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FOURTH POWER MOMENT OF DEDEKIND ZETA-FUNCTIONS 
OF REAL QUADRATIC NUMBER FIELDS 
WITH CLASS NUMBER ONE 

R.W. BRUGGEMAN & Y. MOTOHASHI 

1. The problem 

The Dedekind zeta function of a real quadratic number field F is defined by 

(p(s) = L)Nn)-8
, Res> 1, {1.1) 

C1 

with et running over all integral ideals of F. It continues to C, and {s - l)(p{s) 
turns out to be entire. Our principal aim is to establish a spectral decomposition 
of the fourth power moment of (F : 

(1.2) 

where g is assumed to be entire, and of rapid decay in any fixed horizontal strip. 
With this, we extend to (F the discussion that are developed in [101 on the Rie
mann zeta-function, and in [2] on the Dedekind zeta-function of the Gaussian 
number field. The relevant spectral theories in [101 and [2] are, respectively, on 
the full modular group and on the Picard group; here it is on the Hilbert modular 
group over F, as is to be made precise in Section 3. 

Basic convention. We assume that F is of class number one, and that the fun
damental unit co > 1 of F has norm equal to -1 . Thus each ideal in F has a 
totally positive generator. The first assumption is essential for our argument, but 
the second is mainly for the sake of simplicity. Notations are introduced at the 
places where they are needed first time, and thereafter continue to be effective. 

To begin with, we put 
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with all Re Zj > 1. This continues meromorphically to C4 . In particular, it is 
regular at P½ = (½, ½, ½,½),and we have 

with constants ao, bo, a1 , b1 which depend on F, and could be made explicit. On 
the other hand, in the region of absolute convergence, we have the expression 

where 

D'{(a) = I)Ncl, (1.6) 
cja 

with c being an integral ideal. A sum much similar to (1.5) is treated in [2], but 
over the Gaussian number field. There an application is made of a natural extension 
of a dissection argument that is employed in Section 4.6 of 110]. It exploits the 
lattice structure of the ring of integers in the field. We are going to use the same 
device. But then we have to transform the sum over ideals in (1.5) into a sum 
over the elements of O, the ring of integers in F. In the real quadratic case, that 
is a problem, as there are infinitely many generators for each ideal in O. 

2. Initial reduction 

To overcome this difficulty, we shall appeal to an instance of partition of one: 

Lemma 2.1. Let p be such that its Fourier transform p (see (1.6)) is even, 
real-valued, smooth, supported on a neighbourhood of O contained in (-1r, 1r), 
and moreover p(0) = 1. Then p is even, real-valued, smooth and of rapid decay 
on JR, and we have, for any x E JR, 

LP(x+n) = 1. (2.1) 
nEZ 

Also we have, for any x, y E JR, 

(2.2) 

Proof. These identities are results of applications of the Poisson sum formula; in 
(2.2) the Parseval formula is also used. 
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We put, for a non-zero x E F, 

(x) = ~ (log lx/x'I) 
X 2P 2 log£0 ' 

(2.3) 

where x' is the conjugate of x over Q. The identities (2.1) and (2.2) give, for 
any non-zero x E F, 

LX(fx) = 1, (2.4) 

(2.5) 

respectively. Here f runs over all units in eJ; that is, f = ±to' ll E z. Also we 
have put 

(2.6) 

Then, for any function f defined over positive reals, we have 

f(Na) = Lf(IN(a)l)x(a), (2.7) 
a 

where a runs over all generators of a, and N(a) = aa'. Thus, formally, 

I:o-.da)f(Na) = L o-e(a)f(IN(a)l)x(a), (2.8) 
Cl aEO. 

with V. = V\ {O} and o-e(a) = o-d(a)). 
Applying (2.8) to (1.5) we have 

( ) ~ O"z1 -z2 (a)O"z3-z,i.(b) () ( )~(l I (/)I) 
j z1; z2, Z3, z4;g = L; IN(a)lz1IN(b)lz3 X a X b g og Nb a 

a,bEO. 

={I:+I:}··· 
a=b a:fib 

Po+ j+}(z1, z2, Z3, z4;g), (2.9) 

say. By virtue of (2.5) 

On the other hand 

mEO. 
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Classifying m according to the ideal m = (m), we have 

'.J+(z1, z2, Z3, Z4; g) = L (Nm)-zi-z3 

m 

X L 
m=(m) 

O'z1-z2(n)O'za-z, (n + m) ~(lo IN(l + m/n)I) 
IN(n/m)l 2 1IN(l +n/m)lza 9 g 

x I:x(m)x(1:(n + m)). 

The formula (2.2) gives 

I::x(m)x(1:(n+m)) = cx(l +m/n), 

where 

cx(x) = ...!:.. f 1r p(.;)2 exp (i/og lx/x'I) dt;, 
4~ -1r 2log1:o 

so that ex.· ex ( 1) . 

In this way we are led to binary additive divisor sums over F: 

(2.12) 

(2.13) 

(2.14) 

'.Bm(a,{j;h) = L O'a(n)o-p(n+ m)h(n/m), m >- 0. (2.15) 
nEO. 

n+m;lcO 

The condition m >- 0, i.e., totally positive, causes no loss of generality under the 
present assumptions on F. From (2.12)-(2.13) 

'.J+(z1, z2, Z3, Z4j g) = L (Nm)-z1 -z3 '.Bm(Z1 - z2, Z3 - Z4; g.(·; zi, Z3)), (2.16) 

with 

m 
m=(m) 

( . o) _ g(log IN(l + 1/x)l)cx(l + 1/x) 
9* x,,, - IN(x)I-YIN(l +x)l8 (2.17) 

Following the argument in [9] basically, we shall, in the next section, transform 
'.Bm ( a, /j; h) into a sum of Kloosterman sums over F, and consequentially, in Sec
tion 5, decompose it spectrally with the geometric sum formula for the Hilbert 
modular group over F, provided a, {j lie in an appropriate domain. A condition 
on h that makes our procedure legitimate is to be given in (2.35}. In Section 6 we 
shall examine g. if it meets this condition, and apply the result on '.Bm(a, (3; h) to 
obtain a spectral decomposition of Z2 (g, F). Because of this, the bulk of our paper 
is devoted to the study of '.Bm(a,(3;h). We begin it with invoking the Ramanujan 
expansion, i.e., (2.19), of ap in terms of additive characters over F. 



Fourth power moment of Dedekind zeta-functions of real quadratic number fields 45 

Thus, let us put, for x E F, 

( 
21ri ) e[x] = exp ~(x - x') , 

where Dp is the fundamental discriminant of F. We have 

'°" 1 '°" [ /] 1 {(p(s-1) ifn=O, 
L (Nc) 8 L e an c = (p(s) 0-1-s(n) if n i= 0, 

c a mod c 
c=(c) (a,c)=l 

provided Res > 2. This can of course be formulated as 

'°" x(c) '°" __ l_ { (p(s - 1) if n = 0, 
c~ IN(c)l 8 a~ c e[an/c] - (p(s) 0"1-s(n) if n i= 0. 

(a,c)=l 

Hence, for Re f3 < -1, 

'°" x( c) '°" '.Bm(o, {3; h) (p(l - f3) L IN(c)ll-,B L e[am/c]'Dm(o, a/c; h). 
cEO. a mod c 

(a,c)=l 

Here 

with 

'Dm(o,a/c; h) L O'a(n)e[an/c]h(n/m; c), 
nEO./Uc 

h(x;c) = L h(1:x), 
eEUc 

Uc= { €: totally positive unit congruent to 1 mod c }. 

We fix a generator of the group: 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

We assume that h is such that (2.23) is absolutely convergent, and, for x E F, 

h(x; c) ,«: IN(x)l-1-ma.x(O,Rea)-µ. (2.26) 

uniformly in c, with an arbitrary fixed µ > 0. On this and Re f3 < -1, the 
expansion (2.21) holds. 

The use of the Ramanujan formula (2.19)-(2.20) is to separate the parame
ters n and m in £T,B(n + m) of (2.15). We need to do the same separation for the 
factor h(n/m; c) too. To this end we extend h to (JR\ {O} )2 via the embedding 
x 1--+ (x, x'), so that in place of (2.23) 

h(x,x';c) = Lh(1:~x,1:~11x'). 
vEZ 

(2.27) 
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Following Hecke, we apply the Poisson sum formula to the right side, getting 

h(x, x'; c) = L f 00 h(€~X, €;;tx')e- 21rivtdt 
vEZ -oo 

1 L {00 

h(l;x, 1;-1x1)1;-21riv/logt:c ~. (2.28) 
€c vEZJo l; 

The change of variable l; i---+ l; Jlx' /xi gives 

h(e1lxl, e2lx'I; c) 

= -
1 

l LI x, lva,ci {
00 

h (e1l; JIN(x}I, e2C 1 JIN(x)I) l;-2va,ci ~, (2.29) 
og€c vEZ x Jo l; 

where ej = ±1, and We= 1r/log€c. This integral is a function of JIN(x}I, 
Considering its Mellin transform in each quadrant separately, we have, with a 
certain vertical line (a)= {s: Res= a}, 

h(eilxl,e2lx'l;c)= 
2 

.: Llx,lva,ci 
7r1 og €c vEZ X 

X 1 h (s - VWci, s + VWci; e) IN(x)j-8 ds, {2.30) 
(a) 

where e = ( e1, e2), and 

1
00100 . 

h(s1,s2;e) = 
0 0 

h(e1u1,e2u2)u~1
-

1u;2
-

1du1du2. {2.31) 

Thus, a rearrangement gives 

1 ~~1 ffi ,-V1:t'ci 
'Dm(o., a/c; h) = 

2 
. l L..t L..t , 

7r't ogcc l vEZ m 

X 1 IN(m)l 8ht (s - VWci, s + VWci) De(s,o.; v; a/c)ds, (2.32) 
(a) 

where 1 + max(O, Re o.) < a, and£= (li, l2), lj = 0, 1. Here 

{2.33) 

and 

~ 0-a(n) In lva,ci 
De(s, o.; v; a/c) = L..t IN(n)ls n' sgnl[nle[an/c], 

nEO./Uc 

(a, c) = 1, {2.34) 
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We assume that h is such that 

h(s1,s2;e) is regular and« (1 + !s11 + ls21)-c0 

in the domain jRe s11, IRes2I < Co, 
(2.35) 

with a sufficiently large Co > 0. Then (2.26) holds for !Re al < ½Co, for instance. 
Namely, (2.32), with an appropriate (a), is valid under (2.35). This assumption 
on h is quite drastic; a more refined formulation is of course possible, which seems, 
however, not to be essential for our present purpose. 

