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AN ASYMPTOTIC ESTIMATE OF THE NUMBER OF BIFURCATING
SOLUTIONS FOR THE EQUATION —Au = pf(u)

*
W. Krawcewricz! i, W. E\/IARZANTOWICZ:*:

Abstract: In this paper we present a lower estimate on the number of non-zero solutions (u, u}
of the following boundary value problem

{»Auzgvf(u) on

P
=0 on Of2 7)

where € B, Q = (—n/2;7/2)? and f: R — R is a function of class C! satisfying some
additional requirernents. By using the symmetry properties of the problem {P) and classical
results from number theory, we show that the numbers a. (L} of all distinct nontrivial solutions
{u, ) of (P such that |jul] < =, for € > 0, where 0 < u < L+1, satisfy the following inequality

1imi§f ac(Ly > ng-}—O(x/Z) as L — oo,

Keywords: Boundary value problem, variational problem with symmetries, bifurcation point,
asymptotic behaviour.

1. Introduction

This work is a result of our investigation into a possible use of number theory to
estimate the multiplicity of solutions of variational problems with symmetries. We
consider a nonlinear, parametric Dirichlet problem with the group of symmetries
Dj. ie. the group of symmetries a square. In our earlier paper (see [8]), we
have proved that near a value of parameter A, at which a bifurcation of solutions
occurs, the number of solutions is estimated from below by the cardinality of a
subset of the integral lattice Z? C R? contained in the disc of radius A. By using
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some elementary, and well-known, number theory argument we can evaluate an
asymptotic estimate of this cardinality, and consequently estimate from below the
number of small amplitude solutions of the studied problem.

The authors are aware that presented here result is not in the most gen-
eral formulation and it should be considered as an example for such application
number theory, However, such generalizations could be obtained using the results
presented in [8] for variational problem with the symmetry group G being the
isometries of n-cube, where n is an arbitrary natural number, In spite of the fact
that there are in the literature (see [1] for an extended list of references) many
interesting papers on the multiplicity of solutions to nonlinear problems with sym-
metries, an asymptotic (with respect to the parameter) formula for the number
of solutions has not been studied before. In this paper we would like to demon-
strate a possibility of such an approach to studying the multiplicity of solutions
for nonlinear problems with symmetry.

2. Main Result

We are interested in the existence of non-trivial solutions to the following boundary
value problem:
{—Au:,u-f(u) on

ulpn =0 (P)

where £ C R? is the square (—7/2,7/2)? and f: R — R is a function of class
O such that f(0) = 0. f/(0) =1 and

IF (Ol <ar+azftP. px1. (2.1)

The assumption (2.1) implies that the problem (P) can be expressed as a varia-
tional problem, namely (P) is equivalent to the problem of existence of non-zero
critical points for the functional I: H}(2) — R defined by

fwyi= 5 [1vul=u [ P

where F(s) = [ f(t)dt.

It can be shown that the eigenvalues p of the Laplace operator —A are
the bifurcation points for (P) but the fact that the functional [ is invariant
with respect to the symmetric group of the square ! implies that the number of
bifurcating branches of solutions can be quite large.

In the paper [8], which generalizes some earlier work of Ekeland and Lasry
(cf. 14]), we studied that problem and we obtained lower estimates on the number
of the bifurcating branches of solutions from an eigenvalue u of the Laplacian.
This result, which improves some previous attempts in this direction (cf. [2}), can
be described as follows:

Let us denote by |A4,| the number of elements of the set

Ay ={m,n) e N?:n? +m? = pu}
where N = {1,2,...}.
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Theorem 1 (cf. [8], Thm. (3.3). Let y € N be a number such that A, # 0 and
suppose that £ > 0 is a sufficiently small real number. Then we have
i) If 4 = 1 (mod 2) then p is a bifurcation point for (P) and the equation (P)
has at least 4 - |A,,| distinct solutions u such that [fuf| = ¢.
iy If u =0 (mod 2) and A, does not contain a pair of two odd numbers then
w Js a bifurcation point for (P) and the equation (P) has at least 2-|A,|
distinct solutions u such that ||u]| = «.
Moreover all these solutions are not invariant with respect to the group of sym-
metry of square.

Using this result we establish an asvmptotic lower bound for the number
of bifurcating nontrivial solutions to the problem (P). More precisely, let L > 0
and ¢ > 0. By a.(L) we denote the number of all distinct nontrivial solutions
(u.p) the problem (P) such that |jul] < ¢ and 0 < g < L + 1 and we put
a(L) = liminf, g a.(L).

Recall that a function u(x), u: € — R is not invariant with respect to the
group G of symmetries of €} if there exists ¢ € G such that u(gx) # u(x).

Our main result is the following

Theorem 2. Under the above assumptions we have the following estimation
3
all) > §7TL+O(\/E) as L — oo.

Moreaver we assess the number of solutions that are not invariant with re-
spect to the group of symmetry of square.

