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AN ASYMPTOTIC ESTIMATE OF THE NUMBER OF BIFURCATING 
SOLUTIONS FOR THE EQUATION -~u = µf(u) 

w. KRAWCEWiczt +, w. MARZANTOWICZ+ * 

Abstract: In this paper we present a lower estimate on the number of non-zero solutions (u,µ) 
of the following boundary value problem 

{ -~u = µ · f(u) on 

u = 0 on 

n 
an (P) 

where µ E iR, Q = (- rr /2; rr /2)2 and f : IR --+ IR is a function of class C 1 satisfying some 
additional requirements. By using the symmetry properties of the problem (P) and classical 
results from number theory, we show that the numbers o:e(L) of all distinct nontrivial solutions 
(u, µ) of (P) such that llull < e:, for e: > 0, where O < µ < L + l, satisfy the following inequality 

liminf o:c(L) 2 ~rrL + O(v'L) 
,:-0 8 

as L __, oo. 

Keywords: Boundary value problem, variational problem with symmetries, bifurcation point, 
asymptotic behaviour. 

1. Introduction 

This work is a result of our investigation into a possible use of number theory to 
estimate the multiplicity of solutions of variational problems with symmetries. We 
consider a nonlinear, parametric Dirichlet problem with the group of symmetries 
D4, i.e. the group of symmetries a square. In our earlier paper (see [8]), we 
have proved that near a value of parameter >., at which a bifurcation of solutions 
occurs, the number of solutions is estimated from below by the cardinality of a 
subset of the integral lattice '11} C IR2 contained in the disc of radius >.. By using 
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some elementary, and well-known, number theory argument we can evaluate an 
asymptotic estimate of this cardinality, and consequently estimate from below the 
number of small amplitude solutiorn:i of the studied problem. 

The authors are aware that presented here result is not in the most gen
eral formulation and it should be considered as an example for such application 
number theory. However, such generalizations could be obtained using the results 
presented in rs] for variational problem with the symmetry group G being the 
isometries of n-cube, where n is an arbitrary natmal number. In spite of thP fact 
that there are in the literature (see [l] for an extended list of references) many 
interesting papers on the multiplicity of solutions to nonlinear problems with sym
metries, an asymptotic (with respect to the parameter) formula for the number 
of solutions has not bPP11 studied before. In this paper we would like to demon
strate a possibility of such an approach to studying the multiplicity of solutions 
for nonlinear problems with symmetry. 

2. Main Result 

We are int PrPst Pd in the existence of non-trivial solutions to the following boundary 
value problem: 

{ -~u = µ · f(u) 
ulan = 0 

on n 
(P) 

where O c IR2 is the square (- 1r /2. 1r /2) 2 and f : H. -+ IR is a function of class 
C 1 such that f(O) = 0. f'(O) = 1 and 

lf'(t)I ::; a1 + a2IW- P ~ l. (2.1) 

The assumption (2.1) irnp]iPs that the problem (P) can be expressed as a varia
tional problem, namely (P) is equivalent to the problem of existence of non-zero 
critical points for the functional I : HJ (r2) -+ IR defined by 

I(u) := -2
1 j llv'ull 2 - µ 1 F(u); 

n n 

where F(s) = J; f (t)dt. 
It can be shown that the eigenvalues tl of the Laplace operator -~ are 

the bifurcation points for (P) but the fact that the functional I is invariant 
with respect to the symmetric group of the square r2 implies that the number of 
bifurcating branches of solutions can lw quite large. 

In the paper [8], which generalizes some earlier work of Ekcland and Lasry 
(cf. [r1]), we studied that problem and we obtained lower estimates on the number 
of the bifurcating branches of solutions from an eigenvalue µ of the Laplacian. 
This result, which improves some previous attempts in this direction (cf. [2]), can 
be described as follows: 

Let us denote by IAµI the number of elements of the set 

Aµ = { ( m, n) E N2 : n2 + m2 = rd 
where N = {1, 2, ... }. 
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Theorem 1 (cf. [8], Thm. (3.3). Let Jl EN be a numbPr such that A1-,-/- 0 and 
suppose that E > 0 is a ;:;ufficiently /jmall real number. Then we have 

i) Ifµ= l (mod 2) then Jt is a bifurcation point for (P) and the equation (P) 
has at least 4 · IAµI distinct solutions u such that !lull= E. 

ii) If ft = 0 (mod 2) and Aµ doe;:; not contain a pair of two odd numbers then 
Jl is a bifurcation point for (P) and the equation (P) has at least 2 · IAµ I 
distinct solutions u such that llull = €. 

l\Jornover all thesP solutions arP not invariant with respect to the group of sym
metry of square. 

Using this result we establish an asymptotic lower hound for t lw number 
of bifurcating nontrivial solutions to the problem (P). More precisely, let L > 0 
and c > 0. By ae( L) we denote the number of all distinct nontrivial solutions 
( u, Jl) the problPm (P) such that II u II < E and O < ft < L + l and we put 
a(L) = liminf0 _,o 0:0 (£). 

Recall that a function u(x), u: 12 - JR is not invariant with respect to the 
group G of symmetries of 12 if there exists g E G such that u(gx) f:. u(x). 

Our main result is the following 

Theorem 2. Under the above assumptions we have the following e;:;timation 

5 
n(L) 2 81rL+O(vL) as L - ,x,. 

:Moreover we assess tile number of solutions that are not invariant with re
spect to the group of symmetry of square. 

