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SOME PROBLEMS CONCERNING ALGEBRAS
OF HOLOMORPHIC FUNCTIONS

Richard M. Aron

In memory of Paweł Domański

Abstract: Let X be a complex Banach space with open unit ball BX . We describe some recent
work and a number of open problems related to the maximal ideal spaces of the Fréchet algebra
of holomorphic functions of bounded type on X and the Banach algebra of bounded holomorphic
functions on BX .
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1. Introduction

This survey paper deals with problems that, by and large, involve two algebras
of holomorphic functions on a complex Banach space X with open unit ball BX .
We first examine Hb(X), the algebra of holomorphic functions f : X → C such
that sup‖x‖6n |f(x)| < ∞ for all n ∈ N. This is a Fréchet algebra when endowed
with the usual topology generated by these sup-norms. The second algebra that
we consider is H∞(BX), the Banach algebra of bounded holomorphic functions
f : BX → C with the sup-norm on BX .

The problems we describe here have been “percolating” for a while, in some
cases for several decades. We must acknowledge, with great thanks, many con-
versations over the years with colleagues and friends about this general topic, out
of which the present manuscript has emerged. Although we will now do so, it is
risky to try to name the people who have helped me with this, since it is almost
certain that someone will be inadvertently omitted: Daniel Carando, Brian Cole,
Verónica Dimant, Javier Falcó, Pablo Galindo, Ted Gamelin, Domingo García,
Alexander Izzo, Silvia Lassalle, M. Lilian Lourenço, O. Paques, Manuel Maestre,
Luiza Amalia de Moraes, and Ignacio Zalduendo.
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After reviewing notation and some basic concepts from Banach algebras in this
section, we will devote §2 to some background results and open problems related
to Hb(X). In the third section, we will focus on H∞(BX), where we will find
problems even when X = (C2, ‖ · ‖2).

For the time being, A denotes either of the two algebras Hb(X) or H∞(BX).
As is customary, let M(A) be the spectrum, or maximal ideal space, of A. That
is,M(A) is the set

{ϕ : A → C | ϕ is a continuous homomorphism}.

Recall that a function ϕ : A → C acting on an algebra A is a homomorphism
means that ϕ satisfies the two algebraic conditions: ϕ is a linear form which is
also multiplicative. We exclude ϕ ≡ 0 as such a homomorphism and consequently
ϕ(1) = 1. (Note here that both of our algebras are unital with identity element
being the constant function 1.) By a standard argument (see, e.g., [13], every ho-
momorphism on a unital commutative Banach algebra is automatically continuous.
On the other hand, if A is a non-normed Fréchet algebra, then it is unknown if
every complex homomorphism on A is automatically continuous. This is known
as the Michael problem (see, e.g., [8]). In order to make any progress at all in the
case of Hb(X), we have added the word “continuous” to the definition ofM(A).

In the case of Banach algebras, it is well-known ([13]) that every ϕ ∈ M(A)
has norm 1; that is M(A) is a subset of the unit sphere of X, SA∗ , in this case.
By the Alaoglu-Bourbaki theorem, BA∗ is weak-star compact, and we conclude
thatM(A) is compact for the induced topology. In our case, with A = H∞(BX),
what this means is that any net (ϕα) in M(A) has a convergent subnet to some
ϕ ∈M(A); i.e. ϕα(f)→ ϕ(f) for each f ∈ A. It is natural to ask for examples of
elements ofM(H∞(BX)). Apart from the evaluation homomorphisms δx0

for some
fixed x0 ∈ BX , there are no obvious homomorphisms. However, as pointed out
by Hoffman [9] in fact there is an impressive number of (non-obvious) homomor-
phisms. We will content ourselves with one more basic notion, which is a triviality
in the case X = C. For this, note the natural inclusion: X∗ ⊂ H∞(BX). Now, for
any ϕ ∈ M(H∞(BX)), define Π(ϕ) :≡ ϕ|X∗ . Thus, Π : M(H∞(BX)) → BX∗∗ .
It is an easy exercise to show that Π is continuous when M(H∞(BX)) has its
induced topology and BX∗∗ has the weak-star topology. Thus the image of Π is
compact. A computation confirms that Π◦δx0

= x0 for all x0 ∈ BX . Furthermore,
by Goldstein’s theorem, BX is a weak-star dense subset of BX∗∗ , and we conclude
that Π is a surjective mapping. It follows that for each x∗∗0 ∈ BX∗∗ , the fiber
Π−1(x∗∗0 ) 6= ∅. We will return to this in Section 3.

