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A SHORT ACCOUNT OF THE VALUES
OF THE ZETA FUNCTION AT INTEGERS

Martin N. Huxley

Abstract: We use methods of real analysis to continue the Riemann zeta function ζ(s) to
all complex s, and to express the values at integers in terms of Bernoulli numbers, using only
those infinite series for which we could write down an explicit estimate for the remainder after
N terms. This paper is self-contained, apart from appeals to the uniqueness theorems for analytic
continuation and for real power series, and, verbis in Latinam translatis, would be accessible to
Euler.
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1. Introduction

The zeta function was defined as

ζ(s) =

∞∑
n=1

1

ns
(1.1)

for s = 2, 3, 4, . . . . The series converges absolutely for real s > 1, and diverges for
real s 6 1. For real s > 1 let

η(s) =

(
1− 2

2s

)
ζ(s) = 1− 1

2s
+

1

3s
− 1

4s
+ . . . . (1.2)

The series on the right of (1.2) converges for real s > 0, and it gives an interpre-
tation of ζ(s) for real s in 0 < s < 1. Euler announced methods which interpreted
ζ(s) for all real s 6 0, with

ζ(1− k) = −Bk
k

for k = 1, 2, . . . , (1.3)
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where Bk is the Bernoulli number. The values of ζ(k) for k an even positive
integer involve powers of π and Bernoulli numbers. The values at odd integers
k = 3, 5, 7, . . . and the derivatives at positive integers have no simple formula
known, and presumably no simple formula exists.

The zeta function heads the class of Dirichlet series generating functions F (s) =∑
a(n)/ns. For ζ(s) the sequence of coefficients a(n) is constant, a(n) = 1. Several

interesting generating functions are related to ζ(s): when a(n) = n, we get ζ(s−1),
when a(n) = n2, we get ζ(s − 2), when a(n) = log n, we get −ζ ′(s), and when
a(n) = (−1)n−1, we get the series η(s) in (1.2). In fact the series for ζ(s) has
a multiplicative structure. When a(n) = µ(n), the Möbius function, we get 1/ζ(s).
When a(n) = φ(n), where φ(q) is ‘Euler’s counting function’, the number of frac-
tions a/q in their lowest terms with 0 6 a 6 q − 1, we get ζ(s − 1)/ζ(s). The
logarithm of the lowest common multiple of the first N integers can be written
as the ‘prime sum’ ψ(N) = Λ(1) + · · · + Λ(N), where Λ(n) is 0 except when n
is a prime number p or a prime power pr; in both cases Λ(n) = log p. We get∑

Λ(n)/ns = −ζ ′(s)/ζ(s), the relation that inspired Riemann’s programme to
prove the Prime Number Theorem.

Riemann’s theory of functions of a complex variable showed us ζ(s) in full.
The series (1.1) for ζ(s) gives a regular function for <s > 1, and the series (1.2)
for η(s) gives a regular function for <s > 0. Riemann found an integral that
defines ζ(s) as a meromorphic function for all complex s, with a single pole at
s = 1, of residue 1. The kernel function in the integral is a generating function
for Bernoulli polynomials, which explains the values in (1.3). A symmetry in the
kernel function leads to the functional equation for ζ(s), of the form

ζ(1− s) = k(s)ζ(s). (1.4)

An interesting proof of the functional equation for ζ(s) ([7] Chapter 1, [12] Chap-
ter 2 notes) uses the generating function E(z, s) of the Epstein zeta functions of
quadratic forms in two variables, called the non-holomorphic Eisenstein series on
SL(2,Z). The classifying parameter z is a point in the hyperbolic plane. For fixed s
Laplace’s equation ∇2E(z, s) = −λE(z, s) holds pointwise in z with λ = s(1− s).
The same equation holds for E(z, 1−s), and its growth properties lead to a relation
of the form

E(z, 1− s) = K(s)E(z, s), (1.5)

from which (1.4) follows by averaging over the point z.
In this note we give a direct proof of the zeta values in (1.3), which builds

on ideas from Euler, and is strictly elementary (‘low analytic’), using only real
analysis. High analytic (‘non-elementary’) arguments are those requiring Fourier
theory, complex function theory, or group representations as in (1.5).However we
need the high analytic theorem that the function η(s) has at most one entire
continuation to the whole complex plane in order to give meaning to the values
ζ(1− k) outside the convergence region.
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For completeness we also derive the values at positive even integers