3. Sum of Kloosterman sums 

We are going to show a functional equation for De, from which emerges a represen
tation of '.Bm in terms of a sum of Kloosterman sums over F (see (3.53) below). To 
achieve this, there are at least two ways to follow. One is to extend Lemma 3.7 [10], 
which is originally due to Hecke and Estermann, by using a theta-transformation 
formula over F. The other is more functional, and it employs the Eisenstein series 
for the Hilbert modular group over F. We shall take the latter, in order to indicate 
the existence of an intrinsic geometric structure behind the mean value Z2(g, F), 
and thus possibilities of extension, as well. It should, however, be stressed that the 
direct treatment developed in this section is based on our local specifications, and 
the deduction of those results from the general theory of automorphic forms on 
semisimple Lie groups is naturally possible (see e.g., [6]). 

Thus, we shall work with the Lie group 

(3.1) 

The Hilbert modular group I' is the discrete subgroup in G resulting from the 
embedding g 1----• (g, g') of PSL2(0) into G, where the conjugation is applied to 
matrices element-wise. Write 

n[x] = ( [ 1 ~1 ] , [ 1 ~2] ) , 
a[y] = ([ Jyi 1/Jyi]' [ y'y2 1/#2])' (3.2) 

and put 

N = { n[xj : x E R.2} , A { a[yj : y E (0, oo )2
} , K = { k[O] : 0 E (JR/1rZ)2

} . (3.3) 

Then we have the Iwasawa decomposition 

G N AK, G 3 g = n[x]a[y]k[O]. (3.4) 
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In the sequel we shall use this coordinate system on G without mention. If either 
n[x] or a[y] or both contain expressions involving elements of F, then they should 
be understood as results of the embedding. Haar measures on these groups are 
defined by 

dn dx1dx2, da = (Y1Y2)-1dy1dy2, dk =1r-
2d01d02, dg = (Y1Y2)-1dndadk, (3.5) 

with Lebesgue measures dxj, dyj, d0j. Elements of the Lie algebra g of G are 
identified with corresponding right-differential operators on G. The algebra g has 
the basis: 

+ 2io . ( . 8 8 1 •a ) 
ej = e 3 iyj x; + Yj Yi - 2 i 9; , ej, j = 1,2. (3.6) 

We have the relations 

[wj, ey] = ±ief, [et,e;J = -2iwj, (3.7) 

and also [x1,x2] 0 for Xj E {wJ,ej,e1}. These imply in particular that the 
center of the universal enveloping algebra of g is the polynomial ring on two 
Casimir elements: 

,.., _ + - 2 . _ 2 ( i::12 82 ) 8 8 Hj - -ej ej + wj - ZWj - -yj ux; + Y:i + Yj x; Or (3.8) 

Let / be a function on G that is left I' -automorphic and of weight 2q 
2(q1 ,q2), qJ E Z; that is, for any g E G, 

/('Yg) /(g), , E I'; /(gk[Ol) = e2tqO /(g), q0 = q101 + q202. (3.9) 

The latter is obviously equivalent to 

Wj/ = iqj/, j = 1, 2. 

Then the first relation in (3. 7) implies that 

e; fare I'-automorphic and of weight 2( q ± 1 j), 

with 11 = (1, 0), 12 (0, 1) 

(3.10) 

(3.11) 

Such an J satisfies naturally /(n[n]g) = J(g) for any n E O, and thus, under an 
appropriate smoothness condition, / should admit a Fourier expansion in terms 
of the additive characters 

(3.12) 

Having said this, we introduce the Eisenstein series: It is defined, initially 
for Re s > ½ , by 

Eq(g;s,v)= L ¢,q(,g;(s+vroi,s-vroi)), q=(q1,q2)EZ2, vEZ, (3.13) 
,yEI' co \I' 
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with ro = 1r / (2 log fo) . Here 

,;.. ( ) s1 +½ s2+½ 2iq8 
'l"q g; s = Y1 Y2 e , (3.14) 

and I' 00 = I' n N • I' n A is the stabilizer in I' of the point infinity. To describe the 
Fourier expansion of Eq(g; s, v), we need also to introduce the twists of (F and 
O'e with Grossencharakters: 

(p(s,v)=Lln/n'l 11wi(Nn)-s, O'e(n,v) Lld/d'l 11wiN(ilf, vEZ, (3.15) 
n,/0 Zlln 

where n (n), il (d) with n >- 0, d >- 0 run over integral ideals. The L-function 
(F( s, v) continues to an entire function, provided v -f:. 0. 

Lemma 3.1. As a function of s, Eq(g;s,v) continues meromorphically to C, 
satisfying the functional equation 

Eq(g; -s, -v) = ( ~ )-
48 

x r(½ + s + vroi + !qd)f( ½ + s - vroi + lq21) (p(l + 2s, -2v) E (g; s, v). (3.16) 
r( ½ - s - vroi + lq1 l)r( ½ - s + vroi + lq21) (p(l - 2s, 2v) q 

When it is of finite value, Eq (g; s, v) is I'-automorphic and of weight 2q. In the 
half plane Res > 0, singularities occur only when v 0 and q = (0, 0), and 
Eco,o)(g; s, 0) has a simple pole at s = ½ with the residue (1r2 log fo)/(Dp(p(2)) 
as its sole singularity. Further, 

e-2iqO Eq(g;s,v) = (Y1Y2)½+s(Yi/Y2twi 

( l)q1+q2 1r ( ) 1 -s( / )-vwi f(s+vroi)f(s-vroi) 
+ - ..jDp YiY2 2 

Yi y2 f( ½ + s + vroi)f( ½ + s vroi) 

lqil-1( .. 1)lq2l-l( .. 1) ( ) x IT s + vroi - J1 - 2 s - vroi - J2 - 2 (F 2s, -2v 

ji=O ½ + s + vroi + ii l1 ½ + s - vroi + h (p(l + 2s, -2v) 

(-l)q1+q2 (1r/ ..jn;)2s t""' ln/n'l-vtoi 
+ 7r (p(l + 2s, -2v) n7o. IN(n)l8+½ 0'2s(n, 2v)¢n(n[xl) 

X W q1 sgn(n),s+vwi (41r!nlyi/y'i'.'.j;) W -q2sgn(n'),s-vmi (41rln1IY2/y'i'.'.j;) (3.l 7) 
r(½+s+vroi+q1sgn(n)) r(½+s vroi-q2sgn(n')) ' 

where W a,b is the Whittaker function. The sum over n E O .. converges absolutely 
and uniformly for all parameters involved, and moreover it is of exponential decay 
as Y1Y2 tends to infinity. 

Proof. Obviously it is enough to prove the expansion (3.17). By the Bruhat de
composition, we have 

Eq(g; s, v) = c/Jq(g; s) + L L L c/)q(a[l/c2]wn[a/c + n]g; s), 
c=(c) a mod c nEO 
c>-0 ( a,c )= 1 

(3.18) 
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where s = (s + vw, s - vw), w = k[½1r, ½1r]. The sum over n is, by the Poisson 
sum formula, equal to 

~ L e[an/cj f tt,;1(n)ifJq(a[l/c2]wng; s)dn 
y.uF nEO jN 

e2iqO 

= ~ ( )2 L e[an/c]tpn(n[x])An;c2if>q(a[c2y]; s), (3.19) 
FN C nEO 

where An is the Jacquet operator: 

An/(g) = l tt,;1(n)/(wng)dn. (3.20) 

Computing the coordinates of wna[yj, we have 

A <P ( [ l ) ( )½-s( / )-vmi Joo exp(21riny1{i/JI'.>F) ( i + fa )
2
q

1 ~ 
n q a Y : s Y1Y2 Y1 Y2 , -- 1 

' -oo (1 + {r)J+s+vmi Ii+ fa I 

J
00 exp(21rin'y26/ v'D;) ( i + €2 )-

2
q2 ,,c 

X 1 1· I "",,2• (3.21) -oo (1 + e:n2+s-va,i i + €2 

These integrals are tabulated: For Res> 0, IR 3 u, 

Joo e ½i~ ( e + i ) 2q 
-oo ({2 + l)s+½ I{+ ii d{ 

I 
(-l)q7r (lul)s-½ Wqsgn(u),s(lul) 

= 4 r(s + ½ + qsgn(u)) 
(-l)q1r21-2s r(2s) 

r(s+ ½ + q)r(s+ ½- q) 

if u # 0, 
(3.22) 

if u = 0. 

Ignoring the convergence issue temporarily, we insert (3.21)-(3.22) into (3.18) via 
(3.19), rearrange the summation, and use the twist of (2.19) with Grossencharakters: 

L lc/c'12vmi(N(n))-s L e[an/cj 
c a mod c 

c=(c) (a,c)=l (3.23) 
1 {(F(s-1,2v) ifn=0, 

(F(s, 2v) 0'1-s(n, 2v) if n # 0. 

