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DIOPHANTINE PROPERTIES OF THE SEQUENCES
OF PRIME NUMBERS

Natalia Budarina

Abstract: The solvability over the ring of integers Z of some Diophantine equations is connected
with the property of integers to form sequences of prime numbers, in particular, with the property
of numbers to be twins. The Diophantine description of the sequences of prime numbers is
obtained using the deformation method of quadratic matrix equations.
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1. Introduction

We consider the question concerning the connection between the sequences of
prime numbers with the number of integer solutions of a certain class of non-
homogeneous Diophantine equations.

While developing the deformation method of Diophantine quadratic systems,
which was introduced by Zhuravlev [8], we have found the way to get the exact for-
mulas for the number of integer solutions of non-homogeneous Diophantine equa-
tions. This deformation method allows us to get a construction, which connects
sequences of prime numbers with a number of solutions of some non-homogeneous
Diophantine equations. These equations appear as a result of the deformation of
Diophantine quadratic systems by means of some specializations.

Let q1, q2, . . . , qk be primes, where k is even and

q1 = q, q2 = q + 2a1, . . . , qk = q + 2ak−1 (1)

with a1 < a2 < · · · < ak−1. Let S =
∏k
i=1 qi denote the product of numbers of

the sequence (1). Then S =
∑k
i=1 ciq

i, where ck = 1 and the coefficients ci =
σk−i(2a1, 2a2, · · · , 2ak−1) for i = 1, · · · , k − 1, being the values of elementary
symmetric polynomials are even.
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Let x = (x1, x2, x3, x4) and

F (x, t) = 2x21 + x22 + x23 + x24 − 2x1t
k/2 −

k−1∑
i=1

ci
2
ti (2)

be the polynomial in t with integer coefficients of degree k−1, and the coefficients
ci are taken from decomposition of S. Note that the polynomial F (x, t) in x is
a non-homogeneous quadratic form with integer coefficients.

Theorem 1. In the sequence (1), let k be even and all primes qi odd. Then for
t = q the number of integer solutions of the equation

F (x, t) = 0

is equal to

rk = 16α2(A;Q)
∏

p |S, p 6=2

(
p+

(
2

p

))
, (3)

where
(
·
p

)
is the Legendre symbol.

The coefficient α2(A;Q) is defined in terms of the 2-adic invariants of the forms
A and Q. The local invariants of quadratic forms over Z can be found in
[3, Chapter 15, Subsection 7.2]. The quality α2(A;Q) will be discussed in detail in
Section 2.

Remark 1. Let us emphasize that t = q is the common root of rk equations
F (x, t) = 0. Hence, prime numbers q, for which the sequence (1) consists of prime
numbers, admit the algebraic parametrization by the roots of polynomials with
integer coefficients.

The solubility of some Diophantine equations over the ring of integers Z is con-
nected with the property of numbers to form sequences of primes, in particular,
with the property of numbers to be twin primes. Twin primes have been charac-
terized by Clement [2] in 1949 as follows: the integers q > 2, q + 2, form a pair of
twin primes if and only if 4((q − 1)! + 1) + q ≡ 0 (mod q(q + 2)).

Sergusov [5] and Leavitt and Mullin [4] proved the following elementary fact:
n = qq′ where (q, q′) is a pair of twin primes, if and only if φ(n)σ(n) = (n−3)(n+1).
Here σ(n) denotes the sum of all divisors of n and φ(n) is the Euler function.

We prove the following result.

Theorem 2. Let q ≡ 1 (mod 8). Square-free numbers q, q+2 form a pair of twin
primes if and only if the equation

2x21 + x22 − q(2x1 + 1) = 0

has 8 integer solutions.
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This theorem is the natural continuation of the Fermat theorem about two
squares, according to which the prime number q ≡ 1 (mod 4) is represented by
two squares q = x2 + y2 and the number of such representations is equal to 8.
Theorem 2 permits us to obtain an analogous characteristic for the junior twin q
among the pair of prime numbers q, q + 2: this number q can be represented as
a rational fraction

q = (2x21 + x22)/(2x1 + 1), (4)

and the number of such representations is again equal to 8.

Remark 2. Note that it is easy to prove Theorem 2 using the quadratic form
y21 + 2y22 (by changing the variables and use formula (13.34) of [6]). But we will
give an alternative proof using the deformation method of quadratic Diophantine
systems.