ζ(2k) = (−1)k−1
(2π)2kB2k

2(2k)!
. (1.6)

Our proof of (1.6) is high analytic, using Fourier series for the Bernoulli polynomi-
als. We sketch a (longer) real-analytic proof of (1.6) by expanding the hyperbolic
function coth t = ch t/sh t in two different ways as a power series in t. The special
value ζ(2) can be identified purely by number theory; we count the integer points
in a four-dimensional sphere in two ways. The simplest real-analytic ‘main term
plus remainder term’ argument is enough.

The proof of (1.3) falls into three parts.

Step One. Accelerated convergence for infinite series. We show that a method
of Euler, which uses repeated differencing, is regular, that is, it gives the right sum
for a convergent series.

Step Two. Simplifications for alternating series and for η(s) in particular. For
each positive integer R, there is a series E(s) that converges uniformly in |s| 6 R,
and equals η(s) for <s > 0. The values of E(s) at s = 0,−1,−2, . . . ,−R are
rational. Hence ζ(s) has a meromorphic continuation to the whole plane.

Step Three. Generating function identities for Bernoulli and Euler polynomials.

This paper arose from a study by the Cardiff Number Theory Group of poly-
nomials pertinent to number theory. Our aim was to reconstruct Euler’s argument
for (1.3) and make it rigorous. We have not found the whole argument anywhere
in the literature. Hasse [6] works with ζ(s), not with η(s); the convergence is
slower. He omits Step 3, referring to Worpitzky [13]. Sondow [11] gives Step 2
of the argument here. He refers Step 1 to Knopp [8] and Step 3 to Worpitzky.
Goss [4] continues Euler’s integral for the factorial function to all complex s by
induction. He multiplies by η(s), and then continues the product to all s. The
values in (1.3) require an inverse Mellin transform. Ram Murty and Reece [10] in-
tegrate a periodic function which is essentially the first Bernoulli polynomial, then
use induction, and then use properties of the Bernoulli polynomials to identify two
sequences of rational numbers that satisfy the same recurrence.

The methods of Hasse, Goss, and Ram Murty and Reece apply to a wide class
of summands which are monotone on the real axis, and they can be adapted to
Dirichlet L-functions. Our method applies to series which have alternating sign
on the real axis, whose absolute values are given by the values at integers of some
monotone function. The only Dirichlet series which we can construct belong to
moduli q = 4m with χ(2m + 1) = −1. None of these methods seems to help to
estimate the Riemann zeta function in its critical strip 0 < <s < 1.

What would we tell Euler? We only write down infinite series for which we
could give an explicit bound for the remainder after N terms.
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2. An Euler summation method

Let A = {a1, a2, . . . } be a sequence of numbers, with partial sums An = a1 +
a2 + · · · + an. For x real and positive, put t = 1/(1 + x), u = x/(1 + x), so that
t+ u = 1. We construct a new sequence B(x) = {b0(x), b1(x), . . . } by

bn(x) =
1

(1 + x)n+1

n∑
m=0

nCmam+1x
m+1, (2.1)

with partial sums

BN (x) =

N∑
n=0

bn(x) =

N∑
n=0

1

(1 + x)n+1

n∑
m=0

nCmam+1x
m+1

=

N∑
m=0

am+1x
m+1

N∑
n=m

nCm
1

(1 + x)n+1

=

N∑
m=0

am+1

(
x

1 + x

)m+1

g

(
m,N −m, 1

1 + x

)

=

N∑
m=0

am+1u
m+1g (m,N −m, t) , (2.2)

where we write

g(m,n, t) = 1 + m+1C1t+ m+2C2t
2 + · · ·+ m+nCnt

n (2.3)

for the sum of the first n + 1 terms of the binomial series for (1 − t)−m−1. The
coefficient of am+1 in (2.2) lies between 0 and 1, and it is approximately 1 when
N is large and m is small.

