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CONSEQUENCES OF THE FUNCTIONAL EQUATION
OF THE p-ADIC L-FUNCTION OF AN ELLIPTIC CURVE

Francesca Bianchi

Abstract: We prove that the first two coefficients in the series expansion around s = 1 of the
p-adic L-function of an elliptic curve over Q are related by a formula involving the conductor
of the curve. This is analogous to a recent result of Wuthrich for the classical L-function [6],
which makes use of the functional equation. We present a few other consequences for the p-adic
L-function and a generalisation to the base-change to an abelian number field.
Keywords: elliptic curves, p-adic L-functions.

1. Introduction

In [6], Wuthrich proves a relation between the leading and sub-leading coefficients
of the Taylor series expansion at s = 1 of the L-function of an elliptic curve
over a number field, under the assumptions that the series admits an analytic
continuation to s = 1 and satisfies a functional equation. Wuthrich remarks that
a similar result can potentially be obtained for any L-function which satisfies
a functional equation.

In this paper, we consider the p-adic L-function of an elliptic curve over Q and
its twist by a quadratic character and explore the analogue of Wuthrich’s result.
The prime p will be assumed to be odd and of semistable reduction for the curve.
We start in Section 2 by reviewing the definition of the p-adic L-function and
of its twists by Dirichlet characters ψ. Indeed, we define two p-adic L-functions,
namely Lp(E,α, ψ, s), which is a function of s ∈ Zp, and Lp(E,α, ψ, T ), a power
series in T . We state in Proposition 2.1 and Corollary 2.2 the functional equation
for Lp(E,α, ψ, s) and the corresponding result for Lp(E,α, ψ, T ). Proofs of the
interpolation property and of the functional equation satisfied, more generally, by
the twists of the p-adic L-function of a weight k cuspidal eigenform of Nebentypus
ε are provided in [3, Chapter 1, §§13, 17].

Subsequently, in Section 3, we prove the analogue of [6, Theorem 1] for
Lp(E,α, ψ, s) when ψ is a real character (i.e. when ψ is either the trivial char-
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acter or a quadratic character). In particular, we prove in Theorem 3.3 that the
sub-leading coefficient in the Taylor expansion of Lp(E,α, ψ, s) at s = 1 is equal
to the leading coefficient multiplied by a constant dependent exclusively on the
conductor of E, on the conductor of ψ and on the prime p. The assumption that
ψ is a real character is necessary, since the functional equation relates the values
of Lp(E,α, ψ, s) to those of Lp(E,α, ψ̄, 2− s).

Although the latter result is perhaps of some interest on its own, when study-
ing p-adic L-functions one is often concerned about the corresponding power se-
ries Lp(E,α, ψ, T ), because of its central importance in Iwasawa theory of elliptic
curves. In Theorem 4.1 we thus translate the results of Section 3 into a rela-
tion between the first two leading coefficients of Lp(E,α, ψ, T ). In Section 4,
we also prove another consequence of the relation between Lp(E,α, ψ, T ) and
Lp(E,α, ψ̄, (1 + T )−1 − 1), namely that the µ-invariant of Lp(E,α, ψ, T ) is the
same as that of Lp(E,α, ψ̄, T ). This is Theorem 4.2.

We end the article with a generalisation of some of the results to the p-adic
L-function of the base-change of an elliptic curve to an abelian number field.
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reading an earlier version of this article and providing extremely useful comments.
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anonymous referee for the suggestions. The author is supported by EPSRC and
by Balliol College through a Balliol Dervorguilla scholarship.

2. Notation and statement of the functional equation

In this section, we recall the definition of the p-adic L-function and the statement
of the functional equation it satisfies. We follow the notation of [4] for the modular
symbols and measures as well as the construction of the p-adic L-function, although
we also allow non-trivial twists. We fix once and for all embeddings of Q̄ into C
and Q̄p.

