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AN ASYMPTOTIC ESTIMATE OF THE NUMBER OF BIFURCATING 
SOLUTIONS FOR THE EQUATION -~u = µf(u) 

w. KRAWCEWiczt +, w. MARZANTOWICZ+ * 

Abstract: In this paper we present a lower estimate on the number of non-zero solutions (u,µ) 
of the following boundary value problem 

{ -~u = µ · f(u) on 

u = 0 on 

n 
an (P) 

where µ E iR, Q = (- rr /2; rr /2)2 and f : IR --+ IR is a function of class C 1 satisfying some 
additional requirements. By using the symmetry properties of the problem (P) and classical 
results from number theory, we show that the numbers o:e(L) of all distinct nontrivial solutions 
(u, µ) of (P) such that llull < e:, for e: > 0, where O < µ < L + l, satisfy the following inequality 

liminf o:c(L) 2 ~rrL + O(v'L) 
,:-0 8 

as L __, oo. 

Keywords: Boundary value problem, variational problem with symmetries, bifurcation point, 
asymptotic behaviour. 

1. Introduction 

This work is a result of our investigation into a possible use of number theory to 
estimate the multiplicity of solutions of variational problems with symmetries. We 
consider a nonlinear, parametric Dirichlet problem with the group of symmetries 
D4, i.e. the group of symmetries a square. In our earlier paper (see [8]), we 
have proved that near a value of parameter >., at which a bifurcation of solutions 
occurs, the number of solutions is estimated from below by the cardinality of a 
subset of the integral lattice '11} C IR2 contained in the disc of radius >.. By using 

1991 Mathematics Subject Classification: Primary 58E09, Secondary 35J50, llLxx 
t Research supported by NSERC Grant G 121210399 
+ Research supported by the A. von Humboldt fellowship. 
* Research supported by KBN grant nr 2 PO3A 03315. 

195 



196 W. Krawcewicz. W. l\lar;,antowicz 

some elementary, and well-known, number theory argument we can evaluate an 
asymptotic estimate of this cardinality, and consequently estimate from below the 
number of small amplitude solutiorn:i of the studied problem. 

The authors are aware that presented here result is not in the most gen­
eral formulation and it should be considered as an example for such application 
number theory. However, such generalizations could be obtained using the results 
presented in rs] for variational problem with the symmetry group G being the 
isometries of n-cube, where n is an arbitrary natmal number. In spite of thP fact 
that there are in the literature (see [l] for an extended list of references) many 
interesting papers on the multiplicity of solutions to nonlinear problems with sym­
metries, an asymptotic (with respect to the parameter) formula for the number 
of solutions has not bPP11 studied before. In this paper we would like to demon­
strate a possibility of such an approach to studying the multiplicity of solutions 
for nonlinear problems with symmetry. 

2. Main Result 

We are int PrPst Pd in the existence of non-trivial solutions to the following boundary 
value problem: 

{ -~u = µ · f(u) 
ulan = 0 

on n 
(P) 

where O c IR2 is the square (- 1r /2. 1r /2) 2 and f : H. -+ IR is a function of class 
C 1 such that f(O) = 0. f'(O) = 1 and 

lf'(t)I ::; a1 + a2IW- P ~ l. (2.1) 

The assumption (2.1) irnp]iPs that the problem (P) can be expressed as a varia­
tional problem, namely (P) is equivalent to the problem of existence of non-zero 
critical points for the functional I : HJ (r2) -+ IR defined by 

I(u) := -2
1 j llv'ull 2 - µ 1 F(u); 

n n 

where F(s) = J; f (t)dt. 
It can be shown that the eigenvalues tl of the Laplace operator -~ are 

the bifurcation points for (P) but the fact that the functional I is invariant 
with respect to the symmetric group of the square r2 implies that the number of 
bifurcating branches of solutions can lw quite large. 