By Pascal’s recurrence mCr−1 + mCr = m+1Cr, we have

(1− t)g(m,n, t)

= 1 + (m+1C1 − mC0) t+ · · ·+ (m+nCm − m+n−1Cn−1) tn − m+nCnt
n+1

= 1 + mC1t+ m+1C2t
2 + · · ·+ m+n−1Cnt

n − m+nCnt
n+1

= g(m− 1, n, t)− m+nCnt
n+1 = g(m− 1, n, t)− m+nCmt

n+1 (2.4)

= g(m− 1, n+ 1, t)− m+n+1Cn+1t
n+1 = g(m− 1, n+ 1, t)− m+n+1Cmt

n+1.
(2.5)

Since 0 < t < 1, we see from (2.5) that the weight um+1g(m,N −m, t) in (2.2) is
positive and decreasing in m.

We iterate (2.4) as

umg(m,n, t) = (1− t)mg(m,n, t)

= g(0, n, t)− tn+1
(
m+nCmu

m−1 + m+n−1Cm−1u
m−2 + · · ·+ n+1C1

)
=

1− tn+1

1− t
− tn+1

(
g(n,m, u)− 1

u

)
,
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so we get the delightful identity

um+1g(m,n, t) = 1− tn+1g(n,m, u). (2.6)

We iterate (2.5) as

umg(m,n, t) = (1− t)mg(m,n, t)

= g(0,m+ n, t)− m+n+1Cmt
n+1um−1

− m+n+1Cm−1t
n+2um−2 − · · · − m+n+1C1t

m+n

=
1− tm+n+1

1− t
− 1

u

(
m+n+1Cmt

n+1um

− m+n−1Cm−1t
n+2um−1 − · · · − m+n+1C1t

m+nu
)
,

so that

um+1g(m,n, t) = 1−
(
tm+n+1 + m+n+1C1t

m+nu+ · · ·+ m+n+1Cmt
n+1um

)
.

(2.7)
From (2.6) and (2.7)

tn+1g(n,m, u) = tm+n+1 + m+n+1C1t
m+nu+ · · ·+ m+n+1Cmt

n+1um, (2.8)

a partial sum of the binomial expansion of (t+ u)m+n+1.
We can now discuss convergence. Suppose that the partial sum An tends to

some limit α. We choose M large, and take N > 2M . Then by (2.2) and (2.6)

BN (x) =

M−1∑
m=0

am+1

(
1− tN−m+1g(N −m,m, u)

)
+

N∑
m=M

am+1u
m+1g(m,N −m, t)

= AM − E1(M) + E2(M),

say. We have shown that um+1g(m,N−m, t) lies between 0 and 1, and it decreases
as m increases, so

|E2(M)| =

∣∣∣∣∣
N∑

m=M

am+1u
m+1g(m,N −m, t)

∣∣∣∣∣
6 max
M6m6N

um+1g(m,N −m, t) max
M6k6N

|ak + ak+1 + · · ·+ aN |

6 max
M6k6N

|ak + ak+1 + · · ·+ aN |,

so |E2(M)| → 0 as M →∞ uniformly in N .
We use (2.8) with m+ n = N , m 6M < n to obtain the bound

tn+1g(N −m,m, u) 6 tN−m+1 max(tm, um)(N + 1) max
06r6m

N+1Cr

6 tN−m+1(N + 1)N+1Cm 6
(N + 1)m+1

m!
tN−m+1.
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Hence

|E1(M)| =

∣∣∣∣∣
M−1∑
m=0

am+1t
N−m+1g(N −m,m, u)

∣∣∣∣∣
6

(
max

16k6M
|ak|
)M−1∑
m=0

(N + 1)m+1

m!
tN−m+1

<

(
max

16k6M
|ak|
)
M(N + 1)M

(M − 1)!
tN/2,

which tends to zero as N →∞ with M fixed.
By picking M large enough, then picking N > 2M large enough, we can make

the partial sum BN (x) arbitrarily close to α. So Euler’s summation method is
regular, that is, it transforms convergent series

∑
an to convergent series

∑
bn(x)

with the same sum.
The Euler-Knopp summation method was deduced by Knopp [8] from two of

Euler’s many devices: the variable change between x and t appears in [2, Part 2,
Chapter 1] and the balanced case t = u = 1/2 appears in [2, Part 2, Chapter 3],
in [3], and no doubt also elsewhere. Ames [1] and Hardy [5, Section 1.3] consider
only the balanced case.

