first case, (3.1) yields 

IS(a)
2 

-T(a)
2
I « R*(X)(IS(a)! + IT(a)I) « R*(X)M(X)· 

l+Xlal ' 
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here we used the trivial bounds IS(a)I ~ S(0), IT(a)I ~ T(0). This shows that 

l li/X IS(a)2 T(o:)2I da « ox-1 R*(X)M(X). 
-li/X 1 +Xlal 

On the complementary part, we have 

f IS(a)2 -T(o:)21 da ~ o-111/2 IS(a)2 - T(a)2lda « M(X). 
la/X"fla:l-5:½ 1 + Xlal -1/2 o 

Hence we choose o by o2 = X R*(X)- 1 to deduce that 

11/2 IS(o:)2 -T(o:)2I da « M(X)R*(X)½x-½ 
-1/2 1 + Xjaj 

(3.5) 

(here it is essential to note that M(X) « X, and so R*(X) = o(M(X)) gives 
R*(X) = o(X) whence o = o(X)-. oo as X-. oo). TheTheoremisnowavailable 
from (3.4) and (3.5). 
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