In the paper [8], which generalizes some earlier work of Ekcland and Lasry 
(cf. [r1]), we studied that problem and we obtained lower estimates on the number 
of the bifurcating branches of solutions from an eigenvalue µ of the Laplacian. 
This result, which improves some previous attempts in this direction (cf. [2]), can 
be described as follows: 

Let us denote by IAµI the number of elements of the set 

Aµ = { ( m, n) E N2 : n2 + m2 = rd 
where N = {1, 2, ... }. 
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Theorem 1 (cf. [8], Thm. (3.3). Let Jl EN be a numbPr such that A1-,-/- 0 and 
suppose that E > 0 is a ;:;ufficiently /jmall real number. Then we have 

i) Ifµ= l (mod 2) then Jt is a bifurcation point for (P) and the equation (P) 
has at least 4 · IAµI distinct solutions u such that !lull= E. 

ii) If ft = 0 (mod 2) and Aµ doe;:; not contain a pair of two odd numbers then 
Jl is a bifurcation point for (P) and the equation (P) has at least 2 · IAµ I 
distinct solutions u such that llull = €. 

l\Jornover all thesP solutions arP not invariant with respect to the group of sym­
metry of square. 

Using this result we establish an asymptotic lower hound for t lw number 
of bifurcating nontrivial solutions to the problem (P). More precisely, let L > 0 
and c > 0. By ae( L) we denote the number of all distinct nontrivial solutions 
( u, Jl) the problPm (P) such that II u II < E and O < ft < L + l and we put 
a(L) = liminf0 _,o 0:0 (£). 

Recall that a function u(x), u: 12 - JR is not invariant with respect to the 
group G of symmetries of 12 if there exists g E G such that u(gx) f:. u(x). 

Our main result is the following 

Theorem 2. Under the above assumptions we have the following e;:;timation 

5 
n(L) 2 81rL+O(vL) as L - ,x,. 

:Moreover we assess tile number of solutions that are not invariant with re­
spect to the group of symmetry of square. 

Before we proceed with the proof of Theorem 2 let us introduce the following 
arithmetical function r : N - N 

r(n) = L l 
n=a2 +b2 

a,bEZ 

expressing the number of representations of an integer n > 1 as a sum of two 
integral squares. Put 

.\' 

R(N) = L r(n); r(O) = 1. 
n=O 

R( N) can he interpreted as t hP number of lattice points inside and on the cir­
cumference of the circle x 2 + y2 = N and is approximately equal to the area of 
the circle. !\fore precisPly the following classical result of Gauss ( cf. [3]) is true: 

R(N) = 1rN + O(vN). (2.2) 

Since the set A1, consists only of pairs (m,n) of positive integers WP need to 
restrict our consideration to the arithmetical functions 

N 

r +Cn) = L l and R+(N) =Lr +(n). 
n=a2 +b2 

a,bEN 
n=I 
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The function R+ ( N) expresses the number of lattice points from the first quadrant 
that are inside and on the circumference of the circle x2 + y2 = N. Using this 
observation we have that 

R(N) = 4R+(N) + 4 [VN] + 1. (2.3) 

More precisely, if we put R(N) = 11" N + R 1 , where R 1 denotes the remainder, 
then R+(N) = (7r/4) N -VN +Rf and the asymptotic behavior of the remainder 
R{ is the same as those of ¼ R 1 . 

It should be mentioned that there are many results describing the remainder 
R 1 . For example, one should mention the old one by W. Sierpinski (1906) that 
R 1 = O(N 113 log N) and the sharpest known by lwaniec and Mozzochi ([6]) that 
Ri = O(Ni,;+0 ). The above circle problem and so called the problem of divisors 
are related each to the other. For a deeper discussion of the problem of divisors 
we refer the reader to [7] ( cf. [7] Ch 13). 