Before we proceed with the proof of Theorem 2 let us introduce the following 
arithmetical function r : N - N 

r(n) = L l 
n=a2 +b2 

a,bEZ 

expressing the number of representations of an integer n > 1 as a sum of two 
integral squares. Put 

.\' 

R(N) = L r(n); r(O) = 1. 
n=O 

R( N) can he interpreted as t hP number of lattice points inside and on the cir
cumference of the circle x 2 + y2 = N and is approximately equal to the area of 
the circle. !\fore precisPly the following classical result of Gauss ( cf. [3]) is true: 

R(N) = 1rN + O(vN). (2.2) 

Since the set A1, consists only of pairs (m,n) of positive integers WP need to 
restrict our consideration to the arithmetical functions 

N 

r +Cn) = L l and R+(N) =Lr +(n). 
n=a2 +b2 

a,bEN 
n=I 
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The function R+ ( N) expresses the number of lattice points from the first quadrant 
that are inside and on the circumference of the circle x2 + y2 = N. Using this 
observation we have that 

R(N) = 4R+(N) + 4 [VN] + 1. (2.3) 

More precisely, if we put R(N) = 11" N + R 1 , where R 1 denotes the remainder, 
then R+(N) = (7r/4) N -VN +Rf and the asymptotic behavior of the remainder 
R{ is the same as those of ¼ R 1 . 

It should be mentioned that there are many results describing the remainder 
R 1 . For example, one should mention the old one by W. Sierpinski (1906) that 
R 1 = O(N 113 log N) and the sharpest known by lwaniec and Mozzochi ([6]) that 
Ri = O(Ni,;+0 ). The above circle problem and so called the problem of divisors 
are related each to the other. For a deeper discussion of the problem of divisors 
we refer the reader to [7] ( cf. [7] Ch 13). 

Remark 3. Suppose that µ = 0 (mod 4) then it is easy to observe that there is no 
representation of µ as a sum of squares of two odd integers, i.e. µ is never equal 
to (2k + 1 )2 + (2£ + 1 )2 for any k, /!, E Z. This implies that if A1, -/:- 0 then the set 
A1, satisfies the requirement formulated in ii) of Theorem 1. 

Proof of Theorem 2. Let L > 0 be a real number. We put R(L) := R([L]) and 
R+(L) := R([L]). Let us remark that 

R+(L) = 
n=O(mod 4) 

n<:__L 
n=l(mod 4) 

n<:__L 
n=2(mod 4) 

n<:__L 

r+(n)+ L 
n=3(mod4) 

n<:__L 

r+(n). 

We observe that if n = 0 (mod2) then r(n) = r(n/2). Indeed; it is well known 
(see [9], [5]) that r(n) = 4(A - B), where A is the number of positive divisors of 
n of the form 4k + 1 and B is the number of positive divisors of n of the form 
4k + 3. It is clear that the number n/2 has exactly the same divisors of these 
types, thus r(n) = r(n/2). 

It follows from Theorem 1 and Remark 3 that for all € > 0 

n"(L) ~ 4 

=4 

On the other hand 

R(L) = 
n=l(mod 2) 

ns_L 

n"'l(mod 2) 
ris_L 

I: IA1,I + 2 I: IA,,I 
µ=l(mod 2) /L=0(mod4) 

µs_L µs_L 

I: r+(n) + 2 I: IA,,1· 
µ"'l(mod2) /l=O(mod 4) 

µs_L 

r(n) + 
n=O(mod 2) 

ns_L 

JLS.L 

r(n) 

r(n) + L r(n) = L r(n) + R( ~). 
ns_{t n"'l(mod2) 

ns_L 

(2.4) 
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By (2.2) we obtain that 

L r(n) = 1rL + O(vL) -1 rrL - a( v1) = ~ rrL + O(vL) 
n::l(mod2) 

nS,.L 

and it implies that 

1 L r+(n) = 81rL+O(vL). 
n::l(mod2) 

nS,.L 

We obtain in a similar way that 

I: r(n) = 
n::0(mod2) 

TIS,_L 

thus 

I: r(n) + I: 
n::0(mod4) n::2(mod4) 

nS,_L nS:_L 

I: r(n) + I: 
n:0(mod2) n::l(mod2) 

n:5L n<L. 
- 2 

r(n) 

r(n) 

(2.5) 

r( n) = '°' r( n) = - · 7r · - + 0 - = - · 7r • L + 0( vL) 1 L (v1) 1 L.,; 2 2 2 4 . 
n::0(mod4) 

nS,.L 

This leads to 

n::0(mod2) 
n<b. -2 

1 L r +(n) = 16 rrL + O(vL). 
n=:0(mod4) 

nS,.L 

Now, we substitute (2.5) and (2.6) in (2.4) and we obtain 

and therefore 

This completes the proof. 

. (2.6) 

• 
Remark 4. Using the mentioned approach of [8] and applying directly the result 
of :rvI. Pinsky (cf. [10], [11]) about the spectrum and eigenspaces of the Laplacian 
on the equilateral triangle one get the following lower estimate of the distinct 
nontrivial solutions ( u, µ) of (P) in that case. 



200 W. Krawcewicz, W. Marzantowicz 

Remark 5. It is worth of pointing out that the asymptotic estimate of Theorem 2 
is not an asymptotic equality in general. It is not an asymptotic equality even if we 
count the solutions that are not invariant with respect to G = D4, or equivalently 
do not satisfy u (f_ C 1 (0)c. The simplest example is the function f(u) := u that 
fulfills the condition (2.1). Then for a given eigenvalue ,\ the solutions of (P) 
are exactly the eigenfunctions of the Laplacian corresponding to ,\, which form a 
subspace, thus an infinite set containing vectors of arbitrary small norms. 
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