To Professor Whodzimierz Stas on his 75 th birthday

A NEW IDENTITY - II

K. RAMACHANDRA

Abstract: A new identity is proved. From this we deduce as corollaries: 2.1-an identity involving the Lionville's function $\lambda(n), 2.2$-an identity involving the von-Mongoldt's function $\lambda(n)$ and 2.3 -an identity involving the generating function of Waring's problem. Some other identities are also mentioned.
Keywords: Higher powers of partial sums, re-arrangement of series and identities involving infinite series.

1. The new identity

We start with the identity

$$
\begin{equation*}
b x^{2}-(a+b)(x+a)^{2}+a(x+a+b)^{2}=a b(a+b) \tag{1.1}
\end{equation*}
$$

and deduce our new identity (namely the theorem below). We then deduce some corollaries. Let $f(0), f(1), f(2), \ldots$ be any sequence of complex numbers. Put

$$
\begin{equation*}
H_{n}=\sum_{m=0}^{n} f(m) \tag{1.2}
\end{equation*}
$$

where $m(\geq 1)$ is any integer. In (1.1) set

$$
\begin{equation*}
x=H_{n}, a=f(n+1) \quad \text { and } \quad b=f(n+2), \tag{1.3}
\end{equation*}
$$

where $n(\geq 1)$ is a any integer. We obtain

$$
\begin{align*}
f(n+2) H_{n}^{2}-(f(n+1) & +f(n+2)) H_{n+1}^{2}+f(n+1) H_{n+2}^{2} \\
& =f(n+1) f(n+2)(f(n+1)+f(n+2)) . \tag{1.4}
\end{align*}
$$

1991 Mathematics Subject Classification: 11-XX (Number Theory) $11 \mathrm{JXX}, 11 \mathrm{~J} 99$.

From this we deduce

$$
\begin{align*}
\sum_{n=1}^{\infty} f(n+2) H_{n}^{2} & -\sum_{n=1}^{\infty}(f(n+1)+f(n+2)) H_{n+1}^{2}+\sum_{n=1}^{\infty} f(n+1) H_{n+2}^{2} \tag{1.5}\\
& =\sum_{n=1}^{\infty} f(n+1) f(n+2)(f(n+1)+f(n+2))
\end{align*}
$$

subject to the convergence of the infinite series involved. Here the LHS is

$$
\begin{aligned}
\sum_{n=3}^{\infty} f(n+2) H_{n}^{2}+f(3) H_{1}^{2}+f(4) H_{2}^{2} & -\sum_{n=3}^{\infty}(f(n)+f(n+1)) H_{n}^{2} \\
& -(f(2)+f(3)) H_{2}^{2}+\sum_{n=3}^{\infty} f(n-1) H_{n}^{2}
\end{aligned}
$$

Hence we obtain the following Theorem.
Theorem 1.1. We have

$$
\begin{align*}
& \sum_{n=3}^{\infty}(f(n-1)-f(n)-f(n+1)+f(n+2)) H_{n}^{2} \\
& \quad=\sum_{n=1}^{\infty} f(n+1) f(n+2)(f(n+1)+f(n+2))-f(3)(f(0)+f(1))^{2} \tag{1.6}\\
& \quad \quad+(f(2)+f(3)-f(4))(f(0)+f(1)+f(2))^{2}
\end{align*}
$$

provided the two infinite series involved are convergent. Here as stated already

$$
H_{n}=\sum_{m=0}^{n} f(m) \quad \text { for } \quad n \geq 1
$$

2. Corollaries

Let $\lambda(n)$ be the Liouville's function defined by

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}=\prod_{p}\left(1+p^{-s}\right)^{-1}=\frac{\zeta(2 s)}{\zeta(s)} \tag{2.1}
\end{equation*}
$$

where the product is over all primes and $s=\sigma+i t, \sigma \geq 2$. Putting $f(0)=0$ and $f(n)=\lambda(n) n^{-1}$ we have

Corollary 2.1.

$$
\begin{aligned}
\sum_{n=3}^{\infty}\left(\frac{\lambda(n-1)}{n-1}-\frac{\lambda(n)}{n}\right. & \left.-\frac{\lambda(n+1)}{n+1}+\frac{\lambda(n+2)}{n+2}\right)\left(\sum_{m=1}^{n} \frac{\lambda(m)}{m}\right)^{2} \\
& =\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}\left(\frac{\lambda(n+2)}{n+1}+\frac{\lambda(n+1)}{n+2}\right)+\frac{1}{16}
\end{aligned}
$$

Remark. The series $\sum_{n=1}^{\infty}\left(\lambda(n) n^{-1}\right)$ is convergent and is equal to zero. Also $\left|\sum_{m=1}^{n} \lambda(m) / m\right| \leq K /(\log n)^{2}(n \geq 2)$ where K is a constant.