Let E/Q be an elliptic curve of conductor N and assume that p is an odd
prime at which E has semistable reduction. Let f(z) be the newform of weight 2
corresponding to E by modularity and denote its q-expansion

∑∞
n=1 anq

n.
We now define a quantity α, dependent on the reduction type of E at p.

In particular, if E has good ordinary reduction, we let α be the unique p-adic
unit in Zp which is a root of the characteristic polynomial of Frobenius P (X) =
X2 − apX + p. When E has good supersingular reduction, we denote by α an
arbitrarily fixed root of P (X). Finally, if E has multiplicative reduction, we set
α = ap, so that, in particular, α = 1 (resp. α = −1) if the reduction type is split
(resp. non-split). We call α an allowable p-root (for E) and we emphasize that α
is uniquely determined, unless E has good supersingular reduction at p.



Consequences of the functional equation of the p-adic L-function of an elliptic curve 229

For r ∈ Q, we let

λ±(r) = ∓πi
(∫ i∞

r

f(z)dz ±
∫ i∞

−r
f(z)dz

)
.

Normalising λ+(r) (resp. λ−(r)) by the real period Ω+
E (resp. imaginary period

Ω−E) of E gives the rational numbers [r]± = λ±(r)

Ω±E
.

Any unit x in Zp has a unique decomposition as a product of the form ω(x) 〈x〉
where ω(x) is a (p − 1)st root of unity and 〈x〉 ∈ 1 + pZp (note the running
assumption that p is odd).

As in [3, I §§11, 13], for a positive integer M , we let Z∗p,M = lim←−n(Z/pnMZ)∗

and define a p-adic character as a continuous homomorphism Z∗p,M → C∗p. In
particular, since we have fixed an embedding of Q̄ into Q̄p, we may regard the
notion of a finite order p-adic character and a Dirichlet character as equivalent
and hence, even in the p-adic setting, we may use the notation ψ̄ for the inverse of
the finite order character ψ and say ψ is real-valued if it is real-valued as a Dirichlet
character, i.e. ψ = ψ̄.

We then define the measures

µ±α (a+ pkMZp) =
1

αk

[
a

Mpk

]±
− (1− δ)

αk+1

[
a

Mpk−1

]±
,

where δ = 0 if E has good reduction and 1 otherwise.
Let ψ be a finite order p-adic character (possibly the identity) of conductor

pkM , with (M,p) = 1, and write

〈x〉s−1
= exp ((s− 1) log 〈x〉) =

∞∑
n=0

(s− 1)n

n!
(log 〈x〉)n,

where exp and log are the p-adic exponential and logarithm maps. Then we define

Lp(E,α, ψ, s) =

∫
Z∗p,M

ψ(x) 〈x〉s−1
dµα(x),

where µα = µ+
α if the sign of ψ is +1 and µα = µ−α otherwise. The p-adic L-function

Lp(E,α, ψ, s) is a locally analytic function of s ∈ Zp (see the first proposition in
[3, I §13]).

We now perform a change of variable in the definition of Lp(E,α, ψ, s). Con-
sider the extension Q(µp∞) of Q, obtained by adjoining to Q all roots of unity
of p-power order. Furthermore, let Γ denote the Galois group of the cyclotomic
Zp-extension Q∞ of Q and let Qn be the nth layer in the cyclotomic tower.
Then there is a canonical homomorphism

κ : Gal(Q(µp∞)/Q)→ Z∗p

defined by the relation σ(ζ) = ζκ(σ) for all σ ∈ Gal(Q(µp∞)/Q) and ζ ∈ µp∞ . The
homomorphism κ is called the cyclotomic character and it induces an isomorphism
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Γ → 1 + pZp. Indeed, the group Γ is naturally identified with the quotient of
Gal(Q(µp∞)/Q) by the subgroup which is mapped, under κ, to (Z/pZ)∗ × {0} <
(Z/pZ)∗ × (1 + pZp) ∼= Z∗p. We may choose a topological generator γ ∈ Γ and
define T = κ(γ)s−1 − 1. The result is a power series in T , with coefficients in
Qp[ψ](α),

Lp(E,α, ψ, T ) =

∫
Z∗p,M

ψ(x)(1 + T )
log 〈x〉
log κ(γ) dµα(x).