This leads us to the expansion (3.17) . As to the convergence, we shift vertically 
the two contours in (3.21) appropriately, and see that uniformly for Res > 0 

An;c2<Pq(a[c2y]; s) « (N( c)y'yj'yi)1- 3Re 8 exp(-a(lnyd + ln'y21)) (3.24) 

with a > 0 and the implicit constant depending only on F. Then, provided Res > 
0, the sum over n E O. in (3.19) is 

« (N( c)y'yj'yi)1
-

2
Re s L Ko ( aJN(n)Y1Y2), (3.25) 

n;ic(O) 

where n runs over integral ideals of F, and K 11 is the K-Bessel function of order 
v. This shows that (3.18) converges absolutely for Res > ½, and moreover yields 
the last assertion in the lemma. 
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Lemma 3.2. The function De of s continues meromorphically to C. If a i- 0, 
then it has simple poles at s 1, 1 + a with residues 

a: 1 loge:c a: 1 loge:c 
4ov,oOe,olN(c)I - y'Op(F(l - a), 4ov,oOe,olN(c)I- - y'Op(F(l + a), (3.26) 

respectively, and elsewhere it is regular; i.e., it is entire unless v 0 and f. = (0, 0) 
simultaneously. Further, it holds, for all s, that 

1 ( )2(2s-a:-l) 2 . 
De(s,a;v;a/c) 7r

2 
21r/JDFIN(c)I lc/c'I vmci 

x re(s - VWci, s + VWci; a) De(l - s, -a; -v; a* /c), (3.27) 

where a•a = 1 mod c, and 

2 

fe(s1,s2; a)= rr (cos ½1ra - (-1/j COS7r(Sj ½a)) f(l-sj)f(l+a-sj)- (3.28) 
j=l 

Proof. Put 

/a:{g; a/c) = (1r/v15;)-°'f2 (½(1 + a))(p{l + a) 

x (et - e1)h(et - e2)12 Eco,o)(n[a/c]g; ½a, 0). (3.29) 

Note that 
n[a/c]a[yJ- 1 E I'n[-a* /c]a[y/c2]k[½1r, ½1r]. (3.30) 

Thus, by {3.11), we have 

/a:(a[y]- 1
; a/c) = (-1)h+12 /a:(a[y/c2]; -a• /c). (3.31) 

On the other hand, (3.17) gives the expansion 

!a(a[y]; a/c) = { Ji0
) + Ji1

)} {a[y]; a/c), (3.32) 

where 

Ji0)(a[y]; a/c) =Oe,0(1r / Jn;)-°'f2
( ½(1 + a)KF(l + a)(y1y2)½(1+0:) 

+oe,0(1r/J0p)°'f2(½(1- a))(F{l - a){y1y2)½(1-.:t) (3.33) 

and 

fil)(a[y];a/c) = (-l/l{41r/JD;)l1+h+ly1li+½yi2+½ 

x L O"a(n)1 nlin'l2 e[an/c]K½a(21rlnlyi/Jfi;) 
nEO.IN(n)l 2 °' 

x K.10:(21rln'ly2/Jfi;). 
2 

(3.34) 
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We then put 

I(s, a; v; a/c) 

= J J J;P(a[y/Jcl]; a/c)(Y1Y2) 8 -½(a+3)(yify2)-vrocidy1dy2. (3.35) 

15;y1/i;25;<~ 

The expansion (3.34) gives 

(3.36) 

where the convergence is absolute throughout. Hence, unfolding the integral, we 
get 

( )

-2s+a+l 
7r c -vroci 

I(s a· v- a/c) = (-l)h22(h+l2-l) --;::=== 1-1 
' ' ' JDpJN(c)J c' 

X r (½(s + li - llWci)) r (½(s + li - a - VWci)) r (½(s + b + l/Wci)) 

x f (½(s + l2 - a+ llWci)) De(s, a; v; a/c). (3.37) 

We then divide I into two parts: 

I(s, a; v; a/c) = J J "·={f++r}(s,a;v;a/c). 

15;y1/y25;e~ 
Y1Y25;1 

Obviously J+ is entire ins. By (3.31)-(3.33), we have 

(3.38) 
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provided Res is sufficiently large. From (3.37) (3.39), De is meromorphic over 
C. The assertion (3.26) is now immediate. Also (3.39) implies that 

I(s, a; v; a/c) = (-l)li +'2 I(l - s, -a; -v; -a* /c), (3.40) 

which is equivalent to {3.27)-(3.28). This ends the proof. 

Now, we return to (2.32). We assume that (2.35) holds. We have 

TJm(a,a/c;h) = L)'t(m;a,a/c;h), (3.41) 
e 

where 

1 '"'l m 1-vmci Ye(m;a,a/c;h) = 
2 

.
1 

Lt -, 
7rt og fc vEZ m 

x f IN(m)l8ht(s - vwci, s + vwci) De(s, a; v; a/c)ds, (3.42) 
l<a) 

with O < a - 1 - max(O,Rea) <Co. Inserting this into (2.21) we have also 

'13m ( a, /3; h) = L Ze( m; a, /3; h ), (3.43) 
e 

where 

Ze(m; a, /3; h) = (p(l - /3) L IN~\~~-/:1 L e[am/c]Ye(m; a, a/c; h). (3.44) 
cEO. a mod c 

(a,c)=l 

Shifting the contour in (3.42) to the left, we have, by Lemma 3.2 

Yt(m; a, a/c; h) = 4 ~IN(c)l°'- 1 IN(m)lhe(l, l)(p(l - a) 
vDF 

+ 4 ~IN(c)l_°'_1 IN(m)ll+°'he(l + a, 1 + a)(p(l + a) 
vDF 

IN(c)l°'+l ( 21r )-2a-2 '°' O"-a(n) l * '°' mnc'2 -vmci 
+ 2 3•1 ~ Lt IN( )I sgn [n]e[a n/c]LJ , , 2 

1r t og fc y .up n m n c 
nEO./Uc vEZ 

X { f e( 8 - LIWci, 8 + LIWci; a )he ( 8 - LIWci, S + LIWci) 
j(b) 

(
41r

2
JIN(mn)I) 

28

d 
x DpjN(c)I s, (3.45) 

with 
b < min(O, Re a). (3.46) 
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Here we have used a bound for D1,(s, a; v : a/c) which follows from (3.27); thus, 
it is implicitly assumed that !Re al and lbl are sufficiently smaller than the Co in 
(2.35). Denoting the last integral as L(vwc), we have, by the Poisson sum formula, 

II 

That is, in (3.45) 

? -iT 

__!_ ~ Joo L(r) Emnd~ dr. 
w ~ E1m'n'c2 

c t:EUc -oo 

-i-r 
mnc'2 

m 1n'c2 

This integral can be put as 

( . ) _ (41r.Jfmni 41rJlm'n'!) [h]t(x(m,n;c);a), x m,n,c - lclv'.i); , lc'jv'.i); 

with 

Then 

bot ~ 
Yt(m;a,a/c; h) = 4 yl'jplN(c)l°'-1IN(m)lht(l, l)(p(l - a) 

+ 4 ~IN(c)l_°'_1IN(m)ll+°'ht(l + a, 1 + a)(p(l + a) 

(3.47) 

dr. (3.48) 

(3.49) 

+ 7r~i IN(c)l°'+1 
( ~ )-

2

ar-

2 

I: 7;(:~r sgnt[n]e[a*n/c][h]1,(x(m, n; c); a). (3.51) 
nEO. 

This, together with (2.20) and (3.44), gives 

60 t (p(l - a)(p(l - /3)~ 
Z1,(m;a,/3;h) =4 ~ (

2 
/3) h1,(l,l)IN(m)lo-a.+.B-1(m) 

yup (F - a-

60,t (p(l + a)(p(l - /3) ~ i+a. 
+ 4 yl)p (F(2 +a_ /3) h1,(l + a, 1 + a)IN(m)I <TJ3-a.-1(m) 

1 ( 21r )-2a.-2 ~ <T_a.(n) t 
+ 7r4i(p(l - /3) v'DF ~ IN(n)I sgn [n] 

nEO. 

x L x(c)IN(c)l°'+.B SF(m, n; c)fh]1,(x(m, n; c); a), (3.52) 
cEO. 
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where 
Sp(m, n; c) = L e[(ma + na*)/c] 

is a Kloosterman sum over F. 

a mod c 
(a,c)=l 

In the sequel we shall always assume, for the sake of simplicity, that 

(3.53) 

(3.54) 

where C1 > 0 is sufficiently large but Ci/Co with Go as in {2.35) is sufficiently 
small; note the remark made after (3.46). On this and (2.35), the double sum on 
the right side of (3.52) converges absolutely for 

!Real+ Re,8 < -2. 

In fact, an appropriate shift of contours in (3.50) gives 

[h]t(x; a) « lxx'l 2b(lxl + lx'I)-µ 

(3.55) 

{3.56) 

with a µ > 0 and b as in {3.46), from which the assertion follows immediately. 

In Section 5, we shall decompose spectrally the interior sum over c in (3.52). 
For that purpose we make here a little rearrangement of the sum. By the definition 
(2.3) we have 

where 

L x(c)IN{c)l°'+/3 Sp(m, n; c)[h]t(x(m, n; c); a) 
cEO. 

1 (4 2 ,----)°'+/3+1 
= 47r ;F J!N{mn)I 

Joo I mn li{/(4logfo) 
X -oo p(() m'n' Sm,n(a, ,8, (; [h)t)~, (3.57) 

1 
Sm,n(a,,8,(;[hlt) = L IN(c)ISp(m,n;c)[[hl}t(x(m,n;c);a,,8,(), {3.58) 

cEO. 

with 

[[hlJt(x; a, ,8, () = I ¼xx' l-a-/3-l Ix/ x'l-i{/(2 log£o) [h]t(x; a). (3.59) 

Note that under (2.35) and (3.54) we have the bounds 

, -µ { lxx11-Co/2 if lxx'I 2:: 1, 
[[h]lt(x; a, ,8, () « (lxl + Ix I) · lxx'j-lRea[-Re/3+1 if lxx'I < 1, (3.60) 

with µ > 0 as in {3.56). The extra integration in (3.57) will eventually be elimi
nated (see {5.4) below). 
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Remark. One may consider, more generally than Z2(g, F), the mean value 

(3.61) 

with arbitrary v1, v2 E Z. The relevant reduction to a sum of Kloosterman sums 
can also be performed with Lemma 3.1. 

4. Geometric sum formula 

The next step is to decompose spectrally the sum Sm,n( a, ,8, {; [h]t). This will be 
accomplished with the geometric sum formula for the Hilbert modular group I'. 
In the present section we shall describe this principal tool for our purpose. 

Let L2 (I'\G) be the Hilbert space composed of all left I'-automorphic func
tions on G which are square integrable against the measure dg. Let 0L2 (I'\G) be 
its cuspidal subspace, i.e., the one spanned by those elements with zero constant 
terms in their Fourier expansions ( see ( 4.17)). One can show the decompositions 

L2(I'\G) = C $ 0£ 2 $ e, 
OL2(I'\G) = EB V, 

e = EB ev, 
vEZ 

(4.1) 

(4.2) 

(4.3) 

where V runs over an orthogonal system of right irreducible subspaces, and ev is 
generated by the values of the Eisenstein series Eq(g; s, v) as in (4.6) below. The 
action of the subgroup K leads to a further decomposition 

(4.4) 

where k[O] acts in Vq as the multiplication by e2iqtl, and dim Vq ~ 1. Analogously 
we have 

(4.5) 

where 

ev,q = {1: u(t)Eq(g; ½+it, v)dt : 1-: lu(t)J2dt < 00}. (4.6) 

We note that the operator nj acts as a multiplication by a constant in each V, 
i.e., 

Ojlv = (¼ + "-;) · 1, "-v (K1,"-2), 

with certain "-; E C, and that 

WjlVq = iq, · 1, w1lev,q = iq; · 1, 

which is the same as (3.10). 