The direct generalization of the equation (4) is a family of equations

2x21 + x22 − 2qbx1 = q2(c− b2) + q, (5)

which are parameterized by integer solutions of the equation b2 = 2c−1 and which
have 8 solutions (x1, x2). The equation (4) is obtained as a result of a specialization
of the equation (5), where b = c = 1.

2. Proof of Theorem 1

Representations by quadratic forms of numbers or forms of smaller dimension are
induced by primitive representations or embeddings of certain relevant lattices,
see [6, Chapter 1, Subsections 1.1 and 1.2] and [6, Chapter 2, Subsection 15.6].
Let Q and A be non-degenerate symmetric integer matrices of sizes n > m > 1
with determinants |Q| = detQ and |A| = detA. We identify Q and A with the
corresponding quadratic forms. The form A is representable by the form Q if there
is an n×m integer matrix X such that Q[X] = tXQX = A. A solution X is said
to be primitive if the greatest common divisor d(X) of the minors of order m in
the matrix X is equal to 1.

The outline of the proof is based on the deformation method [8, part II, Subsec-
tions 7.1 and 7.2] of quadratic matrix equationsQ[X] = A by the non-homogeneous
specialization of the quadratic form A =

(
A′ B
tB A′′

)
with fixed block A′. Let X

be primitive and X = (X ′X ′′) be parted into the blocks accordingly. In this case
the matrix equation Q[X] = A can be written as a system

Q[X ′] = A′,
tX ′QX ′′ = B,

Q[X ′′] = A′′.

(6)

The specialization of the quadratic form A with a fixed block A′ transforms the
matrix quadratic equations Q[X] = A to the system of the homogeneous equations
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of the first and the second degree, which is transformed into the non-homogeneous
Diophantine equation. Let the genus [Q] be one-class and the set of all solutions
X ′ : Q[X ′] = A′ forms one orbit {X ′} with respect to the group of automorphisms
OZ(Q). Further, let the determinant |A| be square-free (then the number of all
representations coincides with the number of primitive representations). Then in
the case of the odd co-dimension n − m the number of all integer solutions of
obtained non-homogeneous Diophantine equation is calculated by the formula (see
(13.34) of [6] and [1])

r = stab(X ′)c(n−m)std(n−m)α2(A;Q)

×
∏

p| |Q|, p 6=2

(
pn
′/2 + δp

) ∏
p| |A|, p 6=2

(
pn
′/2 + εp

)
, (7)

where

n′ = n−m−1, εp = ε1(A)

(
(−1)n′/2−1|Q|

p

)
, δp = ε1(Q)

(
(−1)n′/2|A|

p

)
.

Here std(n − m) is the product of n − m Riemann ζ-functions. The values of
std(n −m) for small n −m can be found in [6, (15.3)]. The coefficient c(n −m)
depends only on the difference n −m of the dimensions and takes the following
values

c(1) = 1/2, c(n−m) = 1 for n−m > 1.

The factor α2(A;Q) is calculated by the formulas (13.19)–(13.31) in [6]. Here
stab(X ′) is the order of the stabilizer Stab(X ′), which consists of automorphisms
M of the group OZ(Q) such that MX ′ = X ′. The sign ε1(A) =

(
|A1|
p

)
is deter-

mined from the Jordan decomposition into a direct sum over the ring Zp of p-adic
integers: A ∼ A1 ⊕ pαApα (see [3, chapter 15 subsections 7.1 and 7.2]).

Let us construct the ternary form A for the sequence {qi} of the prime odd
numbers, where k is even:

A =

(
A′ B
tB A′′

)
=

1 1 q
1 3 qk/2 + q

q qk/2 + q qk +
∑k−1
i=1

ci
2 q

i + q2

 (8)

with the determinant S =
∏k
i=1 qi.