When the character ψ is trivial, we write simply Lp(E,α, s) and Lp(E,α, T ).
Denote byQ the largest divisor ofN coprime to pM . Then there exists cQ = ±1

such that wQ(f) = cQf , where

wQ(f) = f |(Qa b
Nc Qd

)(z)

for some integers a, b, c, d satisfying Qad− (N/Q)bc = 1. Note that, when Q = N ,
we have wE = −cQ where wE is the sign in the functional equation of the complex
L-function L(E, s).

Proposition 2.1 (Functional equation). Let E be an elliptic curve of conductor
N with semistable reduction at the odd prime p and let ψ be a Dirichlet character
of conductor pkM , for some non-negative integers k and M , with (M,p) = 1. For
each allowable p-root α, the p-adic L-function Lp(E,α, ψ, s) satisfies the functional
equation

Lp(E,α, ψ, 2− s) = −cQ · ψ̄(−Q) 〈Q〉s−1
Lp(E,α, ψ̄, s),

where Q is the largest divisor of N coprime to pM .

Proof. See [3, I §17, Corollary 2]. �

Corollary 2.2. With the assumptions as in Proposition 2.1, we have

Lp(E,α, ψ, T ) = −cQ · ψ̄(−Q) 〈Q〉
log(1+T )−1

log κ(γ) Lp(E,α, ψ̄, (1 + T )−1 − 1).

3. Relation between the leading and sub-leading coefficients of the
p-adic L-function of an elliptic curve

We adopt the same notation as in Section 2.

Lemma 3.1. Let ψ be a real-valued Dirichlet character. Then

−cQ · ψ(−Q) = (−1)ords=1Lp(E,α,ψ,s).

Proof. This is a standard exercise given the functional equation. Indeed, since ψ
is assumed to be real-valued, Proposition 2.1 becomes

Λp(E,α, ψ, 2− s) = −cQ · ψ(−Q)Λp(E,α, ψ, s), (1)
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where we put Λp(E,α, ψ, s) = f(s) · Lp(E,α, ψ, s) with f(s) = 〈Q〉s/2. Let
m = ords=1Lp(E,α, ψ, s), so that di

dsiLp(E,α, ψ, s)
∣∣
s=1

= 0 for all i < m and
dm

dsmLp(E,α, ψ, s)
∣∣
s=1
6= 0. Then differentiating both sides of (1) and evaluating

at s = 1 yields

((−1)m + cQ · ψ(−Q))
dm

dsm
Λp(E,α, ψ, s)

∣∣
s=1

= 0.

By the definition of m, one has

dm

dsm
Λp(E,α, ψ, s)

∣∣
s=1

= f(1)
dm

dsm
Lp(E,α, ψ, s)

∣∣
s=1
6= 0, (2)

which forces −cQ · ψ(−Q) = (−1)m. �

Remark 3.2. Assume that the conductor of ψ is not divisible by any prime of
additive reduction for E. A “refined” version of the p-adic Birch and Swinnerton-
Dyer conjecture then predicts that

ords=1L(E,α, ψ, s) = m(E,ψ) + δ,

where ψ is now viewed as a one-dimensional representation of Gal(K/Q) for some
number fieldK,m(E,ψ) is the multiplicity of ψ in the decomposition of E(K)⊗ZC
into irreducible representations of Gal(K/Q) and δ vanishes except for when the
p-adic multiplier of the pair (α,ψ) is zero, in which case δ = 1.
In particular, when ψ is trivial, m(E,ψ) = rankE(Q).

We now state and prove the result analogous to Wuthrich [6, Theorem 1].