Remark 3. Suppose that µ = 0 (mod 4) then it is easy to observe that there is no 
representation of µ as a sum of squares of two odd integers, i.e. µ is never equal 
to (2k + 1 )2 + (2£ + 1 )2 for any k, /!, E Z. This implies that if A1, -/:- 0 then the set 
A1, satisfies the requirement formulated in ii) of Theorem 1. 

Proof of Theorem 2. Let L > 0 be a real number. We put R(L) := R([L]) and 
R+(L) := R([L]). Let us remark that 

R+(L) = 
n=O(mod 4) 

n<:__L 
n=l(mod 4) 

n<:__L 
n=2(mod 4) 

n<:__L 

r+(n)+ L 
n=3(mod4) 

n<:__L 

r+(n). 

We observe that if n = 0 (mod2) then r(n) = r(n/2). Indeed; it is well known 
(see [9], [5]) that r(n) = 4(A - B), where A is the number of positive divisors of 
n of the form 4k + 1 and B is the number of positive divisors of n of the form 
4k + 3. It is clear that the number n/2 has exactly the same divisors of these 
types, thus r(n) = r(n/2). 

It follows from Theorem 1 and Remark 3 that for all € > 0 

n"(L) ~ 4 

=4 

On the other hand 

R(L) = 
n=l(mod 2) 

ns_L 

n"'l(mod 2) 
ris_L 

I: IA1,I + 2 I: IA,,I 
µ=l(mod 2) /L=0(mod4) 

µs_L µs_L 

I: r+(n) + 2 I: IA,,1· 
µ"'l(mod2) /l=O(mod 4) 

µs_L 

r(n) + 
n=O(mod 2) 

ns_L 

JLS.L 

r(n) 

r(n) + L r(n) = L r(n) + R( ~). 
ns_{t n"'l(mod2) 

ns_L 

(2.4) 
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By (2.2) we obtain that 

L r(n) = 1rL + O(vL) -1 rrL - a( v1) = ~ rrL + O(vL) 
n::l(mod2) 

nS,.L 

and it implies that 

1 L r+(n) = 81rL+O(vL). 
n::l(mod2) 

nS,.L 

We obtain in a similar way that 

I: r(n) = 
n::0(mod2) 

TIS,_L 

thus 

I: r(n) + I: 
n::0(mod4) n::2(mod4) 

nS,_L nS:_L 

I: r(n) + I: 
n:0(mod2) n::l(mod2) 

n:5L n<L. 
- 2 

r(n) 

r(n) 

(2.5) 

r( n) = '°' r( n) = - · 7r · - + 0 - = - · 7r • L + 0( vL) 1 L (v1) 1 L.,; 2 2 2 4 . 
n::0(mod4) 

nS,.L 

This leads to 

n::0(mod2) 
n<b. -2 

1 L r +(n) = 16 rrL + O(vL). 
n=:0(mod4) 

nS,.L 

Now, we substitute (2.5) and (2.6) in (2.4) and we obtain 

and therefore 

This completes the proof. 

. (2.6) 

• 
Remark 4. Using the mentioned approach of [8] and applying directly the result 
of :rvI. Pinsky (cf. [10], [11]) about the spectrum and eigenspaces of the Laplacian 
on the equilateral triangle one get the following lower estimate of the distinct 
nontrivial solutions ( u, µ) of (P) in that case. 



200 W. Krawcewicz, W. Marzantowicz 

Remark 5. It is worth of pointing out that the asymptotic estimate of Theorem 2 
is not an asymptotic equality in general. It is not an asymptotic equality even if we 
count the solutions that are not invariant with respect to G = D4, or equivalently 
do not satisfy u (f_ C 1 (0)c. The simplest example is the function f(u) := u that 
fulfills the condition (2.1). Then for a given eigenvalue ,\ the solutions of (P) 
are exactly the eigenfunctions of the Laplacian corresponding to ,\, which form a 
subspace, thus an infinite set containing vectors of arbitrary small norms. 
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