(4.7) 

(4.8) 
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The fundamental assertions (4.1)-(4.6) follows from the general theory of 
automorphic forms on semisimple Lie groups, see, e.g., [4] or [6]. However, in the 
present situation, it is of no difficulties to derive them in the same way as for the 
full modular group acting on the upper half plane, for instance as in Chapter One 
of [10]. 

In the geometric sum formula the spaces V of (4.2) occur, along with a 
certain classification among them. Because of this, we need to show a structure in 
the decomposition ( 4.4). Thus, observe that the basis elements ej of g act in V, 
and the assertion (3.11) implies the diagram within V: 

(et) 

Vq+h 
i 

Vq 
! 

Vq-12 
(e;) 

(4.9) 

The classification of V concerns how the diagram extends to a rectangular grid in 
which the Vq are placed. To this end, we could rely on the fact that g = sb EB sb, 
but we shall use a direct argument: 

We pick up a generator ({) of a non-trivial Vq. The function ({) is a cusp-form 
over F\G in the sense that it is an element of 0L 2(F\G), and a simultaneous 
eigenfunction of ni and w i as indicated in ( 4. 7) and ( 4.8). Then, observe that 
efe;({) -((±qi+ ½) 2 +KJ)'P via (3.7) and (3.8), and that integration by parts 

gives lle;'Pll 2 = -(ef e;'P, 'P), with an obvious usage of notation. Hence we have 

(4.10) 

In particular (±qi+ ½) 2 +KJ is non-negative, which allows us to choose Kj so that 

(4.11) 

The relation (4.10) shows that the mappings in (4.9) are bijective in general. 
Exceptions can occur only if iKJ li - ½, with an integer lj ~ 1. More precisely, 

Vq-/- {O} and e;Vq = {O} {=} qi= =Fli or li = 1, qi= 0. ( 4.12) 

A combination of (4.11)-(4.12) shows that the lj - ½ are the only values that 
iKj can take if iK; ~ ½ . Then, the irreducibility of V implies that the set 
{q: Vq-/- {O}} is the direct product of two intervals in Z. The possibilities are 
as follows, with corresponding technical terms: (I) qi E Z if Kj ~ 0 ( unitary 
principal series), (II) qi E Z if O ~ iKJ < ½ (complementary series), (III) qi ~ li 
with iKj lj - ½ (holomorphic discrete series), (IV) qi ~ -l; with iKj l; - ½ 
(anti-holomorphic discrete series), and (V) qi = 0 with iK; = ½ (trivial repre
sentation). But the last case cannot occur, because we are dealing with spaces of 
cusp forms. In this way we are led to a classification of the spaces V: 
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Lemma 4.1. Let V be an irreducible subspace of 0L 2(I'\G), for which (4.4) and 
(4.7) bold. We have the following possibilities: 

1. either Kj ~ 0 or O::; iKj < ½, for both j 1, 2, 

2. either K2 ~ 0 or O::; iK2 < ½, and iK1 l - ½, r,1q1 ~ l with an integer l ~ 1, 

3. either K1 ~ 0 or O::; iK1 < ½, and iK2 l - ½, r,2q2 ~ l with an integer l ~ 1, 

4. iK1 = li - ½, iK2 = l2 - ½, r,3q1 ~ li, r,4q2 ~ l2 

with integers li,l2 ~ 1, 
(4.13) 

where T/v ±1, and qj without constraint runs over all integers. We may choose 
a cusp form <pv in V of weight 2qv with 

respectively, for which 
V 'U·ipv, 

with the universal enveloping algebra. 'U of g. 

(4.14) 

(4.15) 

Thus, starting from Vqv, a multiple application of ef fills the grid. In case 1, 
all Vq are non-trivial. In case 4, a sole quadrant of the grid is filled with Vq all 
non-trivial; and other three quadrants contain only trivial spaces. In the remaining 
cases 2 and 3, we have a mixed situation. Non-trivial Vq are, respectively, in a 
vertical and a horiwntal halves of the grid that are fixed by V. 

Remark. The ¼ + K; with O < iKj < ½ are called exceptional eigenvalues. It is 
known that they satisfy non-trivial lower bounds. The best published result 

. 1 
1,K',· < -

J - 5 (4.16) 

is due to Rudnick, Luo and Sarnak [7]; in the preprint [51, Kim and Shahidi give 
. < 5 
'tKj - 34. 

As to the Fourier expansion of <pv, we have 

<pv(g) = (-l)q1+q2e2iqll L ev(n) 7/Jn(g) 
nEO. JJN(n)I 

X Wq1sgn(n),iK-1 (41rjnjyi/y'Dp) W-q2sgn(n'),iK-2 (41rjn'ly2/y'Dp) 

f( ½ + iK1 + q1sgn(n)) f( ½ + iK.2 - q2sgn(n')) 
1 (4.17) 

with certain complex numbers ev(n) and the Whittaker function Wa,b• This is 
in fact the specialization <p = <pv of the result of solving, on the side condition 
<p E Vq, the differential equation O.j<p = ( ¼ + KJ)<p in the coordinate system (3.4). 
The gamma factors do not produce zeros for the combinations of q and (K1, K2) 
that really occur in °L2(I'\G). Hereafter we shall assume that 

{ipv : V} is an orthonormal system in L2 (I'\G). (4.18) 
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Then we call ev(n) the Fourier coefficients of V. The vector {ev(n): n E 0.,} is 
well-defined, save for an arbitrary constant multiplier of unit absolute value. 

Next, we turn to Hecke operators over the space L 2(I'\G). Because of the 
particular importance of this concept for our purpose, we shall dwell on certain 
details, again exploiting our local situation. Thus, let n = (n), n >- 0, be an 
integral ideal of F; note our initial assumption that N(<:0 ) -1. We define the 
action of the Hecke operator T n over a left I'-automorphic function f on G by 

1 
Tn/(g) = /Mn L L /(n[b/d]a[n/d2

] · g), 
lljn bmodll 

ll=(d),d>-0 

(4.19) 

where i) is an integral ideal. The orthogonal decomposition ( 4.1) is obviously 
preserved by any Tn, and the same can be arranged for (4.2) and (4.4). Further, 
it can be shown in a standard way that Tm T n = T n Tm for any m, n, and each 
T n is symmetric over L2 ( I'\ G) . Thus we may assume that V is such that 

Tnlv = tv(n) · l, tv(n) ER (4.20) 

Before taking this into ( 4.17) , we note that ev( <:511 n) = ev ( n) , v E Z, which 
follows from cpy( a[<:511 Jg) cpy(g). Then, computing the Fourier coefficients of 
Tn<pv, we have, for any m E 0.,, 

ev(m)tv(n) = L ev(mn/d2
). 

(d)l(m,n) 

Hence, for any unit <: and 0., :, n >- 0, 

ev(m) = ev(<:)tv((n)). 

In other words, for any n E 0., , 

ev(n) 
{ 

ev(l) 

t ((n)). ev(<:o) 
v ev(<:~) 

ev(-1) 

if n >- 0, 
if <:on>- 0, 
if E'0n >- 0 
if -n >- 0. 

(4.21) 

(4.22) 

(4.23) 

Thus there exists at least one unit <: such that ev( <:) c/ 0, since otherwise we 
would have cpv = 0, and the relation (4.21) implies the multiplicative property of 
Hecke eigenvalues: 

tv((m))tv((n)) = L tv((mn/d2
)), m, n E 0.,. 

(d)l(m,n) 

(4.24) 

A:;, in the modular case, Hecke operators T n are to be supplemented with 
involutions with which one may distinguish the parities or the four cases in (4.23). 
To this end we put, for any unit <:, 

(4.25) 
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We have 
(4.26) 

We then put, for any left I'-automorphic function f on G, 

id(g) /(a[lt:llJegJ~) 

= f (n[( EX1, E' x2)}a[lt:IY1, !E'ly2]k[sgn( t:)01, sgn(<:')021). ( 4.27) 

We see readily that the left I'-automorphy is preserved by ie because of ( 4.26), 
and that 

(4.28) 

But weights are not preserved in general. If f is of weight 2q, then id is of weight 
2(sgn(t:)q1,sgn(E')q2). To get an involution we need either to restrict the weights 
or to choose E appropriately. 

Let us suppose first that ,-., = (,-.,1, 1-,,2) comes under Case 1 in Lemma 4.1. 
Then the finite number of V with 1-,,y = ,-., all have qy = (0, 0), and the <.pv span 
a space in which ie is an involution or the identity. The commutativity in (4.28) 
implies that the V with 1-,,y = ,-., can be chosen such that ie<.pv = {v(t:)<.pv for all 
E in the unit group. Then each {v is a character of the unit group mod [€5], with 
values in { ±1}. Hence, in the case qv = (0, 0), the relation ( 4.23) is refined with 

ev(E) = ev(l)..\v(t:) ( 4.29) 

for any unit E. As to the mixed cases, let us assume, for instance, that qv ( q1, 0), 
q1 #- 0. The expansion ( 4.17) is actually over those n such that q1 n > 0. Thus 
we need to use ic with E > 0, i.e., E 1 or Eo mod [E5]. It is an involution, and 
we can again choose a i.pv satisfying ic<.pv = -"v(t:)<.pv with ..\v(t:) = ±1. Hence, if 
qv = (qi, 0), q1 #- 0, then 

ev(EvE) = ev(t:v)-"v(t:); -"v(t:) 0 if E '¢ 1, Eo mod [t:5]. (4.30) 

with Ey sgn( qi). Similarly, if qv = (0, q2), q2 #- 0, then 

ev(Evt:) ev(cv)-"v(t:); ..\v(c) 0 if E '¢ 1,EiJ mod [E5], (4.31) 

with Ev= -sgn(q2). Further, if qv = (qi, q2), q1q2 #- 0, then the expansion (4.17) 
reduces to the one over the integers n such that q1n > 0 and q2n' < 0. Thus in 
( 4.23) only one case is in fact possible: 

ev(cvc) = ev(t:v),,\v(c); ..\v is the characteristic function of the set [c5], (4.32) 

h ½(l+sgn(q2)) ,½(t-sgn(q1)) 
w ere Ev Eo E 0 

These definitions and (4.23) imply that we may put, for any n E 0,. and for 
any unit E such that m >-- 0, 

ev(n) evw(n)tv((n)), w(n) = ..\v(t:/t:v), (4.33) 
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where 
f!V = f!V(tv) (4.34) 

with Ev as above, and with Ev = 1 in the case (4.29). 