Theorem 3.3. Let E be an elliptic curve over Q and p an odd prime of semistable
reduction for E. Let ψ be either the trivial character or a quadratic character
of conductor pkM . Let α be an allowable p-root and denote by m the order of
vanishing at s = 1 of Lp(E,α, ψ, s). Then

Lp(E,α, ψ, s) = am(s− 1)m + am+1(s− 1)m+1 + · · ·

with
am+1 = −1

2
log 〈Q〉 am.

Proof. By Lemma 3.1, we have

Λp(E,α, ψ, 2− s) = (−1)mΛp(E,α, ψ, s),

where, as in the proof of the lemma, Λp(E,α, ψ, s) = f(s) · Lp(E,α, ψ, s) with
f(s) = 〈Q〉s/2. We can now follow Wuthrich’s proof nearly identically.
In particular, for i ≡ m+ 1 mod 2, one has

di

dsi
Λp(E,α, ψ, s)

∣∣
s=1

= 0. (3)
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Choosing i = m+ 1, this gives

0 =
dm+1

dsm+1
(f(s)Lp(E,α, ψ, s))

∣∣
s=1

=

(
m+1∑
k=0

(
m+ 1

k

)
dm+1−k

dsm+1−k f(s) · d
k

dsk
Lp(E,α, ψ, s)

)∣∣∣∣
s=1

=

(
(m+ 1)f ′(s) · d

m

dsm
Lp(E,α, ψ, s) + f(s) · d

m+1

dsm+1
Lp(E,α, ψ, s)

) ∣∣∣∣
s=1

= (m+ 1)!(f ′(1) · am + f(1) · am+1).

Therefore, am+1 = − f
′(1)
f(1) am = − 1

2 log 〈Q〉 am. �

Let E be as in Theorem 3.3. The twist of E by a quadratic character ψ
of conductor coprime to p can be realised as an elliptic curve E′/Q which has
semistable reduction at p. Therefore, if the conductor of ψ is coprime to p, the
statement of Theorem 3.3 for Lp(E,α, ψ, s) is implicitly included in the statement
of Theorem 3.3 for the p-adic L-function of E′ with trivial twist.

On the other hand, the twist of E by a quadratic character of conductor divis-
ible by p is an elliptic curve E′ with additive reduction at p. In other words, the
quadratic character case in Theorem 3.3 is not completely exhausted by the result
for the trivial character.

Note that Wuthrich’s method can be generalised also to obtain the coefficient
am+k for every positive odd k in terms of the coefficients am+j , where 0 6 j < m,
just by considering (3) for i = m + k. Recursively, this gives a way of expressing
am+k for odd k in terms of am+` for even ` with ` < k. In particular, we may
consider Theorem 3.3 as a special case of the following result.

Theorem 3.4. Let E be an elliptic curve over Q and p an odd prime of semistable
reduction for E. Let ψ be either the trivial character or a quadratic character of
conductor pkM . Denote by m the order of vanishing at s = 1 of Lp(E,α, ψ, s).
Then

Lp(E,α, ψ, s) = am(s− 1)m + am+1(s− 1)m+1 + · · · ,
where, for odd k > 0, we have

am+k = −
k−1∑
i=0

1

(k − i)!
·
(

log 〈Q〉
2

)k−i
am+i.

Therefore, for odd k, am+k can be expressed as a linear combination of am+` for
even `, 0 6 ` < k.

Proof. Using (3) with i = m + k and the fact that dk

dsk
Lp(E,α, ψ, s)

∣∣
s=1

= 0 for
all k < m gives

m+k∑
r=m

(m+ k)!

(m+ k − r)!
f (m+k−r)(1)ar = 0.