In the case of the Fréchet, not Banach, algebra A = Hb(X), as already men-
tioned the Michael problem is essentially whether the word “continuous” can be
removed from the definition of the spectrum of Hb(X),

M(Hb(X)) = {ϕ : Hb(X)→ C | ϕ is a continuous homomorphism}

(see, e.g., [7]). The set M(Hb(X)) is not compact when endowed with the usual
topology, even in the case when X = C. (For, in this case, Hb(C) = H(C) and
M(H(C)) ∼ C.) We will examine this case in the next section.
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2. The maximal ideal space M(Hb(X))

Fix a complex Banach space X and an element ϕ ∈ M(Hb(X)). Since ϕ is con-
tinuous, from the definition of the topology of Hb(X), we see that there is R > 0
such that

|ϕ(f)| 6 sup
x∈X,‖x‖6R

|f(x)| (∗)

Moreover, for each R, the set {ϕ ∈M(Hb(X)) | (∗) holds } is compact.
Also, it is not difficult to see that there is a canonical extension mapping f ∈

Hb(X) f̃ ∈ Hb(X∗∗) ([2]), so that of course f̃ |X = f.Moreover, an examination
of the construction shows that f → f̃ is a homomorphism between the two Fréchet
algebras (i.e. it is continuous, linear, and multiplicative). Consequently, for any
fixed point z∗∗0 ∈ X∗∗, we have a continuous homomorphism δ̃z∗∗0 : Hb(x) →
C, δ̃z∗∗0 (f) = f̃(z∗∗0 ). Of course, when X is reflexive (and in particular when X is
finite dimensional), this does not give anything new.

In fact, Davie and Gamelin provide an ingenious proof of the analogous result
in the context of H∞(BX). Specifically, for a fixed z∗∗0 ∈ B∗∗X , there is an extension
homomorphism δ̃z∗∗0 ∈M(H∞(BX)), given by δ̃z∗∗0 (f) = f̃(z∗∗0 ).We will make use
of this in the next section.

Let us turn to some examples before presenting some problems.

Example 1. We begin with what is an interesting special case, X = c0. By [2],
each point z∗∗0 ∈ `∞ yields a homomorphism δ̃z∗∗0 ∈M(Hb(c0)). Thus, in the above
sense, we have `∞ ⊆M(Hb(c0)). What makes X = c0 special is the fact that the
algebra generated by {x∗ | x∗ ∈ c∗0} is dense in Hb(c0) ([14]). Thus, if ϕ is an
arbitrary element of M(Hb(c0)), using the fact that c∗0 ⊂ Hb(c0) along with the
continuity of ϕ, we see first that the restriction of ϕ to c∗0 is equal to δ̃z∗∗0 for some
z∗∗0 ∈ `∞, and thus ϕ = δ̃z∗∗0 .

The denseness of alg{x∗ | x∗ ∈ c∗0} in Hb(c0) is unusual, and in factM(Hb(X))
is generally much larger than {δ̃z∗∗0 | z

∗∗
0 ∈ X∗∗}. Before discussing this further,

let us recall the even more special case of X = T ∗, the original Tsirelson space
[16]. Here it turns out that Hb(T

∗) is nothing more than {δc | c ∈ T ∗}.

Example 2. Turning to what seems to be a more typical situation with X = `2,
let us take the sequence of homomorphisms {δen | n ∈ N}. Clearly, each δen ∈ {ϕ ∈
M(Hb(`2)) | (∗) holds with R = 1}. Hence, by compactness, there is a subnet of
{δen}n that converges to some ϕ in the same set. However, ϕ 6= δx for any x ∈ `2.
To see this, observe that for each k ∈ N, the function fk(x) = 1 −

∑∞
j=k x

2
j ∈

Hb(`2) satisfies fk(en) = 0 for all sufficiently large n ∈ N. Therefore, ϕ(fk) = 0
for all k. Were it true that ϕ = δx for some fixed x, then we would have that
fk(x) = 1−

∑∞
j=k x

2
j = 0 for all k, i.e.

∑∞
j=k x

2
j = 1 for all k, which is impossible.

ThereforeM(Hb(`2)) contains homomorphisms which are not merely evaluations
at points of `2. This leads to some natural questions.

Problem 1. Describe the homomorphisms inM(Hb(`2)).