Before we proceed with the proof of Theorem 2 let us introduce the following
arithmetical function r : N - N

r(n) = Z 1
n=a’-+b%
a.beZ
expressing the number of representations of an integer n > 1 as a sum of two

integral squares. Put
N

R(N)=Y r(n); r(0)=1.
n=(
R(N) can be interpreted as the number of lattice points inside and on the cir-
cumference of the circle % + y?> = N and is approximately equal to the area of
the circle. More precisely the following classical result of Gauss (cf. [3]) is true:

R(N) =N + O(VN). (2.2)

Since the set A, consists only of pairs (m,n) of positive integers we need to
restrict our consideration to the arithmetical functions

N
remy= > 1 and R.(N)=) ri(n)
n=1

n=a’+b*
a,beN
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The function R, (N) expresses the number of lattice points from the first quadrant
that are inside and on the circumference of the circle 2 + y2 = N. Using this
observation we have that

R(N) = 4R, (N)+4[VN]+1. (2.3)

More precisely, if we put R(N) = 7N + R;, where R; denotes the remainder,
then R, (N) = (n/4) N - v N + R} and the asymptotic behavior of the remainder
R} is the same as those of 1 R;.

It should be mentioned that there are many results describing the remainder
R,. For example, one should mention the old one by W. Sierpiniski (1906) that
Ry = O(N'3log N) and the sharpest known by Iwaniec and Mozzochi ([6]) that
R, = O(N%+), The above circle problem and so called the problem of divisors
are related each to the other. For a deeper discussion of the problem of divisors
we refer the reader to [7] (cf. [7] Ch 13).
Remark 3. Suppose that p = 0(mod 4) then it is easy to observe that there is no
representation of y as a sum of squares of two odd integers, i.e. u is never equal
to (2k 4 1)® + (2 +1)? for any k,£ € Z. This implies that if .4, # ( then the set
A, satisfies the requirement formulated in ii) of Theorem 1.

Proof of Theorem 2. Let L > 0 be a real number. We put R(L) := R([L]) and
R (L) := R([L}). Let us remark that

RoLy="> rem+ Y, @+ Y. rim+ > ro(n)

n=0(mod 4) n=1{mod 4) nz2{mod 4} nz3(ood 4)
n<l n< L n< L n<L
We observe that if n = 0(mod2) then r(n) = r(n/2). Indeed; it is well known
(see [9], [5]) that r(n) = 4(A — B), where A is the number of positive divisors of
n of the form 4k 4+ 1 and B is the number of positive divisors of n of the form
4k + 3. Tt is clear that the number n/2 has exactly the same divisors of these
types, thus r(n) = r(n/2).
It follows from Theorem 1 and Remark 3 that for all £ > 0

p=1{mod 2} #£=0{mod 4}
usL p<l (2.4)
=4 > rm+2 > AL ’
p=1{mod 2) p=0(mod 4)
usL wEL

On the other hand

R(Ly=" > )+ > rn)

nz=1(mod 2} n=Hmod 2)
n<L n<L
== 5 r(n) + E r(n) = E r(n)+ R L .
‘ 2
nz=l(mod2) n<k n=1{mod2)

n< L n< L
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By (2.2) we obtain that

L 1
> rm)=wL+0(WL)- %m;-o( 5) = §WL+O(JE)
n=1{mod 2)
n< L

and it implies that
1 -
> orn) = -éer+O(\/E). (2.5)

n=1{mod2)

n<bL

We obtain in a similar way that

Z r(n) = Z r{n) + Z r(n)

n=0{mod 2} n=0{mod 4) n=2{mod 4)
n<L n<L n< L
= E - r(n) + E r(n)
n=0(mod 2) n=1(mod 2)
nd L n< &

<

thus

Z r{n) = Z r(n):%‘ﬁ'gjt()( %)zi‘?r'lpk()(\/f/).

n=0{mod 4} nz=0{mod 2)
n< L n< %

This leads to

oo = Tlé 7L+ O(VL). (2.6)

n=0{mod 4}
ne L

Now, we substitute (2.5) and (2.6) in (2.4) and we obtain

1 1 . )
Cze24'§7TL+O(x/E)+2~E7rL+O(\/I:):gﬁLqLO(\/E)

and therefore .
a(L) > g 7L +O(VL).

This completes the proof. =

Remark 4. Using the mentioned approach of [& and applying directly the result
of M. Pinsky (cf. [10], [11]) about the spectrum and eigenspaces of the Laplacian
on the equilateral triangle one get the following lower estimate of the distinet

nontrivial solutions (u, p) of (P) in that case.
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Remark 5. It is worth of pointing out that the asymptotic estimate of Theorem 2
is not an asymptotic equality in general. It is not an asymptotic equality even if we
count the solutions that are not invariant with respect to G = Dy, or equivalently
do not satisfy u ¢ C1(9)“. The simplest example is the function f(u):= u that
fulfills the condition (2.1). Then for a given eigenvalue A the solutions of (P)
are exactly the eigenfunctions of the Laplacian corresponding to A, which form a
subspace, thus an infinite set containing vectors of arbitrary small norms.
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