In this way we have defined the function Av on the set of units via i~. The 
action of ic is, however, not limited to cuspidal subspaces. In fact, {3.17) implies 
that icE(o,o){g;s,v) = !e/E'jvwiE(o,o)(g;s,v). This and (4.6) give an extension of 
A and rJ: 

(4.35) 

Now, we are ready to state the spectral results that are essential for our 
purpose: 

Lemma 4.2. Let 1w = (tt1, K-2) be denned by (4.7) and (4.13); qv (q1, q2) by 
(4.14); tv((n)) by (4.20); w(n) by (4.33), and f!V by (4.34). Let 

_ I 12 r(½ + lq1 I+ i'R"i")r(½ + lq2J + iKi) (
4

_
36

) 
av - ev r(½ + lq1I + iK1)r(½ + jq2I + itt2) · 

Further, let w be defined for all Kv, and satisfy w(Kv) « ((1 +ltt11)(l+ IK-2l))- 2-µ 
with an arbitrary small constant µ > 0. Then we have, for any n E O .. , 

I:avlw(n)ltv((n))2w(ttv) « JN(n)j½+µ, (4.37) 
V 

where V runs over all cuspidal irreducible subspaces, and the implicit constant 
depends only on µ. This implies, in particular, that 

l ' 
tv(n) « (N(n))Fµ, (4.38) 

with the same dependency on µ. 

Lemma 4.3. Let f be sufficiently smootl1 over (0, oo)2 , and decay sufficiently 
fast as one or both of the two variables tend either to o+ or to +oo. Let 

Be/(r1, r2) 
00 00J(e1)( ) J(e1) ( ) J(e2)( ) J(e2) ( ) d d 

=-23{ , r 2ir1 U1. - -2ir1 U1 2ir2 U2. -2ir2 U3 f(u1, u2) U1 U2, (4.39) 
lo lo smh 1rr1 smh 1rr2 u 1u2 

where e ( e1, e2) with ei = ±, and J-;!: = Jv, J;; = Iv in the usual notation for 
Bessel functions. Then we have, for any m 1, m2 E O .. , 

"""'Sp(m1,m2;c) ( 41r . 11 I 41r _ 11 , , I) 
c~. IN(c)j f iciv'D'Fv m1m2, lc'!v'D';v m 1m 2 

L avw(m1)tv((m1))rJv (m2)tv((m2))B[m1m2J/ (ttv) 
V 

(4.40) 
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where [m1 m2] (sgn( m 1 m2 ), sgn( m' 1 m' 2)), and other symbols are tl1e same as 
in the previous lemma. 

Proof. Note that the classification of V enters into these assertions through Ky 

and w. The identity ( 4.40) is the version of the geometric sum formula for the 
Hilbert modular group I' that we shall apply in the next section. This is an 
adaptation of Theorem 2.7.1 of [1] to our present situation. Also, the statistical 
result (4.37) follows from Proposition 3.3.1 there. It should be worth remarking 
that the argument in Chapter 2 of [10] can readily be extended so as to yield 
these two principal results. The way to deduce the bound ( 4.38) from ( 4.37) is 
analogous to the modular case (see e.g., Section 3.1 of (10]). Better results are 
known, but for our purpose the conventional bound ( 4.38) is more than sufficient. 
It is important that ( 4.38) is uniform in V. 

For the sake of a later purpose, we need to make it clear that the expansion 
( 4.40) converges rapidly under the assumption on J given in the lemma: To this 
end, we remark first that by the definition ( 4.39) the function Be/(r1 , r2) is regular 
for !Imril < Ct, j = 1, 2. This constant Ct can be assumed to be sufficiently 
large. Put 

1(s1, s2) loo loo J(u1, u2) (~l rs1-l (~2 rs2-l du1du2. (4.41) 

This is holomorphic for I Res j I < CI, j = 1, 2, and can be assumed to decay 
sufficiently fast there. By the Mellin inversion, 

(4.42) 

with appropriately chosen a1 , a2 • Inserting this into ( 4.39), we get formally 

(4.43) 

where 
oo J(e)( ) (e) ( ) ( ) l 2. u - J 2. u (u)-2s-1 J e ( s r) = ir - ir _ du 

' o sinh 1rr 2 · 
(4.44) 

Assume temporarily that IImril < ¼, j = 1, 2. Then set -¼ < aj < -IImril• 
With this the quadruple integral involved in ( 4.43) converges absolutely, and the 
expression ( 4.43) holds in this domain of (r1 , r2). On the other hand, we have 

1 . 
J±(s,r) = ---:-{(1 ± l)cos1rs+ (1 =i= l)cosh1rr}r(ir s)f(-ir-s), 

1ft 
(4.45) 

provided ¼<Res < -!Imrl (for the plus case, which is more delicate, see 
pp. 183-184 of [10]). Then, replace J±(sj, rj) in (4.43) by these, and shift the 
contours to the left appropriately. We see that the representation (4.43) holds in 
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the much wider domain IImrJI <Ci. Having done this 1 we shift the contours to 
the right. We find that for instance 

(4.46) 

It remains to consider the case where e = + and ir l - ¾i 1 :5 l E Z 1 in ( 4.44). 
We have then 

J+(s i(l - l)) = 2i(-1)1- 1 f(l - ½ - s) 
' 

2 r(l+½+s)' 
(4.47) 

which is of course a special case of ( 4.45). With this, we see that ( 4.46) holds 
for all relevant combinations of e and ( r 1 , r 2). Hence Lemma 4.2 implies that the 
right side of (4.40) converges rapidly. 

Before moving to our application of the geometric sum formula, we shall 
briefly discuss the Hecke series Hv associated with a cuspidal irreducible subspace 
V. Thus, assume ( 4.20), and put 

Hv(s) = L tv(n)(Nn)-s, (4.48) 
n 

which converges absolutely at least for Res > ¾ , and is bounded there uniformly 
in V, because of ( 4.38). In fact it is convergent for Res > 1 as can be seen via 
a use of the Rankin zeta-function attached to V, but this fact is irrelevant to our 
purpose. The formula (4.24) implies an Euler product expression for Hv, and also 
the relation 

Hv(s1)Hv(s2) = (p(s1 + s2) L 17s1 -s2 (n)tv(n)(Nn)-51 (4.49) 
n 

in the region of absolute convergence. Further, we have 

Lemma 4.4. The function Hv is entire, and satisfies the functional equation: 

( 
211" ) 2(2s-1) 

Hv(s) 1r-2 y'1)p Hv(l - s) 

2 

x IT [ (.Xv(1:J)cosh1rKJ -cos1rs)f(l- s+iKJ)r(l- s- iK1)], (4.50) 
j=l 

where c = ct) with (c:1,c:2) = (1:,1:'), and (Ki,K2) is defined by (4.7) and (4.13). 
In particular, we have the bound 

(4.51) 

where c depends only on Res, and the implicit constant only on F and Res. 

Proof. The second assertion is the consequence of the first and (4.38) via the 
Phragmen-Lindelof convexity principle. The functional equation is a special case 
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of Theorem 11.1 in [3]. But we shall give a direct treatment. We apply the method 
in Section 3.2 of [10] to the case qv = (0, 0). In fact the other cases are simpler. 
Let >.1 ½(1 - >.v(c~))' >.2 = ½(1 - >.v(co))' and put IPv = (etl1 (et)A2 ipv. 
Then consider the integral 

Av(s) = (4.52) 

with Res being sufficiently large. The relation (4.29) implies that 

ipt,(a[y]) 

>.1+ 1 >.2+ 1 

X Y1 
2 Y2 2 

X L ev(n)Kii-1 (21rlnly1/Ji:5;) Kii-2 (21rfn'ly2/Ji:5;)' (4.53) 
nEO. 

where 
(4.54) 

In fact, >.v(c) is a nontrivial character of the unit group, provided >. 1 +>.2 i= 0, and 
the terms caused by the derivative 8yj in (3.6) cancel out each other in (4.53). 
Thus, we have 

A (s) =4(-1)>.igy (2n/y'Dp)>.1+>.2 
V y'Dpr( ½ + iK1}r( ½ + iK2) 

x L tv((n))lnl>.1 ln'l>.2 
/ / Kii- 1 ( 2nlnlyi/ Ji:5;) 

nEO. mod [t~] (0,oo)2 

x Kii-2 ( 21rln'IY2/ Ji:5;) y; 1 yt2 (y1y2)8- 1dy1dy2, (4.55) 

in which the convergence is absolute throughout, at least for Res > ¼. We find 
that 

(-l)>.12>.1+>.r2 ( 7T )1-2s 
Av(s) = fN---'----'------ --

nr(½ + iK1)r(½ + iK2) JDp 

X r(½(s+>.1 +iK1))r(½(s+>.1 -iK1))r(½(s+>.2+iK2)) 

x r(½(s + >.2 - iK2))Hv(s). (4.56) 

On the other hand, arguing as (3.30) (3.31), we see that ipt,(a[y]) (-1)>.1 +>.2 
ipt,(a[yJ-1). Dividing the range of integration in (4.52) into two parts, according 
as Y1Y2 :S 1 and Y1Y2 2'.: 1, we find that Av(s) is an entire function, and satisfies 
the functional equation Av(s) = (-l)>.1 +>.2 Av(l - s). This ends the proof. 
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5. Binary additive divisor 

Now, we are ready to return to (3.58); thus we shall work on the assumptions 
(2.35) and (3.54). Note that we have m >- 0 (see (2.15) ), and r,v(m) = r,v(l) by 
the definition (4.33). 

The formulas (3.50), (3.59) and the bound (3.60) imply that the function 
[[h]]e(x; a, /3, 0 is so smooth that the geometric sum formula {4.40) can safely be 
applied to Sm,n(a, ,B, <;'; [h]e), provided 

(5.1) 

with C1 as in (3.54); for instance, take Re,B negative and large, and keep !Real 
relatively small. We shall assume this for the time being; it will be eventually 
eliminated. Then the discussion following Lemma 4.3 yields that we have a fast 
converging spectral decomposition: 

Sm,n(a, /3, <;'; [h]e) I>vw(l)tv((m))r,v(n)tv((n))B[n][[h]]e(1w; a, ,B, .;) 
V 

+ 7r f I mn i-vwij00 
£12it(m,211)a2it(n,211) 

23~log t:o v=-oo m'n' -oo IN(mn)litl(F(l + 2it, 211)1 2 

X B[n] [[h]]e(t + vw, t - vw; a, /3, .;)dt 

= {S~,n + S;;,.,n}(a, ,B, <;'; [h]e), (5.2) 

say. It is easy to check the uniformity of the convergence with respect to all involved 
parameters. The contribution, via (3.57), of S~,n to (3.52) is equal to 

The exchange of the order of summation is legitimate: The function 
B[n] [[h]]e(Kv; a, ,B, .;) is smooth in .; , and the bound (4.46) with the present choice 
off and with c, = C1 holds even after differentiating with respect to .; several 
times. Thus the last integral decays sufficiently fast in II and Ky. By virtue of 
Lemma 4.2, the triple sum in (5.3) converges absolutely, which confirms our claim. 