Let $\Lambda(n)$ be the von-Mongoldt function defined

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\wedge(n)}{n^{s}}=-\frac{\zeta^{\prime}(s)}{\zeta(s)} \tag{2.2}
\end{equation*}
$$

Putting $f(0)=0$ and $f(n)=\Lambda(n) z^{n}(n \geq 1)$, where z is a complex number with $|z|<1$, we have

Corollary 2.2.

$$
\begin{gather*}
\sum_{n=3}^{\infty}\left(\wedge(n-1) z^{n-1}-\wedge(n) z^{n}-\wedge(n+1) z^{n+1}+\wedge(n+2) z^{n+2}\right)\left(\sum_{m=1}^{n} \wedge(m) z^{m}\right)^{2} \\
=\sum_{n=1}^{\infty} \wedge(n+1) \wedge(n+2) z^{2 n+3}\left(\wedge(n+1) z^{n+1}+\wedge(n+2) z^{n+2}\right) \\
\quad-(\log 2)^{2} z^{4}\left((\log 2) z^{2}+(\log 3) z^{3}\right) \tag{2.3}
\end{gather*}
$$

Let $k(\geq 1)$ be any integer and z as before. Putting $f(0)=0$ and $f(n)=z^{n^{k}}$ we obtain

Corollary 2.3.

$$
\begin{align*}
& \sum_{n=3}^{\infty}\left(z^{(n-1)^{k}}-z^{n^{k}}-z^{(n+1)^{k}}+z^{(n+2)^{k}}\right)\left(\sum_{m=1}^{n} z^{m^{k}}\right)^{2} \\
& =\sum_{n=1}^{\infty} z^{(n+1)^{k}+(n+2)^{k}}\left(z^{(n+1)^{k}}+z^{(n+2)^{k}}\right)-z^{3^{k}+2} \tag{2.4}\\
& \quad+\left(z^{2^{k}}+z^{3^{k}}-z^{4^{k}}\right)\left(z+z^{2^{k}}\right)^{2}
\end{align*}
$$

Remark. We can go on listing some more corollaries. (For example we can take $f(0)=\zeta(3)$ and $f(n)=-1 / n^{3}$ or $f(0)=\zeta(5)$ and $f(n)=-1 / n^{5}$ and so on). But we stop at these three corollaries.

130 K. Ramachandra

3. Higher powers of H_{n}

The identity (1.1) is a special case of the following result (see Theorem 1 of [1]). Let $k(\geq 1)$ be any integer and $x, x_{1}, x_{2} \ldots, x_{k}$ any $k+1$ non-zero complex numbers no two of which are equal. Then (plainly x can be zero).

$$
\begin{aligned}
& x^{k}+\left\{\sum_{m=1}^{k}\left(x+x_{m}\right)^{k}(-1)^{m} x_{m}^{-1}\left(\prod_{m>j \geq 1}\left(x_{m}-x_{j}\right)^{-1}\right)\left(\prod_{k \geq j>m}\left(x_{j}-x_{m}\right)^{-1}\right)\right\} \\
& \times x_{1} x_{2} \ldots x_{k} \\
&=(-1)^{k} x_{1} x_{2} \ldots x_{k}
\end{aligned}
$$

Using this we can get the analogue of our theorem above with H_{n} replaced by H_{n}^{k}. (Here k should not be confused with that in Corallary 2.3 above).

References

[1] K. Ramachandra, On series, integrals and continued fractions. III, (to appear).

Address: K. Ramachandra, Hon. Vis. Professor, NIAS, IISc Campus, Bangalore-560 012, INDIA; Retired Senior Professor, TIFR Centre, IISc Campus, Bangalore-560 012, India.
E-mail: kram@math.tifrbng.res.in
Received: 5 April 2000