It remains to notice that, for all j > 0, f (j)(s) =
(

log〈Q〉
2

)j
〈Q〉s/2. �
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Remark 3.5. There are essentially two reasons why we did not simply state
Theorem 3.3 as a corollary of Theorem 3.4. The first one is that we wanted to
mimic the proof in [6] as much as possible. The second one is that, although
Theorem 3.4 is more general than Theorem 3.3, the latter is perhaps the more
interesting result. Indeed, the p-adic version of the Birch and Swinnerton-Dyer
conjecture (see Conjecture (BSD(p)) I. in [3, II §10]) gives an explicit expression
for am, involving, among other factors, the order of the Tate-Shafarevich group.
Thus, a similar observation to Wuthrich’s in [6] also holds here, i.e. what Theorem
3.3 really states is that, if BSD(p) holds, then not only the leading but also the
sub-leading coefficient of Lp(E,α, s) is known.
Under some extra assumptions, a similar result follows for the quadratic character
case (see Conjecture (BSD(p,ψ)) I. in [3, II §11]).

4. Results for Lp(E,α, ψ, T )

The starting point for this section is Corollary 2.2. The first result is then

Theorem 4.1. Let E be an elliptic curve over Q and p an odd prime of semistable
reduction for E. Let ψ be either the trivial character or a quadratic character
of conductor pkM . Let α be an allowable p-root and denote by m the order of
vanishing at T = 0 of Lp(E,α, ψ, T ). Then

Lp(E,α, ψ, T ) = cmT
m + cm+1T

m+1 + · · ·

where

cm+1 = −cm
2

(
log 〈Q〉

log(κ(γ))
+m

)
.

Proof. By Corollary 2.2, we have

Lp(E,α, ψ, (1 + T )−1 − 1) = (−cQ)ψ(−Q)(1 + T )
log〈Q〉
log κ(γ)Lp(E,α, ψ, T ). (4)

Differentiating m times and evaluating at T = 0 yields the equality −cQψ(−Q) =
(−1)m, similarly to Lemma 3.1.

Then, differentiating m + 1 times the right hand side resp. the left hand side
of (4) and evaluating at T = 0 gives

(−1)m(m+ 1)!

(
log 〈Q〉
log κ(γ)

cm + cm+1

)
resp.

(−1)m+1(m+ 1)!(cm+1 +mcm). �

Assume now that E has ordinary semistable reduction at the odd prime p,
that is, either good ordinary or multiplicative reduction. Since, in this case, there
is a unique p-admissible root α for E, we may drop α from the notation and
simply write Lp(E,ψ, T ) for the p-adic L-function of E, twisted by ψ. By [5],
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Lp(E,ψ, T ) ∈ Λ = Zp[ψ][[T ]] and we define the µ-invariant of Lp(E,α, ψ, T ) as
the p-adic valuation of the highest power of π dividing Lp(E,α, ψ, T ), where π is
a uniformiser for Zp[ψ].

The relation between Lp(E,α, ψ, T ) and Lp(E,α, ψ̄, T ) allows us to derive a
result concerning the relation between the µ-invariant of Lp(E,α, ψ, T ) and that
of Lp(E,α, ψ̄, T ).

Theorem 4.2. Let E be an elliptic curve over Q and p an odd prime of ordinary
semistable reduction for E. Let ψ be a character of conductor pkM . The µ-
invariant of Lp(E,ψ, T ) equals the µ-invariant of Lp(E, ψ̄, T ).

Proof. By Corollary 2.2,

Lp(E,ψ, T ) = −cQ · ψ̄(−Q) 〈Q〉
log(1+T )−1

log κ(γ) Lp(E, ψ̄, (1 + T )−1 − 1).

Now cQ = ±1, ψ̄(−Q) is a root of unity and 〈Q〉
log(1+T )−1

log κ(γ) is a unit power se-
ries. Therefore the µ-invariant of Lp(E,ψ, T ) is the same as the µ-invariant of
Lp(E, ψ̄, (1 + T )−1 − 1).
It remains to show that the µ-invariant of a power series in Λ is unchanged under
the substitution T 7→ (1 + T )−1− 1. For this purpose, let f(T ) =

∑∞
k=0 akT

k and
g(T ) = f((1 + T )−1 − 1). Then g(T ) =

∑∞
k=0 bkT

k, where

b0 = a0 and bk = (−1)k
k−1∑
i=0

(
k − 1

i

)
ai+1 for k > 1.