But, Poisson's sum formula gives, in (5.3), 

I: ... 1 
2 B[n] [[hl]e{Kv; o, ,B, 0), (5.4) 

II 
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because of our assumption on p. Hence, by ( 4.49), we see that (5.3) is equal to 

~ (~)
213 

N(m)t(a+/3+l) "av7]V(l)tv((m)) 
21r4 i y':i'.5p L.t 

V 

x Hv (½(1 + a - /3)) Hv (½(1- a - /3)) Bv,e[lh]]e(1w; a, /3, 0), (5.5) 

where 
Bv,e = L sgne[f]1]V(E)B[e], 

E mod [c~] 

(5.6) 

with f running over units. Here we have used the fact that 1JV(m) 1JV(E), if 
n >- 0. Similarly the contribution of S~,n to (3.52) is equal to 

(21r/$p)2t,+1 N ½(e.t+t,+1) ~ Im ,-11wi Joo l72it(m, 2v) 
251r4i logEo (m) 

11
f:::'

00 
m' _00 N(m)itl(F(l + 2it, 2v)l2 

x(F(½(l+a-/3)-it,v)(F(½(l+a /3)+it,-v)(F(½(l a /3) it,v) 

x (F (½(1 - a - /3) + it, -v) Be.,,e[lh]]e(t + vro, t - vro; a, /3; 0)dt, (5.7) 

where we have used (4.35). We insert these expressions into (3.43) via (3.52). We 
get a spectral decomposition of 'Bm(a,{3;h), provided (2.35), (3.54) and (5.1). 

The domain (5.1) is, however, not suitable for the application in our mind, 
i.e., that to Z2(9, F). We have to continue the decomposition to a neighbourhood 
of the point ( a, /3) = (0, 0). Because of this, we shall study the transform 

1 
<I>,..(r1,r2;a,/3;h) = 

2
1r4 i L L sgnelf]1J.(E)B[c][[h]]e(r1,r2; a,;3,0). (5.8) 

e E mod [i~j 

Here * = V or c.v, and (r1,r2) is initially equal to Ky or (t + vro,t - vro), 
respectively, but after (5.10) it will be regarded as a variable point in C2. From 
(2.33), (3.28), (3.50), and (3.59), 

~ sgn'l][lh]]e{x; a, /3, 0) = 
8
~ Ix:' 1-a-t,-l 

½a)) 

(5.9) 

where b is as in (3.46), and ( E1, t:2) = ( f, f') as before. Apply B[e] to this, and 
argue as in (4.42)-(4.45). We find that 

1 
s1r6 I: I: 11.(t:) 

e e mod [e5] 
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X jioo jioo h(si, s2; e) IT [ Ll~~n(1oj) (sj, rj; a, .B)r{sj - ½(a+ J3 + 1) - irj) -too -ioo j=l 

X r(sj - ½(a+ .B + 1) + irj )f(l - Sj)r{l + (); - Sj)] ds1ds2, (5.10) 

where 

/}.! (sj, rj; a, t,) = { (1 ± e1) cos ½1ra - (1 =r= ej) cos1r(sj - ½a)} 

x { ( 1 =r= 1) cos h 1rr 1 + ( 1 ± 1) sin 1r ( s j - ½ ( a + .B))} . ( 5 .11) 

The expression (5.10) is in fact a result of an application of analytic continuation: 

The srcontour separates the poles of /}.:r<Ej)(sj, rj; a, t,)r(sj ½(a+ t, + 1) -
irj)f(sj - ½(a+ t, + 1) + ir1 ) and r(l - s1 )r(l + a - SJ) to the left and the right, 
respectively, and it is assumed that the parameters are such that the contour can 
be drawn. Under the assumption (5.1), one may use the contour Re s1 = b with 
½(a+t,+l) < b < min(0, Rea); then move it appropriately, and get (5.10). Note 
that if irj l- ½, 1:::; l E Z, then (4.47) has to be taken into account. 

If * f.. 11 or V with qv = (0, 0), then TJ• = >.. is a character on the group 
of units, and 

2 2 

I: TJ•(c) IT a:r<"J) = IT(!}.t +>-.(cj)!}.;,) (5.12) 
" mod [E~] j=l j=l 

with c = cb on the right side. We shall show that this can be assumed to hold 
for * = V with qv # (0, 0) as well. In view of (5.5), we may restrict ourselves 
to those V with w(l) # 0. This implies, by (4.33), that >.v(cy1

) # 0. Thus, by 
(4.30), we see that if qv = (q1, 0), q1 # 0, then the left side of (5.12) is equal 
to w(l)!}.t (!}.! + >.v(co)Ll2). Also, if qv = (0, q2), q2 # 0, then by (4.31) it is 
equal to w(l)Llf (Llt + >.v(cb)an. Further, if qv = (q1,q2), q1q2 # 0, then by 
(4.32) it becomes w(l)Llf Ll!. Hence, we have, as a refinement of (5.12), that 
for any space * with TJ• ( 1) # 0 

2 2 

L TJ•(c) IT a:ri(Ej) = T].(1) IT (Llt, + >..(cj)Ll~) (5.13) 
e mod [E~] j=l j=l 

with c = cb on the right side. 

Lemma 5.1. Let us assume (2.35) and (3.54). Let V, Kv (K1, K2), and qv = 
(q1, q2) be as in (4.2), (4.13), and {4.14), respectively. Then 'Pv{x:v; a, t,; h) is 
regular, and satisfies 

(5.14) 
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uniformly in V and o:, f3, provided 

!Re o:I + Re f3 < 2 m~n { !Im Kj + ½ I + 61} . 
J 

(5.15) 

Here 61 = 0, 1, according as q1 = 0, f. 0, respectively. Analogously, <Pt., (t -
vw, t + vw; o:, /3; h) is regular, and satisfies 

<Pt.,(t vw,t+vw;o:,f3;h)«(l+ltl+lvl)-c0
/

2
, (5.16) 

provided 
[Reo:I +Re/3 < l-21Imt1. (5.17) 

Proof. It is enough to prove the assertions on <I>v. If qi f. 0, then iK-1 = lq1 I ½, 
and the r-factor in (5.10), with * = V and (r1, r2) Kv, is to be modified 
as indicated in (4.47). After this modification, one may draw contours in (5.10) 
under (5.15), and the assertion on the regularity follows. The decay property is 
simply a result of shifting the contours appropriately to the left. This ends the 
proof. 

Now, we may state the first of our explicit formulas: 

Theorem 5.2. Let '.Bm ( o:, /3; h) be defined by (2.15), and assume (2.35). Let o:, /3 
be sud1 that 

3 
-1 < Re(±o: + /3) < 5. (5.18) 

Then we have the spectral decomposition 

(5.19) 

where 

13(r)(o: f3· h) = (p(l - o:)(p(l - /3) N(m)a _ (m)h(O 0) 
m , , y'I)p (F(2 _ 0: _ /3) a+/3 1 , 

+ 
(p(l + o:)(p(l /3) N(m) 1+aa_ _ (m)h(o: 0) 
y'Dp (F(2 + Q'. /3) a+/3 1 , 

+ (p(l - a)(F(l + /3) N(m) 1+13aa-{:J-1 (m)h(0,/3) 
y'I)p (F(2 - O'. + /3) 

+ (p(l + a)(p(l + /3) N(m) 1+a+f3a _ __ (m)h(a /3) (5.20) 
y'I)p(p(2+a+f3) a /3 

1 
' ' 

'.B~;;}(a, /3; h) = (21r/ y'o;)2/3 N(m)½(a+/3+l) 

x L avr,v(l)tv((m))Hv(½(l + o: - /3)) 
V 

x Hv( ½(1 - o: - /3))<I>v(Kv; a, /3; h), (5.21) 
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'.B(e)(a, /3; h) = (21r/ v'i)p)2P+l N(m)½<a+P+l) 
m 24 log<:o 

~ (m)-vwi1
00 

a2it(m,2v) 1 
X ,,~

00 
m' _

00 
N(m)it/(p(l + 2it, 2v)l2 (F ( 2(l + a - /3) it, v) 

x (F (½(1 + a - /3) + it, -v) (F (½(1 - a - /3) - it, v) 
x (F (½(1 - a - /3) + it, -v) <I>c:., (t + vw, t - vw; a, /3; h)dt. (5.22) 

Here V, Ky, tv, rtv, av, Hv, are, respectively, defined by ( 4.2), ( 4.13), ( 4.20), 
(4.33), (4.36), (4.48); and <I> .. by (5.10). Also 

h(r,1, f/2) j j h(u1, u2)lu1u2117i(ll + u1lll + u2l)112 du1du2. (5.23) 
]R2 

The expressions on the right sides of (5.20)-(5.22) are all regular in tl1e domain 
(5.18). 

Remark. This result should be compared with (3.33) and (3.57) in [9]. We could 
express <I> .. as linear combinations of products of two integrals of the Mellin-Barnes 
type. Then the analogy would be made clearer. A special case is treated in the 
proof of Corollary 5.3 below. In the condition (5.18) the lower bound is to secure 

the regularity of the Eisenstein term '.B~) . It could be dropped, but then the 
residual term '.Bt) would need a suitable modification. 