Let us choose the form Q as the sum of six squares, and consider the repre-
sentation Q[X] = A of the ternary form A (8). The set of solutions X ′ : Q[X ′] =
A′ = ( 1 1

1 3 ) forms a single orbit {X ′} with the representative

tX ′ =

(
1 0 0 0 0 0
1 1 1 0 0 0

)
,
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for which stab(X ′) = 2!3!23 = 96. When we fix the block X ′, then the matrix
equation Q[X] = A is transformed into the non-homogeneous equation

2x21 + x22 + x23 + x24 − 2x1q
k/2 −

k−1∑
i=1

ci
2
qi = 0. (9)

The form A is equivalent to
(
1 1
1 3

)
⊕ 2|A| over the odd ring Zp (p = qi,

i = 1, . . . , k) and εp = ε1(A)
(

1
p

)
=
(

2
p

)
. We have n − m = 3, std(3) = 1

6 and
|Q| = |16| = 1. Here 16 is the identity matrix of order 6. Combining this with
formula (7), we obtain that the number of integer solutions of the equation (9) is
equal to

rk = 16α2(A;Q)
∏

p|S=|A|
p 6=2

(
p+

(
2

p

))
.

The factor α2(A;Q) is calculated explicitly by Zhuravlev in [6, Chapter 2, Subsec-
tion 13.9], it depends on the 2-adic behaviour of the forms A and Q, from which
the non-homogeneous quadratic form F (x, q) was obtained. �

The question about the choice of the shifts for the constructing sequences, for
which the prime numbers exist, arises here. The choice is not simple and there is
a problem about a minimal shift. If k > 8 there exist several minimal sequences
which have the same last number for every k.

Corollary 1. For k = 2, 4, 6, 8, 10, 12 in the set of all possible sequences of prime
odd numbers, minimal sequences are singled out

q, q + 2,

q, q + 2, q + 6, q + 8,

q, q + 4, q + 6, q + 10, q + 12, q + 16,

q, q + 2, q + 6, q + 8, q + 12, q + 18, q + 20, q + 26, (10)
q, q + 2, q + 6, q + 12, q + 14, q + 20, q + 24, q + 26,

q, q + 2, q + 6, q + 8, q + 12, q + 18, q + 20, q + 26, q + 30, q + 32,

q, q + 2, q + 6, q + 8, q + 12, q + 18, q + 20, q + 26, q + 30, q + 32, q + 36, q + 42,

for which the number of integer solutions of the equation F (x, q) = 0 is equal to
rk (3) with

α2(A;Q) =


1
8 for

{
k = 2, 10 and q ≡ 3 (mod 4),

k = 8′′,

3
8 for

{
k = 2, 10 and q ≡ 1 (mod 4),

k = 4, 6, 8′, 12.

(11)
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Proof of Corollary 1. The problem concerning the number of integer solutions
of non-homogeneous equations (9) is reduced to the calculation of the factor
α2(A;Q). The form A (8) has the odd determinant S, then according to the for-
mula (13.31) in [6], the factor α2(A;Q) is equal to

α2(A;Q) =

{
3
8 if oct ≡ ±1 (mod 8),
1
8 if oct ≡ ±3 (mod 8).

(12)

Here the octane number is

coct = oct(A;Q) ≡ t1(Q)− t1(A) (mod 8) if
(
S · |Q|

2

)
= +1

and

oct = oct(A;Q) ≡ t1(Q)− t1(A) + 4 (mod 8) if
(
S · |Q|

2

)
= −1.

For Q = 16 and A (8) we have t1(Q) = 6 and t1(A) = t(A).
We calculate the oddity of the forms A using the following matrix analogue of

the reduction of quadratic forms to the diagonal forms over the local rings Zp, see
[7, subsection 5.3] and [3, chapter 15 subsection 4.4]).

Let the integral quadratic form A be split into the blocks

A =

 D C C1
tC A1 C2
tC1

tC2 A2

 (13)

and the square block A1 has the determinant |A1| 6≡ 0 (mod p). We take the
integral matrix

M =

 1 0 0
−A−11 · tC 1 −A−11 · C2

0 0 1

 (14)

with the determinant |M | = 1 as the reducing matrixM . Then the original form A
is equivalent over the ring Zp to the form A[M ] = tMAM , which is decomposable
as a direct sum. On multiplying the matrices, we obtain

A ∼ A1 ⊕
(
D̃ C̃1
tC̃1 Ã

)
(15)

where the blocks D̃, C̃1 and Ã are calculated from the formulae

D̃ = D −A−11 [tC], C̃1 = C1 − CA−11 C2, Ã = A2 −A−11 [C2].