3. Formally alternating series

Euler summation speeds the convergence of alternating series, where an =
(−1)n−1P (n). In the balanced case x = 1, t = u = 1/2, (2.1) becomes

bn(1) =
1

2n+1

n∑
m=0

nCm(−1)mP (m+ 1) =
(−1)n

2n+1
∆nP (1), (3.1)

where ∆ is the difference operator defined by ∆f(c) = f(c + 1) − f(c). When
P (n) is the value at x = n of an infinitely differentiable function P (x), the n-th
difference ∆nP (x) becomes a box spline integral:

∆P (c) = P (c+ 1)− P (c) =

∫ 1

0

P ′(c+ x) dx,

∆nP (c) =

∫ 1

x1=0

· · ·
∫ 1

xn=0

P (n)(c+ x1 + · · ·+ xn) dx1 . . . dxn

=
1√
n

∫ n

0

kn(t)P (n)(c+ t) dt, (3.2)

where kn(t) is the (n− 1)-dimensional volume of the intersection of the unit cube
in n dimensions and the plane π(t) : x1 + · · · + xn = t. Let Kn(t) be the
n-dimensional volume of the part of the unit cube between the origin and the
plane π(t). Then

Kn(x) =
1√
n

∫ x

0

kn(t) dt 6 Kn(n) = 1, (3.3)
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and

Kn(x) 6
xn

n!
, with equality for 0 6 x 6 1. (3.4)

We consider the special case

P (x) =
1

xs
, P (n)(x) = (−1)n

s(s+ 1) . . . (s+ n− 1)

xn+s

Suppose that |s| 6 r, where r > 2 is a positive integer. Then

|s(s+ 1) . . . (s+ n− 1)| 6 r(r + 1) . . . (r + n− 1) =
(r + n− 1)!

(r − 1)!
.

Let σ = <s. When n+ σ > 0, then by (3.3) and (3.4), for 1 6 m 6 n

∣∣∣∣∫ m

m−1

kn(t)

(t+ 1)n+s
dt

∣∣∣∣ 6 ∫ m

m−1

kn(t)

(t+ 1)n+σ
dt 6

1

mn+σ

∫ m

m−1
kn(t) dt

6

√
nKn(m)

mn+σ
6

√
n

mσn!
,

so that ∣∣∣∣ 1√
n

∫ n

1

kn(t)

(t+ 1)n+s
dt

∣∣∣∣ 6 n∑
m=1

1

mσn!
6
nmax(1, n−σ)

n!
. (3.5)

From (3.1), (3.2) and (3.5) we have

|bn| 6
1

2n+1
· (r + n− 1)!

(r − 1)!
· max(1, n−σ)

(n− 1)!

=
n(n+ 1) . . . (n+ r − 1) max(1, n−σ)

2n+1(r − 1)!
6
nr+1(n+ r − 1)r−1

2n+1(r − 1)!
= Bn(r),

say, and
∑
Bn(r) converges to a sum depending on the radius r.

Euler’s summation process converges uniformly in the disc |s| 6 r to a limit
η(s). Each term bn is a regular function of the complex variable s, so η(s) is
regular for all s. For σ = <s > 1, η(s) is the Dirichlet series in (1.2), with η(s) =
(1 − 21−s)ζ(s). So Euler’s function η(s) provides a meromorphic continuation
of ζ(s), with possible poles where 1−2/2s vanishes at (1−s) log 2 = 2mπi for non-
zero integers m. However θ(s) = (1 − 3/3s)ζ(s) converges uniformly to a regular
function of s for <s > 1/2, with a disjoint set of possible poles at (1 − s) log 3 =
2nπi. Thus the only pole of ζ(s) is at s = 1.
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Let k > 1 be an integer. Then η(1 − k) is given by an absolutely convergent
series whose n-th term is (3.1) with P (x) = xk−1. The n-th differences ∆nP (x)
are identically zero for n > k, so η(1−k) is a finite sum of k terms, each a rational
number. Since (1.2) remains valid for all s, ζ(1− k) is also a rational number.

The Dirichlet L-functions L(s, χ) modulo q = 4m with χ(2m + 1) = −1 have
χ(n + 2m) = −χ(n). They are continued similarly, taking P (x) = (x + α)−s,
where α runs through values (2a + 1)/2m. The character χ(n) takes values in
some cyclotomic field K, and the values of L(s, χ) for non-positive integers lie
in K.