Proof. As is mentioned after (5.7), a spectral decomposition of '.Bm(a, /3; h) has 
already been established, provided (5.1). Thus its continuation to (5.18) is to 
be discussed. The cuspidal contribution has exactly the same form as (5.21). By 
Lemmas 4.4 and 5.1, the sum converges absolutely and uniformly in the domain 

(5.24) 

and there it is regular. According to (4.16), this domain contains (5.18). On the 
other hand, the contribution of Eisenstein series has the form same as (5.22), but 
with (a,/3) in (5.1); thus it is different from the function defined by (5.22) with 
(5.18), since the integrand can have singularities in (5.24), say. Those terms with 
v =I O have, however, integrands regular in (5.24). The sum over v converges 
absolutely and uniformly because of (5.16)-(5.17), and we may exclude this part 
from consideration. The term remaining to be considered is 

( I tre)2P+l ) 
21r Yup N(m)½<a+P+l) I O-zit(m 

24 log to } _00 N(m)it(p(l + 2it)(p(l - 2it) 

X (F (½(1 + O'. - /3) - it) (F (½(1 + O'. - /3) + it) 

X(p(½(l-a-/3) it)(F(½(l-a-/3)+it)Wt(a,f3;h)dt, (5.25) 
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where (o:,/J) in (5.1), and Wt(o:,f,;h) <Pe0 (t,t;o:,t,;h). This is obviously regular 
when !Re o:I + Re /J < -1. Let us consider the subdomain - .!i. < Re( ±o: +;,) < -1 . 
On noting (5.16)-(5.17), we move the contour to Imt = 1. Poles we encounter 
are t = -½(1 ± o: + t,)i, and those from the factor (i1(1 + 2it). To avoid having 
poles on the contour, one could choose an appropriate broken line instead of a 
vertical line. At any events, the resulting integral can be assumed to be regular 
for -i < Re(±o: +;,)<-¾.Then, restricting ourselves to the domain 

3 
-1 < Re(±o: + ;,) < -4, (5.26) 

we shift the contour back to the original, i.e., the real axis. This time, poles we 
encounter are t = ½ (1 ± o; + t,)i and those from the factor (:p1 (1 + 2it). In this 
way we have obtained the desired continuation to the domain (5.18), since the 
new integral is regular there. The residual terms arising from this procedure is 
those from the poles at t = ±½(1 ± o; + /J)i; the other residues cancel out each 
other. Namely, the continuation, to (5.18), of the contribution of Eisenstein series 
is the sum of {5.22) and 

1 ( / 'D)2(1+.6)N( )1+.a ( ) (p(-f,)(p(l - o:) ,T, ( h) 
4 21r yup m Ua-/3-1 m (F(2 _ o: + /J) '.I' ½(1-a+,6)i o:, f,; 

+ l {21r/Ji5;)2(1+,6)N(m)1+a+.6u_a-,6-l(m) 
4 
(F(-/J)(p(l + o:) 

X (F(2 +o:+/J) \J!½(l+a+,6)i(o:,f,;h). (5.27) 

In deriving this we have used the facts that Wt(o:, f,; h) is an even function of t, 
as can be seen from (5.10)-(5.11), and that the residue of (F(s) at s = 1 is equal 
to 2(logEo)/y'Dp. 

Thus we have to compute the last \JI-factors. By (5.13), we have, for rj 

½(1- o: + ;,)i, j 1,2, 

2 

"""' IILlsgn(Ei)(s· r··a a) L...t e; J, J> , /J 

E mod [E~] j=l 
2 

24e1e2 II [sin1r(sj - o:)cos½1r((l - ej)Sj + ej;,)]. (5.28) 
j=l 

Hence, by (5.10) with * co, 

\J!½(l-a+,6)i(o:,t,;h) = 
2 

I:e1e2 Ji:1i: h(s1,s2;e) 
e 

2 

x II [cos ½1r((l - ej)sj + ei;,)r(sj -1- /J)r(l - si)] ds 1ds2 • (5.29) 
j=l 
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By definition, the SJ-contour is to separate the poles of r( SJ -1- /3) and r(l - SJ) 

to the left and the right, respectively. The condition (5.26) implies that the contour 
can be drawn. In much the same way we have 

\II ½(i+a+,8)i(a:, /3; h) = 
2 L e1e2 Ji: Ji: h(s1 + a:, s2 + a; e) 

e 

2 

x IT [cos ½1r((l - eJ)Sj + eJ/3)I'(sJ -1- f3)I'(l - sJ)] ds1ds2. (5.30) 
j=l 

The double integrals in (5.29) and (5.30) are to be evaluated, but we shall 
treat only the latter, which is somewhat more complicated. We use (2.31). A 
rearrangement shows that the integral is equal to 

1 r= r= 
4/1 e2 lo lo h2(e1 u1, e2u2)R(u1, e1)R(u2, e2)du1du2, (5.31) 

where h2(u1, u2) = (8u 1 8u.2 h)(ui, u2), 

R(uj, ej) = fi: cos ½1r ((1- ej)s + ej/3) r(s 1 f3)I'(l s)u?a 
8 

~a:. (5.32) 

Note that ( 5.26) is the same as IRe a:j < 1 + Re f3 < ¼ - I Re a I . Thus we may 
take, for instance, Res= ½ as the contour; in particular, the pole s -a can be 
assumed to be on the left of the contour. Then, shifting the contour in (5.32) to 
Res = +oo and to Res = -oo, according as ui < 1 and Uj > l , respectively, we 
find that if Uj < 1 then 

R(uj,ej) = 21riejcos½1rf3I'(-f3) 1u; u°'(l+eJu}8du, (5.33) 

and that if Uj > 1 then 

R(uj, ej) = -21riej cos ½1rf3I'(-,B) 100 

ua(ll + ejuj.8 - u.B)du 
j 

ul+a+,8 

+ 21rieicos½1rf3I'(-f3\ 3 f3 +a+ 
+ 21ricos (½1r((eJ - l)a: + eJ/3)) r(l + a)r(-1- a - {3). (5.34) 

Hence, for Uj > 0, Uj-/= 1, 

aU.j R(uj, ej) = 21riej cos ½1rf3 r(-f3)ujll + ejUj 1.8. (5.35) 

On noting that R(uJ, ej) is continuous for Uj > 0 as (5.32) implies, we have, via 
(5.31) l 

-2 1 )2 .. \II ½(l+a+,B)i ( a:, /3; h) = 41r ( cos 21rf3 r(-/3) h( a, /3), (5.36) 

with h as in (5.23). Analogously we have 

\II ½(1-a+,B)i( a:, /3; h) = 41r-2 ( cos ½1rf3 r(-/3) )2 h(O, /3), (5.37) 

We insert these into (5.27), and apply the functional equation for (F to transform 
the factor (p(-/3), which gives (5.20). We finish the proof of Theorem 5.2 with 
analytic continuation. 
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Corollary 5.3. Let dp be the ideal divisor function on F. Let h(x) be such that 
its embedding h(x, x') is smooth and compactly supported on (0, oo)2 • Then we 
have, for any O 3 m >- 0, 

L dp(n)dp(n + m)h(n/m) = { '.B~) + '.B~) + '.B~)} (0, 0; h), (5.38) 
nEO. 

where 

(5.39) 

'.B~)(o, 0; h) = N(m)½ L av11v(l}tv((m})Hv(½)24>v(Kv; 0, 0; h), (5.40) 
V 

'.B(e)(a (j· h) = 1rN(m)½ ~ (mm,)-vaii 
m ' ' 23 y'i)';logeo L.t 

v=-oo 

Joo 0"2it (m, 2v) l(F( ½ + it, v}l 4 

x -oc N(m)it !(F(l + 2it, 2v)l2 'Pe., (t + vw, t - vw; 0, O; h)dt. (5.41) 

Here 

Mp(m; u1, u2) = u(m)(logu1u2)(log(u1 + l)(u2 + 1)) 

+ { u(m)(co - log N(m)) + 2u'(m)} log(u1u2(u1 + l)(u2 + l}) 

+ o-(m)((eo - logN(m))2 + c1) + 4u'(m)(co logN(m)) + 4o-11 (m), (5.42) 

where Co, c1 are constants that could be made explicit, and 

Also, 

where 

u(v)(m) = L (log N(il)t N(il). 
ill(m) 

~(r;u) 

= 2Re [ ( A*( e) + sin~ 1rr) ~~~: ~:~; 
X F ( ½ + ir, ½ + ir; 1 + 2ir; -1/u) u½-ir] . 

with the hypergeometric function F. 

(5.43) 

(5.44) 

(5.45) 
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Remark. This is an extension of Theorem 3 in [9J to the field F. That h(x, x1
) is 

supported compactly on (0, oo )2 makes the situation relatively simple. Otherwise 
we would have to overcome a greater complexity that is similar to what is expe
rienced in the proof of Theorem 4 of [9] (the dual, case). Also, observe that the 
product of two values of the hypergeometric function in (5.44) is closely related to 
the free-space resolvent kernel of the Casimir operators rl.j on the quotient space 
G / K ~ JHI2 , the direct product of two copies of the hyperbolic upper half plane. 
This can be regarded as a higher dimensional analogue of a phenomenon noted on 
p. 179 of [lOJ. 

Proof. The assertion (5.42) is the result of taking the limit on the right side of 
(~.20) a.s (a,!J)--+ (0, 0), with the present choice of h. On the other hand, (5.13} 
gives 

2 

L r,,.(t) IT D.~n(i)(s3, r3; 0, 0) 
e mod (e~] j=l 

2 

= 24r,,. (1) TI { sin 7rSj - ..\,.( Ej) cos 1rs3 cosh 1rr3} 
j=l 

with c = t:'0 on the right side. Inserting this into (5.10) with our current specifi
cation on h, we have the expression (5.44) but with 

P;(r; u) = ~ 1 r(s - l + ir)r(s - l - ir)r(l - s)2 

7r2i (¾) 2 2 

x {sin1rs ..\,.(c)cos1rs cosh1rr}u8 ds. (5.47) 

If ir = l ½ with an integer l ;?: 1, an obvious transformation is to be applied to 
the factor r(s - ½- ir). We have 

1 ( i ) J r(s - .! + ir) 
P;(r;u) = -2 . ..\,.(c) + . h r( 3 

2 
• )r(l- s)2u8 ds 

1ri sm 1rr (¾) 2 -s+ir 

1 ( i ) J r(s - l - ir) + -2 · ..\,.(c) - . h r( 3 
2 

• ) r(l - s)
2
u 8 ds. 

1ri sm 1rr (¾) 2 -s-ir 
(5.48) 

Invoking the Mellin-Barnes formula for the hypergeometric function, we get (5.45). 
This ends the proof. 