This comes from the fact that, for j > 1, we have the equality of formal power
series ((1 + T )−1 − 1)j =

∑∞
k=j

(
k−1
j−1

)
(−1)kT k.

Let now k be the minimum integer such that the µ-invariant of f(T ) equals the
p-adic valuation of ak, denoted νp(ak). Then

νp(b0) = νp(a0) > νp(ak), νp(bi) > min
16j6i

νp(aj) > νp(ak) ∀ i > 1

and
νp(bk) = νp(ak).

This completes the proof. �

5. Generalisations to the base-change of an elliptic curve

Let E be an elliptic curve over Q of conductor N . Let K be an abelian number
field such that the additive primes for E/Q remain additive in the base-change
of E to K. Denote by p an odd prime of semistable reduction for E and assume
further that the field K is disjoint from the cyclotomic Zp-extension of Q. Fix
a choice of an allowable p-root α for E/Q as in Section 2. We can then define the
p-adic L-function for the base-changed curve E/K as (cf. [2] and [1])

Lp(E/K,α, T ) =
∏

ψ∈ ̂Gal(K/Q)

Lp(E,α, ψ, T ), (5)
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where ̂Gal(K/Q) is the group of characters on Gal(K/Q) and Lp(E,α, ψ, T ) is
the p-adic L-function of E/Q twisted by ψ, as defined in Section 2. From the
interpolation property for each Lp(E,α, ψ, T ) and the assumption on the behaviour
of the additive places in K/Q, it is easy to see that Lp(E/K,α, T ) interpolates
the values at s = 1 of the complex L-function L(E/K, s), twisted by characters of
the Zp-cyclotomic extension of K.

Furthermore, using Corollary 2.2 on each factor of the right hand side of (5),
we find the following transformation property for Lp(E/K,α, T )

Lp(E/K,α, T ) =

[∏
ψ

(−cQψ ) ·
∏
ψ

ψ̄(−Qψ)

]

×
[∏
ψ

〈Qψ〉
log(1+T )−1

log κ(γ)

]
· Lp(E/K,α, (1 + T )−1 − 1),

(6)

where the products run over all characters ψ of ̂Gal(K/Q) and Qψ is the largest
divisor of N coprime with p and with the conductor of ψ.

Recall from Section 2 that the variables T and s are related by the identity
T = κ(γ)s−1 − 1. The analogue of Proposition 2.1 for E/K is then

Lp(E/K,α, 2−s) =

[∏
ψ

(−cQψ )·
∏
ψ

ψ̄(−Qψ)

]
·
[∏
ψ

〈Qψ〉s−1

]
Lp(E/K,α, s). (7)

Equations (7) and (6) allow us to deduce analogues of Theorem 3.3 and Theorem
4.1 for E/K. The proofs are essentially identical, so we include only the statements
of the results.

Theorem 5.1. Let E be an elliptic curve defined over Q of conductor N and
p an odd prime of semistable reduction for E. Denote by E/K the base-change
of E to an abelian number field K, where K is assumed to be disjoint from the
Zp-extension of Q and such that additive reduction is preserved everywhere in the
extension K/Q. For each allowable p-root α, let m be the order of vanishing of
Lp(E/K,α, s) at s = 1. Then

Lp(E/K,α, s) = am(s− 1)m + am+1(s− 1)m+1 + · · ·

with

am+1 = −
∑
ψ log 〈Qψ〉

2
am,

where ψ runs through the characters of Gal(K/Q) and Qψ is the largest divisor of
N which is coprime with p and with the conductor of ψ.

Theorem 5.2. With the assumptions of Theorem 5.1, we have

Lp(E/K,α, T ) = cmT
m + cm+1T

m+1 + · · ·

with

cm+1 = −cm
2

(∑
ψ log 〈Qψ〉
log κ(γ)

+m

)
.
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