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DERIVATION RELATIONS AND DUALITY FOR THE SUM
OF MULTIPLE ZETA VALUES

Zhonghua Li

Abstract: We show that the duality relation for the sum of multiple zeta values with fixed
weight, depth and k1 is deduced from the derivation relations, which was first conjectured by
N. Kawasaki and T. Tanaka.
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For positive integers n, k1, k2, . . . , kn with k1 > 2, the multiple zeta value is defined
by the convergent series

ζ(k1, k2, . . . , kn) =
∑

m1>m2>···>mn>0

1

mk1
1 m

k2
2 · · ·m

kn
n

.

We call k1 + · · ·+ kn the weight and n the depth, respectively.
In the famous paper [2], K. Ihara, M. Kaneko and D. Zagier gave the frame-

work of the extended double shuffle relations and conjectured that the extended
double shuffle relations give all linear relations among multiple zeta values. So it
is interesting to see whether all other linear relations of multiple zeta values can
be deduced from the extended double shuffle relations or not. For some relative
work on this direction, one may refer to [2, 3, 4, 5, 6, 7].

This short note is inspired by the recent paper [4] of N. Kawasaki and T. Tanaka.
They showed that the duality relations of the following two cases are implied by the
derivation relations, which are contained in the extended double shuffle relations:

• the case for the double zeta values,
• the case for the sum of multiple zeta values with fixed weight, depth and
k1 = 2.
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More generally, they conjectured that the duality relation for the sum with fixed
weight, depth and k1 is subject to the derivation relations. We prove this conjec-
ture here.

To state the result, we use the algebraic setup introduced by M.E. Hoffman [1].
Let h = Q〈x, y〉 be the noncommutative polynomial algebra generated by x and
y over the filed Q of rational numbers. Let h0 = Q + xhy be a subalgebra. We
define the Q-linear map Z : h0 → R by Z(1) = 1 and

Z(xk1−1y · · ·xkn−1y) = ζ(k1, . . . , kn),

where R is the field of real numbers, n, k1, . . . , kn are positive integers with k1 > 2.
Now we state the duality and the derivation relations of multiple zeta values.

Let τ be the anti-automorphism of the algebra h determined by

τ(x) = y, τ(y) = x.

Then the duality relations [8] are nothing but

(1− τ)(α) ∈ kerZ

for any α ∈ h0. A derivation of h is a Q-linear map D : h → h satisfying the
Leibniz rule

D(αβ) = D(α)β + αD(β) (∀α, β ∈ h).

For a positive integer n, let ∂n be the derivation of h determined by

∂n(x) = x(x+ y)n−1y, ∂n(y) = −x(x+ y)n−1y.

Then the derivation relations [2] are just

∂n(α) ∈ kerZ

for any positive integer n and any α ∈ h0. For a formal variable u, let

∆u = exp

( ∞∑
n=1

∂n
n
un

)
,

which is an automorphism of h[[u]] and satisfies

∆u(x) = x
1

1− yu
, ∆u(y) = (1− xu− yu)

y

1− yu
, ∆u(x+ y) = x+ y.

As in [2], the derivation relations can be restated as

(∆u − 1)(α) ∈ kerZ

for any α ∈ h0.
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Using the algebraic notations, the conjecture of N. Kawasaki and T. Tanaka in
[4] can be stated as

(1− τ)

 ∑
a1+···+al−1=k−m−l

a1,...,al−1>0

xmyxa1y · · ·xal−1y

 ?
∈
∑
n>1

∂n(h0) (1)

for any positive integers k,m, l with k > m + l. We compute the generating
function of the left-hand side of the above conjectured relation (1). Let u, v, w be
independent formal variables, which commute with each other as well as with x
and y. We have

∑
k,m,l>1
k>m+l

 ∑
a1+···+al−1=k−m−l

a1,...,al−1>0

xmyxa1y · · ·xal−1y

um−1vl−1wk−m−l

=
x

1− xu
y

1

1− xw − yv
(1− xw)

=
x

1− xu
y +

x

1− xu
y

1

1− xw − yv
yv ∈ h0[[u, v, w]].