6. The fourth moment of (F 

Having obtained the spectral decomposition of '13m(o.,{3;h) with (o.,{3} inane
ighbourhood of (0, 0), we are at the position to apply it to our principal problem 
Z2(g, F} via (2.16). To this end we have to see if the condition (2.35} is satisfied 
by h = g,.: 
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Lemma 6.1. Let g*(x;,, 8) be defined by (2.17), and put 

withe= (e1,e2), ei ±1. Then the function g..(s1,s2;e; 1,8} is regular in the 
domain 

Re(sj -, 8) < 0, j = 1,2. (6.2) 

An analytic continuation of it is given by the representation 

logEo 
§:.(s1,s2;e;,, 8) -3-r(, + 8- s1)r(, + 8- s2) 

7r 

x 1: P2 
(2{ log <o) 1: g(t)}] [ sin ½rr(O - i(t + (-1); {)) 

x cos ½1r((l - ei)(,- Sj) + 8- eji(t + (-l)i()) 

x I'(l - 8 + i(t + (-l)i())I'(si - 1 -i(t+ (-l)i())]dtd{, (6.3) 

where the t-contour separates the poles of I'(l -8 +i(t+ {))I'(l -8 +i(t-()) and 
those of r(s1 - 1 -i(t-())r(s2 -,-i(t+()) upwards and downwards, respectively; 
and s1 , s2 , ,, 8 are assumed to be such that the contour can be drawn. Moreover, 
if f) 8, and Re s1 , Re s2 remain bounded, then we have, regardless of (6.2), 

with any fixed C > 0. 

Proof. We have, by (2.14), 

with u1 , u2 > 0. Obviously 

(6.4} 

(6.5) 

(6.6) 

as u1, u2 i oo. Shift appropriately the contour in the inner integral to see that 
g* is of rapid decay as u1, u2 l 0, and also as u1 -, 1 with e1 = -1 or u2 -, 1 
with e2 = -1, either. These considerations yield the first assertion. Then, assume 
temporarily that 

Re,< Res< Re(-r + &) < Re-r + 1. (6.7) 



Fourth power moment of Dedekind zeta-functions of real quadratic number fields 75 

Under this assumption, 

with 

l
oo xs--r-i'fl-1 

b±(s, T/i ,, 8) = o 11 ± xj6-i'f/ dx. 

We have, for any T/ E IR, that 

and 

From these equalities, we get 

r(s - ,- iTJ)r(,+ 8- s) 
r(8 - iTJ) 

b±(s, T/i ,, 8) =~ sin ½1r(8 - iTJ} cos ½1r((l =F 1}(1 - si} + 8 =F iTJ} 
7r 

(6.9) 

(6.10) 

(6.11) 

x r(s - 1 - iTJ)r(, + 8 - s)r(l - 8 + iTJ). (6.12) 

Inserting this into (6.8), we have the representation (6.3) under (6.7), with the 
contour t E IR. Deforming the contour appropriately we may drop the constrain 
(6.7) and get the second assertion of the lemma. As to the decay property (6.4), 
push the new contour far down. This ends the proof. 

In dealing with (2.16}, let us assume initially that 

IRe(z1 -z2)I < co, IRe(z3 - z4)I < co; 

Re z1 , Re Z3 > Co, 

(6.13} 

(6.14) 

where Co and c0 are, respectively, sufficiently large and small positive constants. 
Then the last lemma implies that g*(x; z1, z3) satisfies (2.35). Also the spectral 
decomposition (5.19) can safely be applied to '.B(z1 - z2, Z3 - Z4j g*( ·; z1, z3)). Thus 
(5.20)-(5.23) yield the decomposition 

(6.15) 
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Here we have 

'.J~)(z1, z2, Z3, Z4;g) (27rj-/5;)2Cz3 -z4 ) 

x L avw(l)Hv( ½(z1 + z2 + z3 + z4 - l}}Hv( ½(1 + z1 - z2 - za + z4)) 
V 

X Ilv(½(l - Z1 + Z2 - Z3 + Z4})<l>v(1w; Z1 - Z2, Z3 z4;g*(·; Z1, Z3)), (6.17) 

with 

ZF(z1, z2, za, z4; t, v) 

(F(½(z1 + Z2 + Z3 + Z4 - l} + it, -V}(F(½(z1 + Z2 + Z3 + Z4 - 1) - it, v) 
x (F(½(l + z1 - z2 - za + z4) + it, -v)(F(½(l + z1 - z2 - za + Z4} it, v) 

x (F(½(l z1 + z2 za + z4} + it, -v)(F(½(l - z1 + z2 - za + z4) - it, v).(6.19) 

The absolute convergence that is necessary to deduce (6.17) and (6.18) is amply 
secured by (4.37), (4.38), (4.51), (5.14), and (5.16). 

We have to continue the expansion (6.15) to a neighbourhood of the central 
point p ½ = ( ½, ½, ½, ½). We shall consider first the contribution of the cuspidal 
subspaces, i.e., (6.17). We need to examine the function ¢> = <l>v(,w; z1 - z2, Z3 
z4; g*(·; z1, za)}. This has to be well-defined in the domain (6.13)-(6.14). In fact, 
on noting (4.16) and (6.2), we may take the vertical lines Re Sj = ¾ as the 
contours in (5.10) with the current specification. Then, it follows readily that ¢ 
is regular in the domain 

{ Re(z1 + za) > ¾ and (6.13) hold}. (6.20) 
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Also, shifting both contours to the left sufficiently far, we see, in view of (6.4), 
that <P is of fast decay with respect to KV uniformly with respect to bounded 
( z1, z2, Z3, z4) in (6.20). Thus we find that '.J~) ( z1, z2, Z3, Z4; g) continues to (6.20). 
In particular, it is regular at p1; that is, (z1, z2, Z3, z4) = P1, the right side of 

2 2 

( 6 .17) converges and represents Bt (p ½ ; g) . 
As to the continuation of (6.18), the part corresponding to 11 /=- 0 is ana

logous to the cuspidal contribution, and it is regular in (6.20). Thus, we need to 
consider only the term with 11 = 0: 

(21r /-fi'.JF)2(za-z4)+l Joo ZF(Z1, Z2, Z3, Z4j t, 0) 
24 loge:o _

00 
(F(l + 2it)(F(l _ 2it) Wt(Z1 - z2, Z3- z4;g .. (·; z1, z3 ))dt, 

(6.21) 
where Wt is as in (5.25), and (z1, z2, z3, z4) still satisfies (6.13) (6.14). Obviously 
this continues to the domain where Re( z1 + z2 + Z3 + z4) > 3 and (6.13) hold. 
Let us consider its subdomain where 3 < Re(z1 + z2 + z3 + Z4) < 1

; and (6.13) 
hold, and move the contour in (6.21) to Im t ½. Poles we encounter are t = 
-½(z1 +z2+z3+z4-3)i, and those from the factor (i 1(1+2it). Here the argument 
is analogous to that following (5.25). Thus, as before, we may suppose that the 
resulting integral is regular in the domain where \1 < Re(z1 +z2+z3+z4) < 1

; and 
(6.13) hold. Restricting ourselves to the domain where 1,i < Re(z1 +z2+z3+z4) < 
3 and (6.13) hold, we shift the contour back to JR.. This time the poles we encounter 
are t = ½(z1 + z2 + z3 + z4 - 3)i and those from the factor (i 1 (1 + 2it). In this 
way we obtain the desired continuation of (6.21), since the new integral over JR. is 
regular in the domain 

{Re(z1 + z2 + Z3 + z4) < 3 and (6.20) hold}, (6.22) 

which contains P½. More precisely, this continuation of (6.21) has the expression 
that is the sum of the same expression as (6.21) but with (z1, z2, z3, z4) in (6.22) 
and the residual correction 

l ( 271' )2(z3-z4+l) 

4 JD; (F(2 Z2 Z3)(F(Z1 + Z4 - l)(F(2 - Z1 - Z3) 

X (F(Z2 + Z4 - 1)((F(4 - Z1 - Z2 - Z3 - Z4})-l 

X 1J1 ½(z1+z2+z3+z4-3)i(z1 Z2, Z3 - Z4; g.,(·; Z1, Z3)). (6.23) 

Let :,(r) be the sum of (2.10), (6.16) and (6.23). This has to be regular at 
P½, since we have, in a neighbourhood of P½, 

'.J = :,(r) + :,~) + '.J~), (6.24) 

and have seen already that '.J itself and '.J~), '.J~) are all regular at P½. We write 

Mv(g) '.J(r)(P½) + bog(-}i) + a1g'(}i) + b1g'(-}i), which is in fact a transform 

of g. Also, we put Av(g} = 4>v(KVi 0, 0; g.,(·; ½, ½}) and '2.v(t; g) = 4>e., (t- 11w, t+ 
11w; 0, 0; g.,( ·; ½, ½)), which are integral transforms of g. 

In this way we have established an explicit formula for the fourth power 
moment of the Dedekind zeta-function (F of a real quadratic number field F: 
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Theorem 6.2. Let F be of class number one, a.nd have the fundamental unit 
Eo > 1 with norm equal to -1. Let g be entire and of rapid decay in any fixed 
horizontal strip. Then we have, with transforms Mp(g), Av(g), and 2 11 (t;g) as 
above, 

Mp(g) + I:av1JV(l)Hv(½)3Av(g) 
V 

1r ~ 1= l(F( ½+it, v)l
6 

- ( )d + ----- L., -,----~---,-=,II t;g t, 
23 ../1):p log Eo v=-co -co l(F(l + 2it, 2v)j2 (6.25) 

where Dp is the fundamental discriminant of F. Here (F(·, v), tv, 1JV, av, Hv, 
are, respectively, defined by (3.15), (4.20), ( 4.33), ( 4.36), (4.48); and V runs over 
an orthonormal system of Hecke invariant irreducible subspaces of L2(I'\PSL2(IR)2) 

with I' being the Hilbert modular group over F. 

Remark. This is an extension, to the field F, of Theorem 4.2 of (10] which asserts 
a spectral expansion of 

(6.26) 

in terms of the spectral theory of £ 2 (PSL2(Z)\PSL2(IR)). The corresponding 
extension to the Gaussian number field is obtained in Theorem 14.1 of [2], where 
Z2 (g, Q(i)) is decomposed in terms of the spectral theory of £ 2 (PSL2(Z[i]) 
\PSL2(C)). A common feature is the appearance of cubic powers of central va
lues of Hecke series. This peculiar role of cubic powers of Hecke series was first 
found in [8], where (6.26) is dealt with. It is even possible to show that any sin
gle non-zero Hecke series contributes non-trivially to the formation of values of 
respective zeta-functions (see Section 5.4 of (10] for the modular case). It should 
be stressed that as is done for Z2(g, Q) in [10] we could give precise expressions 
for the transforms Mp(g), Av(g), and E:11 (t;g). 
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