4. Bernoulli and Euler polynomials

We start from the definitions of Bernoulli polynomials Bn(x) and Euler polyno-
mials En(x) that use the difference operator ∆.

Bn(x) =

∞∑
r=0

(−1)r

r + 1
∆rxn =

n∑
r=0

(−1)r

r + 1
∆rxn

=

n∑
r=0

(−1)r

r + 1

r∑
s=0

(−1)r−srCs(x+ s)n, (4.1)

En(x) =

∞∑
r=0

(−1)r

2r
∆rxn =

n∑
r=0

(−1)r

2r
∆rxn

=

n∑
r=0

(−1)r

2r

r∑
s=0

(−1)r−srCs(x+ s)n. (4.2)

The Bernoulli polynomials are related to the Faulhaber polynomials that give
the sum to x terms of the divergent series 1 + 2n + 3n + . . . , and to the power
series for cotx. By differentiation we see at once that

B′n(x) = nBn−1(x), E′n(x) = nEn−1(x). (4.3)

The values Bi = Bi(0) are called the Bernoulli numbers. By induction on (4.3)
we see that

Bn(x) =

n∑
r=0

nCrBn−rx
r.

Further properties of Bernoulli polynomials can be seen from the generating
function B(x, t), using the low analytic theorem that a power series in t that
converges to 0 on some open interval 0 < t < δ must have all coefficients zero. For
0 6 x 6 1 and 0 < t < log 2 we can rearrange the absolutely convergent double
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series for B(x, t):

B(x, t) =

∞∑
n=0

Bn(x)
tn

n!
=

∞∑
n=0

tn

n!

∞∑
r=0

(−1)r

r + 1
∆rxn =

∞∑
r=0

(−1)r

r + 1

∞∑
n=r

∆r (xt)n

n!

=

∞∑
r=0

(−1)r

r + 1
∆r

∞∑
n=0

(xt)n

n!
=

∞∑
r=0

(−1)r

r + 1
∆rext =

∞∑
r=0

(−1)r

r + 1
(et − 1)rext

= ext · 1

et − 1
· log(1 + et − 1) =

text

et − 1
, (4.4)

since ∆rxn = 0 for n < r. Differencing (4.4) gives B(x+ 1, t)−B(x, t) = text, so

Bn(x+ 1)−Bn(x) = nxn−1, (4.5)

and the Faulhaber polynomial is (Bn+1(x) − Bn+1(0))/(n + 1). Replacing x by
1− x in (4.4) gives

∞∑
n=0

Bn(1− x)
tn

n!
= B(1− x, t) =

tet−xt

et − 1
= − te−xt

e−t − 1
=

∞∑
m=0

Bn(x)
(−t)n

n!
,

so
Bn(1− x) = (−1)nBn(x). (4.6)

We see that by (4.5) that Bn(1) − Bn(0) = 0 for n 6= 1, 1 for n = 1, but
by (4.6) Bn(1) = (−1)nBn(0). So the Bernoulli number Bn is 0 for n odd, n > 3,
but B1 = −1/2.

Since (et − 1)/(et/q − 1) = 1 + et/q + · · ·+ e(q−1)t/q, we get

Bn(qx) = qn−1
q−1∑
a=0

Bn

(
x+

a

q

)
, (4.7)

the so-called multiplication formula.
Similarly the Euler polynomials have a generating function E(x, t) for

0 6 x 6 1 and 0 < t < log 2, which can be rearranged:

E(x, t) =

∞∑
n=0

En(x)
tn

n!
=

∞∑
r=0

(−1)r

2r
∆rext =

∞∑
r=0

(
−1

2

)r
(et − 1)rext

= ext · 1

1 + (et − 1)/2
=

2ext

et + 1
. (4.8)

We note that

tE(x, t) =
2text(et − 1)

e2t − 1
= B

(
x+ 1

2
, 2t

)
−B

(x
2
, 2t
)
,

so comparing coefficients gives

En−1(x)

(n− 1)!
=

2n

n!