Then the generating function of the left-hand side of (1) is

x

1− xu
y − x y

1− yu
+

(
x

1− xu
y

1

1− xw − yv
y − x 1

1− xv − yw
x

y

1− yu

)
v,

which is represented by the maps ∆u,∆v and ∆w as in the following main theorem.

Theorem 1. In h0[[u, v, w]], we have

x

1− xu
y − x y

1− yu
= (1−∆u)

(
x

1− xu
y

)
(2)

and

x

1− xu
y

1

1− xw − yv
y − x 1

1− xv − yw
x

y

1− yu

=
1

v − w
(∆v −∆w)

(
x

1

1− xu− xv + (x2 + yx)uv
y

1

1− xw
(1− xw − yw)

)
+ (1−∆u)

(
x

1

1− xu− xv + (x2 + yx)uv − yw
(1− xu− yu)

x

1− xu
y

)
. (3)

Note that taking u = 0 and v = 0 respectively in (3), we get [4, Theorem] in
terms of generating functions. And by comparing the coefficients of the monomial
um−1vl−1wk−m−l, we prove the conjecture of N. Kawasaki and T. Tanaka in [4].
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Corollary 2. For any positive integers k,m, l with k > m+ l, we have

(1− τ)

 ∑
a1+···+al−1=k−m−l

a1,...,al−1>0

xmyxa1y · · ·xal−1y

 ∈∑
n>1

∂n(h0).

The above corollary shows that the duality relation for the sum of multiple
zeta values with fixed weight, depth and k1 can be deduced from the derivation
relations. For example, taking k = m+ l, we find the duality

ζ(m+ 1, 1, . . . , 1︸ ︷︷ ︸
l−1

) = ζ(l + 1, 1, . . . , 1︸ ︷︷ ︸
m−1

)

is implied from the derivation relations.
Finally, we give a proof of Theorem 1.

Proof of Theorem 1. Since

∆u(1− xu) = 1− xu 1

1− yu
= (1− xu− yu)

1

1− yu
,

we get (2).
Since

∆u(1− xu− xv + (x2 + yx)uv − yw) = (1− xu− yu)(1− xv − yw)
1

1− yu
,

we find

∆u

(
x

1

1− xu− xv + (x2 + yx)uv − yw
(1− xu− yu)

x

1− xu
y

)
= x

1

1− xv − yw
x

y

1− yu
.

Similarly, we have

∆v(1− xu− xv + (x2 + yx)uv) = (1− xv − yv)(1− xu)
1

1− yv
,

which implies that

∆v

(
x

1

1− xu− xv + (x2 + yx)uv
y

1

1− xw
(1− xw − yw)

)
=

x

1− xu
y

1

1− xw − yv
(1− xw − yw)

=
x

1− xu
y + (v − w)

x

1− xu
y

1

1− xw − yv
y.
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And since

∆w(1− xu− xv + (x2 + yx)uv) = (1− xu− xv + (x2 + yx)uv − yw)
1

1− yw
,

we have

∆w

(
x

1

1− xu− xv + (x2 + yx)uv
y

1

1− xw
(1− xw − yw)

)
= x

1

1− xu− xv + (x2 + yx)uv − yw
(1− xw − yw)y.

Hence the right-hand side of (3) is

1

v − w
x

1− xu
y +

x

1− xu
y

1

1− xw − yv
y

− 1

v − w
x

1

1− xu− xv + (x2 + yx)uv − yw
(1− xw − yw)y

+ x
1

1− xu− xv + (x2 + yx)uv − yw
(1− xu− yu)

x

1− xu
y

− x 1

1− xv − yw
x

y

1− yu
.

Direct computation shows that

(v − w)(1− xu− yu)
x

1− xu
− (1− xw − yw)

= [(v − w)(1− xu− yu)x− (1− xw − yw)(1− xu)]
1

1− xu

= −(1− xu− xv + (x2 + yx)uv − yw)
1

1− xu
.

Then it is easy to see that the right-hand side of (3) is just the left-hand side
of (3). �
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