272 Richard M. Aron

Problem 2. Is the set of “obvious” homomorphisms {δx |x ∈ `2} dense in
M(Hb(`2)), endowed with the standard weak-star topology? (This is tantamount
to asking for a version of the Corona Theorem.)

We now return to the case of a general complex Banach space X. Recalling the
above discussion, there is a natural mapping which we now denote ι2, ι2 : X∗∗ '
{δ̃z | z∗∗ ∈ X∗∗} → M(Hb(X)), via f ∈ Hb(X)  δ̃∗∗z (f) = f̃(z∗∗). Let’s repeat
this procedure: Fix p ∈ Xiv, where Xiv denotes the fourth dual of X. Define
˜̃
δp : Hb(X)→ C by

˜̃
δp(f) =

˜̃
f(p).

(Here ˜̃
f ∈ Hb(Xiv).) We thus get a mapping ι4 taking Xiv ' { ˜̃

δp | p ∈ Xiv} into
M(Hb(X)). Of course, we can continue this procedure, getting a mapping ι2n for
every n ∈ N.

We have already seen that for X = `2, these natural mappings are not sur-
jections. In fact, it can happen that they are not necessarily injections either. If
X is non-reflexive, then ι2 is easily seen to be one-to-one. But what about ι2n
for n > 2? One example occurs by considering X = c0 for, in this case, although
ι2 : `∞ →M(Hb(c0)) is an injection (in fact, it is a bijection), the map ι4 from the
fourth dual of c0 is not injective. A more interesting situation occurs with X = `1.
In this case, although ι2 : `∗∗1 →M(Hb(`1)) is injective, it is not surjective. More-
over, there are points in p ∈ `iv1 \`∗∗1 such that ˜̃

δp is a “new” homomorphism on
Hb(`1) (i.e. ˜̃

δp 6= δ̃z∗∗ for any z∗∗ ∈ `∗∗1 .) However, this does not hold for every
p ∈ `iv1 , and so ι4 is not injective. The reason for this is simple, thanks to an
observation by Joe Diestel: The cardinality of `iv1 is strictly greater than the car-
dinality ofM(Hb(`1)).

Problem 3. Which points p ∈ `iv1 really give “new” homomorphisms? That is,
for which p is it the case that ˜̃

δp 6= δ̃z∗∗ for any z∗∗ ∈ `∗∗1 ?.

Problem 4. Are there points q ∈ `vi1 such that ι6(q) is a “new” homomorphism?

(The reader is invited to search for papers in which the sixth, or even the
fourth, dual of a Banach space is discussed.)

The above problems are closely related to what is known as Arens regularity
(see, e.g., [1]), concerning automatic weak compactness of operators from a Banach
spaceX to its dualX∗. In fact, what is involved here is what is known as symmetric
regularity. The point is that not only is `1 not regular, it is also not symmetrically
regular; that is, there is a symmetric continuous linear operator `1 → `∗1 which is
not weakly compact (see, e.g., [3]).

3. The maximal ideal space of H∞ functions

We study here the maximal ideal space M(H∞(BX)), where X is an arbitrary
complex Banach space. Recall that since H∞(BX) is a Banach algebra, continuity
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of the homomorphisms is automatic. Also, as mentioned in the Introduction, we
have a natural mapping Π :M(H∞(BX))→ BX∗∗ , where Π(ϕ) is the restriction
of an element ϕ ∈ M(H∞(BX)) to X∗ ⊂ H∞(BX). We have already indicated
that Π is continuous when the domain and range have the weak-star topology,
that Π ◦ δ = id|BX

, and that in fact Π is onto BX∗∗ by Goldstein’s theorem.
We will also need the notion of fiber over a point of BX∗∗ .

Definition. Let z∗∗ ∈ BX∗∗ . The fiber over z∗∗ is just Π−1(z∗∗), which we have
just observed to be non-empty for every z∗∗.

Finally, we will need one more important definition.

Definition. The cluster set of a function f ∈ H∞(BX) at the point z∗∗ ∈ BX∗∗
is the set of limits of values of f along nets in BX that converge weak-star to z∗∗.

Let’s restrict first to X = C, so that we’re merely dealing with the classical
H∞(D). In this case, we recall the famous Corona Theorem of Lennart Carleson.

Theorem (L. Carleson, [6]). The collection δ(D) of point evaluations at points
of the open unit disc is dense in the spaceM(H∞(D)).

Carleson’s theorem appeared one year after a somewhat overlooked paper by
I. J. Schark. In it, among other things, I. J. Schark proved the following Cluster
Valued Theorem.