If the coefficient ck−1

2 = 1
2σ1(2a1, 2a2, · · · , 2ak−1) =

∑k−1
i=1 ai is odd (for the

sequences k = 2, 10 of prime numbers, which are defined in the condition of Corol-
lary 1) then over Z2 the form A is equivalent to

A ∼
(

3 qk/2 + q

qk/2 + q qk +
∑k−1
i=1

ci
2 q

i + q2

)
⊕ |A| · (2qk + 3

k−1∑
i=1

ci
2
qi + 2q2 − 2q

k+2
2 ).



Diophantine properties of the sequences of prime numbers 275

Thus, we obtain the following decomposition

A ∼Z2 diag

(
3, 3

(
2qk + 3

k−1∑
i=1

ci
2
qi + 2q2 − 2q

k+2
2

)
,

|A|

(
2qk + 3

k−1∑
i=1

ci
2
qi + 2q2 − 2q

k+2
2

))
,

and the oddity of A is

t(A) ≡ tr(A) ≡ 3 +

(
2qk + 3

k−1∑
i=1

ci
2
qi + 2q2 − 2q

k+2
2

)
(3 + |A|) (mod 8).

If the coefficient ck−1

2 = 1
2σ1(2a1, 2a2, · · · , 2ak−1) is even (for the sequences

k = 4, 6, 8, 12 of prime numbers) then over Z2 the form A is equivalent to

A ∼
(
1 q

q qk +
∑k−1
i=1

ci
2 q

i + q2

)
⊕ |A| ·

(
qk +

k−1∑
i=1

ci
2
qi

)
and the oddity of A is

t(A) ≡ 1 +

(
qk +

k−1∑
i=1

ci
2
qi

)
(1 + |A|) (mod 8).

Substituting the oddities t(A) into the formulae for the octane number and using
formulae (12), we get the result (11). �

The following statement is a consequence of the proof of Corollary 1 and (3).

Corollary 2. Let q and q + 2 be a pair of prime numbers, then the number of
integer solutions of the equation 2x21 + x22 + x23 + x24 − 2x1q − q = 0 is equal to

r2 =


6(q + 1)2 for q ≡ 1 (mod 8),

2(q2 − 1) for q ≡ 3 (mod 8),

6(q − 1)(q + 3) for q ≡ 5 (mod 8),

2(q + 1)(q + 3) for q ≡ 7 (mod 8).

(16)

From Theorem 1 it follows that in the fourth-dimensional space the non-
centered ellipsoid

(x1 − 1
2q

k
2 )2

S/4
+

x22
S/2

+
x23
S/2

+
x24
S/2

= 1

with the half-integer shift 1
2q

k
2 , k is even, relates to the sequence of prime numbers.

On this ellipsoid there is rk (3) integer points such that (x1, x2, x3, x4) = 1 .

Remark 3. If k is odd in the sequence (1) then we cannot obtain a result similar
to Theorem 1 by using the above-mentioned deformation method.
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3. Proof of Theorem 2

Consider the binary form

A =

(
2 q
q q2 + q

)
(17)

with the determinant |A| = q(q + 2). Let q and q + 2 be prime numbers, then the
determinant |A| has precisely two prime divisors. Let us embed the form A in the
ternary form Q = 13. The form Q = 13 is one-class form and there is an embedding
of A in Q over Z if and only if there is an embedding of A in Q over every Zp.
Over Z−1 = R the positive definite forms Q represent the positive definite forms
A.

In our case the embedding of A in Q exists over Z2 if and only if there exists
a difference Q	A (see [6, Chapter 1, Subsection 8.5]). The calculation of the forms
Q	A over Z2 can be reduced to the following subtraction formula for 2-symbols:

1+3
I,3 	 1ε12II,0 = 1ε11I,3 ,

where ε1 =
(
q(q+2)

2

)
. Taking into account the conditions of existing of the factors

in 2-symbols (see [3, Chapter 15, Subsection 7.7]), we obtain that only the 2-symbol
1−1I,3 exists. So, we obtain that

ε1 =

(
q(q + 2)

2

)
= −1,

and hence, q ≡ 1 (mod 4).
If A is embedded in Q = 13 over an odd ring Zp (p = q or p = q+2), then the

form A is equivalent to the direct sum A1⊕pAp with dimA1 = 1 and dimAp = 1.
The minimal embedding for such forms A has the following form [7, (6.7)]:

A ↪→ A1 ⊕
(
pAp 1
1 0

)
= J(A). (18)