(
Bn

(
x+ 1

2

)
−Bn

(x
2

))
. (4.9)
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So far we have shown that Euler summation gives the analytic continuation of
the Dirichlet series η(s), and that η(1 − k) is equal to a finite sum. We can now
identify that finite sum:

η(1− k) =

k−1∑
n=0

(−1)n

2n+1
∆nxk−1

∣∣∣∣∣
x=1

=
1

2
Ek−1(1) =

2k−1

k

(
Bk(1)−Bk

(
1

2

))
.

(4.10)
We can read off at once

η(0) =
1

2
, ζ(0) = −1

2
.

For k > 2 we use (4.7) with q = 2 (the so-called duplication formula) and x = 0
to get

Bk(0) = 2k−1
(
Bk(0) +Bk

(
1

2

))
. (4.11)

Since Bk(1) = Bk(0) = Bk for k > 2, we substitute (4.11) in (4.10) to get

η(1− k) =
1

k

(
2k−1Bk −

(
Bk − 2k−1Bk

))
=

(2k − 1)

k
Bk,

which gives the values in (1.3).

5. Values at even positive integers

We work with the periodic functions Bn(x) = Bn(x− [x]), B(x, t) = B(x− [x], t);
we use [x] for the greatest integer n with n 6 x. The function B(x, t) is defined
for all real x and for 0 < t < log 2. These functions are periodic, but B1(x)
and B(x, t) are discontinuous at integers.

We compute the Fourier coefficients of B(x, t). We have for h 6= 0∫ 1

0

B(x, t)e−2πihx dx =

∫ 1

0

text

et − 1
e−2πihx dx =

∫ 1

0

t

et − 1
e(t−2πih)x dx

=
t

et − 1

[
e(t−2πih)x

t− 2πih

]1
0

=
t

et − 1
· et − 1

t− 2πih

=
1

−2πih
· t

1− t/2πih
= −

∞∑
n=1

(
t

2πih

)n
.

For h = 0 we have the simpler calculation∫ 1

0

B(x, t) dx =

∫ 1

0

text

et − 1
dx =

1

et − 1

[
ext
]1
0

= 1.

Hence for n > 1 the periodic function Bn(x) has Fourier series

Bn(x) ∼ −n!
∑
h6=0

e2πihnx

(2πih)n
.
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For n = 2k > 2, Bn(1) = Bn(0), so the Fourier series for Bn(x) converges at x = 0
to their common value Bn. We have

B2k = B2k(0) = −
∞∑
h=1

2(2k)!

(2πih)2k
= (−1)k−1

2ζ(2k)(2k)!

(2π)2k
,

which gives the values in (1.6).
We sketch a real-analytic evaluation of the values ζ(2k) in (1.6) by way of the

partial fractions for cotx. Let F (x) be defined on the interval 0 < x < π by the
absolutely convergent series

F (x) = f0(x) +

∞∑
n=1

fn(x) =
1

x
−
∞∑
n=1

2x

n2π2 − x2
.

A careful calculation using partial fractions and regrouping terms without destroy-
ing the absolute convergence leads to the differential equation F ′(x)+F 2(x)+c2 =
0, where c2 = 6ζ(2)/π2. The general solution [9] is

F (x) = c tan (α− cx) .

Since F (x) is asymptotic to 1/x as x→ 0, we must have α = π/2. Since F (x+π) =
F (x), c must be an integer. The inequalities 9 < π2 < 10 and 1 < ζ(2) < 2 show
that we can take c = 1, so F (x) = cotx. The Hadamard product for sinx in
logarithmic form now follows by integration.

We have shown along the way that ζ(2) = π2/6. To identify further values
of ζ(2k), we expand fn(x) as a power series and interchange orders of summation
in the resulting absolutely convergent double series to get

cotx =
1

x
+

2

x

∞∑
k=1

∞∑
n=1

( x

nπ

)2k
=

1

x
+

2

x

∞∑
k=1

ζ(2k)
(x
π

)2k
.

The corresponding series for the hyperbolic function coth t = ch t/sh t has an extra
factor (−1)k. We can express coth t in terms of the generating function B(x, t) for
Bernoulli polynomials:

coth t− 1 =
ch t− sh t

sh t
=

2e−t

et − e−t
=

2

e2t − 1
=

1

t
B(0, 2t).

The power series coefficients can now be read off in terms of Bernoulli numbers.
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