Theorem (I. J. Schark, [15]). Fix f ∈ H∞(D) and c ∈ D. Then the following
sets are equal:

{w ∈ C | ∃(xα) ⊂ D, xα → c and f(xα)→ w};

{ϕ(f) | ϕ ∈M(H∞(D)) | Π(ϕ) = c}.

Several remarks comparing the two results above are in order.

Remark 1. For later use and comparison, we note that it is trivial that Schark’s
result is vacuous if the chosen point c ∈ D in fact lies in the open disc D.

Remark 2. It is a straightforward exercise to verify that Carleson’s theorem im-
plies the result of I. J. Schark. The converse is false (and is not as straightforward).

Remark 3. It is not difficult to show one inclusion in J. Schark’s theorem. Specif-
ically, let w0 ∈ {w ∈ C | ∃(xα) ⊂ D, xα → c and f(xα)→ w} so that there is a net
xα ∈ C, xα → c and f(xα) → w0. Consider the ideal I = {g ∈ H∞(D) | g(xα) →
0}. Clearly, both the function g(z) = z−c and the function g(z) = f(z)−w0 belong
to I. CallM any maximal ideal in H∞(D) such thatM⊃ I. SinceM = ϕ−1(0)
for some homomorphism ϕ, it follows that ϕ(g) = 0 for all g ∈ I. From this it
follows that ϕ(f) = w0 as required.
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Remark 4. It is unknown if the analogous extension of Carleson’s theorem for
higher dimensions, e.g. the ball of C2 with the Euclidean or max norm, holds.
Put briefly, for dim X = 1, there are no known counterexamples to Carleson’s
theorem, while for dim X > 2, there are no known positive results. In light of this,
it is evidently foolhardy to try to prove a version of Carleson’s theorem for infinite
dimensional Banach spaces X. On the other hand, there is no known situation in
which I. J. Schark’s theorem is false.

From Remark 4 above, it is clearly sensible that rather that trying to extend
the Corona Theorem, our focus should be on trying to extend the weaker form
of the Corona theorem, as put forward in the case of H∞(D) by I. J. Schark. In
short, the basic question we have is the following:

Problem 5. Let X be an infinite dimensional complex Banach space. Is there
a version of the cluster value theorem that is valid in this context? Specifically,
for a fixed f ∈ H∞(BX) and a fixed point z∗∗ ∈ BX∗∗ , are the following two sets
equal?

{w ∈ C | ∃ a net (xα)α ⊂ BX , xα → z∗∗ weak− star and f(xα)→ w};

{ϕ(f) | ϕ ∈M(H∞(BX)), Π(ϕ) = z∗∗}.

When dim X = ∞, an interesting feature of M(H∞(BX)) must be noted.
Namely, the fiber over any, even an interior, point of BX∗∗ is rich. In partic-
ular, there is a homeomorphic copy of βN\N ⊂ Π−1(0) whenever X is infinite
dimensional [5, §11]. (Compare with Remark 1 above.)

We are thus led to the following (possibly) easier problem:

Problem 6. Let X be an infinite dimensional complex Banach space, and let
f ∈ H∞(BX) be a fixed function. Are the following two sets equal?

{w ∈ C | ∃ a net (xα)α ⊂ BX , xα → 0 weakly and f(xα)→ w};

{ϕ(f) | ϕ ∈M(H∞(BX)), Π(ϕ) = 0}.

For X = c0, the answer to Problem 5 (and a fortiori Problem 6) is yes. Namely,
we have the following result.

Theorem ([4]). Fix f ∈ H∞(Bc0) and z∗∗ ∈ B`∞ . Then the two sets

{w ∈ C | ∃ a net (xα)α ∈ Bc0 , xα → z∗∗ weak− star and f(xα)→ w}

and
{ϕ(f) | ϕ ∈M(H∞(B`∞)),Π(ϕ) = z∗∗}

are equal.
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It is natural to think that the same result should be true for the apparently eas-
ier case of B`2 , since here we don’t have to concern ourselves with biduals. In fact,
we don’t know the answer to the (at least, theoretically simpler) Problem 6, for the
following reason. The proof of the above cluster value theorem forM(H∞(Bc0))
relies on the fact that for any n ∈ N, any (continuous) n−homogeneous poly-
nomial P : c0 → C can be uniformly approximated on Bc0 by elements in the
algebra generated by `1 = c∗0. We note that the 2−homogeneous polynomial
P : `2 → C, P (x) =

∑∞
j=1 x

2
j , shows that the same fact does not hold if c0 is

replaced by `2.
Using this property of polynomials on c0, one can prove a key result needed

in the proof of the above theorem. First, let us set some notation: For g ∈
H∞(Bc0) and n ∈ N, define gn : Bc0 → C by gn(x1, ..., xn, xn+1, xn+2, ...) =
g(0, ..., 0, xn+1, xn+2, ...). Clearly, gn is also a bounded holomorphic function on
Bc0 .