Its dimension is equal to 3, and sign
(
|A1|
p

)(
−1
p

)
= ε2. Since the sign

(
|13|
p

)
= +1,

for the existing of the embedding of the form A inQ (or for the existing ofQ	J(A))
it is necessary that

ε2 =

(
|A1|
p

)(
−1
p

)
= +1. (19)

For the cases p = q and p = q + 2 we have |A1| = 2, so that the condition (19) is
equivalent to

q ≡ 1; 3 (mod 8) for p = q,

q ≡ ±1 (mod 8) for p = q + 2.
(20)
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Now consider the embedding of the form A in Q = 13 over the odd rings
Zp (p 6= 2, q, q+2). The calculation of the forms Q	A over Zp can be reduced to
the following subtraction formula for p-symbols:

1+3 	 1(
q(q+2)
p )2 = 1(

q(q+2)
p )1.

Corresponding p-symbols on the right-hand side exist (see [3, Chapter 15, Subsec-
tion 7.7]).

So, the embedding of the form A (17) in Q = 13 over Z is possible only when
q ≡ 1 (mod 8). By formula (13.34) in [6], the weight of representations of the form
A by the form Q is equal to

r(A;Q)

o(Q)
= α2(A;Q)

∏
p| |A|, p 6=2

(
1 +

(
−2
p

))
, (21)

where o(Q) = |OZ(Q)|. The factor α2(A;Q) can be calculated using formula (13.31)
in [6]:

α2(A;Q) =

{
1
2 for oct ≡ ±1 (mod 8),

0 for oct ≡ ±3 (mod 8).

The octane number is

oct = oct(A;Q) ≡ t1(Q)− t1(A) ≡ 3 (mod 8) if
(
|A|
2

)
= +1

or

oct = oct(A;Q) ≡ t1(Q)− t1(A) + 4 ≡ −1 (mod 8) if
(
|A|
2

)
= −1.

Consequently,

α2(A;Q) =

{
1
2 for q ≡ 1 (mod 4),

0 for q ≡ 3 (mod 4).

Further, we use the deformation method of Diophantine quadratic systems
Q[X] = A in non-homogeneous case [1]. The representations X ′ : Q[X ′] = A′ = 2
form a single orbit with the representative tX ′ = (0, 1, 1). The order of its stabilizer
is stab(X ′) = 2 · 2! = 4. The left-hand side of equality (21) takes the form

r(A;Q)

o(Q)
=
rX′(A;Q)

stab(X ′)
,

where rX′(A;Q) is the number of representations X = (X ′X ′′) : Q[X] = A with
the fixed block X ′. Then the matrix equation Q[X] = A with fixed block A′ is
transformed into the non-homogeneous equation

2x21 + x22 − 2qx1 = q. (22)
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Consequently, for the prime q ≡ 1 (mod 8) and q + 2, the number of integer
solutions of equation (22) is equal to

rX′ = 2

(
1 +

(
−2
q

))(
1 +

(
−2
q + 2

))
= 8. (23)

Conversely, let q and q + 2 be odd and square-free numbers, and the number
of integer solutions of the non-homogeneous equation (22) is equal to 8.

The formula for the number of integer solutions of the non-homogeneous equa-
tion (22) which was got as the section of the matrix equation Q[X] = A using
specialization of the form A (17) can be represented in the form

r = 4α2(A;Q)
∏
p|q

(
1 +

(
−2
p

)) ∏
p|q+2

(
1 +

(
−2
p

))
, (24)

where accordingly to (13.31) in [6], α2(A;Q) = 1
2 or 0 for |A| ≡ ±3 (mod 8) or

≡ ±1 (mod 8) respectively.
As r = 8, then α2(A;Q) = 1

2 and let∏
p|q

(
1 +

(
−2
p

))
= 2β1 and

∏
p|q+2

(
1 +

(
−2
p

))
= 2β2 , (25)

where β1, β2 > 1. Collecting the results from above, the equality (24) can be
written as

21+β1+β2 = 23.

Consequently, β1 = β2 = 1, i.e. every product of the equation (24) contains only
one factor. Thus, q and q+2 are prime numbers. From (25) it follows that

(
−2
q

)
=(

−2
q+2

)
= +1 and we conclude that q ≡ 1 (mod 8). �

Remark 4. The strongest restriction in Theorem 2 is the condition of square-free
numbers q and q + 2, but the theory of quadratic forms does not let us catch this
condition.
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