Lemma. Fix ϕ ∈ M(H∞(Bc0)). Suppose that Π(ϕ) = 0 (as an element of `∞).
Then for any g ∈ H∞(Bc0) and any n ∈ N, ϕ(g) = ϕ(gn).

This Lemma, which is crucial for the proof that Problem 5 holds for X = c0,
is false for `2.

Example 3. Let (rn) and (εn) ⊂ R be such that rn → 1− and εn → 0+

very quickly. (How quickly will be explained below.) Consider the points pn =
εne1 + rnen, where r2n + ε2n → 1−. Each such pn provides a point evaluation ho-
momorphism δpn ∈ M(H∞(B`2)). By compactness, the set {δpn} has a cluster
point ϕ ∈ M(H∞(B`2)). For any k ∈ N, k > 2, since δpn(e∗k), the kth coordinate
of pn, is 0 for most n, it follows that ϕ(e∗k) = 0. Furthermore, as n gets larger,
δpn(e∗1) = εn → 0. Consequently, Π(ϕ) = 0. Now, let g : B`2 → C be defined by

g(x1, x2, ...) =
x1

[1−
∑∞
j=2 x

2
j ]

1
2

.

It is straightforward that g ∈ H∞(B`2). Note that for all n, δpn(g) = εn

[1−r2n]
1
2

which we can arrange to be as close to 1 as we wish. Thus ϕ(g) = 1. On the
other hand, g1 ≡ 0 so of course ϕ(g1) = 0. Thus, the above Lemma is false for
M(H∞(B`2)). Summarizing, we don’t know if there is a cluster value theorem
over 0 ∈ B`2 .

We conclude with several problems concerning individual fibers inM(H∞(BX)).
One basic general question is the following.

Problem 7. Fix a complex Banach space X and two points z∗∗ and w∗∗ in BX∗∗ .
What is the relation between the two fibers Π−1(z∗∗) and Π−1(w∗∗)?

Note that the meaning of the word “relation” in Problem 7 must be specified.
By “relation,” does one mean homeomorphic, or is there a stronger, analytic sense
in which the two fibers can be “equal?”
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Of course, the question is trivial if X is finite dimensional with a “user-friendly”
norm and both points have norm < 1. For, in this case, the fiber over each point
is a singleton. However, in almost every other case, the question seems to be
non-trivial and interesting. For instance, if X = `2 and ‖z‖ = ‖w‖ = 1, then
Π−1(z) ∼ Π−1(w). The same result holds if ‖z‖ and ‖w‖ are both < 1. But what
happens if ‖z‖ < 1 = ‖w‖? What happens if X is not Hilbert space?

Take X = c0. If z, w ∈ Bc0 , then Π−1(z) ∼ Π−1(w). However, for ‖z∗∗‖ =
‖w∗∗‖ = 1, z∗∗, w∗∗ ∈ B`∞ , the situation is murky. For instance, it seems unlikely
that Π−1(( n

n+1 )) should be in any way similar to Π−1(1, 1, ..., 1, ...), but we have
no proof.

Even in the case of finite dimensional X, many questions remain. For instance,
in the special cases H∞(D) and H∞(D2) what is known is that Π−1(1) ∼ Π−1(a, b)
if one of |a|, |b| = 1 and the other is < 1 [11]. Also, Π−1(1) and Π−1(1, 1) are not
homeomorphic, but the argument really uses dimension 1 [10]. In fact, even if dim
X < ∞ and even if ‖z‖, ‖w‖ < 1, the problem of whether Π−1(z) and Π−1(w)
are (somehow) the “same” is open in general. (This is related to what is known
as Gleason’s problem [12].) Even more, it is apparently open whether, with dim
X <∞ and ‖z‖ < 1, Π−1(z) = δz.

Acknowledgement. The author is, and in fact the reader should be, very grateful
to the referee of this short work who managed to find and correct a number of
confusing errors.
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