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ON THE INTEGRAL OF PRODUCTS OF HIGHER-ORDER
BERNOULLI AND EULER POLYNOMIALS

Muhammet Cihat Dağlı, Mümün Can

Abstract: In this paper, we derive a formula on the integral of products of the higher-order Euler
polynomials. By the same method, similar relations are obtained for l higher-order Bernoulli
polynomials and r higher-order Euler polynomials. Moreover, we establish a connection between
these results and the generalized Dedekind sums and Hardy–Berndt sums.
Keywords: Bernoulli polynomials and numbers, Dedekind sums, integrals, recurrence relations.

1. Introduction

The Bernoulli polynomials Bm(x) and Euler polynomials Em(x) are usually de-
fined by means of the following generating functions:

ueuz

eu − 1
=

∞∑
m=0

Bm(z)
um

m!
(|u| < 2π)

and

2euz

eu + 1
=

∞∑
m=0

Em(z)
um

m!
(|u| < π) .

In particular, the rational numbers Bm = Bm(0) and integers Em = 2mEm(1/2)
are called Bernoulli numbers and Euler numbers, respectively.

As is well known, the Bernoulli and Euler polynomials play important roles
in different areas of mathematics such as number theory, combinatorics, special
functions and analysis.

This paper is primarily concerned with the higher-order Bernoulli and Euler
polynomials. We derive a formula for the integral having r higher-order Euler poly-
nomials and also for l higher-order Bernoulli and r higher-order Euler polynomials.
The result is the corresponding generalization of some formulas discovered by Agoh
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and Dilcher [1], Hu et al [7] and also [3, 6, 10, 12, 13, 14]. From our formula, we
establish the connection between the sums of products of Euler (and Bernoulli
and Euler) polynomials and the reciprocity formula for generalized Dedekind (and
Hardy–Berndt) sums, motivated by Dağlı and Can [5].

We now turn to higher-order analogues. The higher-order Bernoulli polyno-
mials B(α)

m (z) and higher-order Euler polynomials E(α)
m (z), each of degree m in z

and in α, are defined by means of the generating functions [13](
u

eu − 1

)α
euz =

∞∑
m=0

B(α)
m (z)

um

m!

and (
2

eu + 1

)α
euz =

∞∑
m=0

E(α)
m (z)

um

m!
,

respectively. For α = 1, we have B(1)
m (z) = Bm(z) and E

(1)
m (z) = Em(z). They

possess the differential property

d

dz
B(α)
m (z) = mB

(α)
m−1(z),

d

dz
E(α)
m (z) = mE

(α)
m−1(z) (1)

and reciprocal relations

B(α)
m (α− z) = (−1)

m
B(α)
m (z), E(α)

m (α− z) = (−1)
m
E(α)
m (z) (2)

which imply B(α)
m (α/2) = 0 and E(α)

m (α/2) = 0 for odd m.
Also, we need the following expression of the Euler polynomials in terms of

Bernoulli polynomials:

En(x) =
2

n+ 1

{
Bn+1(x)− 2n+1Bn+1 (x/2)

}
(3)

for n > 0.
We summarize this study as follows: we first give several convolution for-

mulas for higher-order Bernoulli and Euler polynomials applying the generating
function methods, motivated by [4]. We also derive an integral formula for higher-
order Euler polynomials. By this, we extend the result of Hu et al [7] and Liu
et al [9]. By the same method, similar relations are obtained for l higher-order
Bernoulli polynomials and r higher-order Euler polynomials, as well. Moreover,
we establish a connection between these results and the reciprocity formulas for
generalized Dedekind sums Tr(c, d) and generalized Hardy–Berndt sums s3,r(c, d)
and s4,r(c, d).

2. Convolutions of higher-order Bernoulli and Euler polynomials

In this section, we give some convolutions involving higher-order Bernoulli and
Euler polynomials which we will use in the next section.
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Differentiating the generating function of higher-order Euler polynomials as
follows

d

du

((
2

eu + 1

)n
euz
)

= z
2neuz

(eu + 1)
n − n

2neu(z+1)

(eu + 1)
n+1

= 2n
d

du

euz

(eu + 1)
n ,

we have
n2n+1eu(z+1)

(eu + 1)
n+1 =

2n+1zeuz

(eu + 1)
n − 2n+1 d

du

euz

(eu + 1)
n .

Taking z = x+ y − 1 and n = β + γ − 1 leads to

2n+1eu(z+1)

(eu + 1)
n+1 =

( ∞∑
m=0

E(β)
m (x)

um

m!

)( ∞∑
k=0

E
(γ)
k (y)

uk

k!

)

=

∞∑
m=0

m∑
k=0

(
m

k

)
E

(β)
k (x)E

(γ)
m−k(y)

um

m!
,

z
2n+1euz

(eu + 1)
n = 2 (x+ y − 1)

∞∑
m=0

E(β+γ−1)
m (x+ y − 1)

um

m!

and

2n+1 d

du

euz

(eu + 1)
n = 2

∞∑
m=0

E
(β+γ−1)
m+1 (x+ y − 1)

um

m!
.

By equating the coefficients of
um

m!
, we get the convolution formula

m∑
k=0

(
m

k

)
E

(β)
k (x)E

(γ)
m−k(y)

= 2
x+ y − 1

β + γ − 1
E(β+γ−1)
m (x+ y − 1)− 2

β + γ − 1
E

(β+γ−1)
m+1 (x+ y − 1) (4)

= E(β+γ)
m (x+ y).

Similarly, for higher-order Bernoulli polynomials, we have

m∑
k=0

(
m

k

)
B

(β)
k (x)B

(γ)
m−k(y)

= m
x+ y − 1

β + γ − 1
B

(β+γ−1)
m−1 (x+ y − 1) +

γ + β − 1−m
β + γ − 1

B(β+γ−1)
m (x+ y − 1)

= B(γ+β)
m (x+ y)
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(see [11, p. 145 and p. 129]). From the generating functions of the higher-order
Bernoulli and Euler polynomials, we can write

(
u

eu − 1

)n
exu

(
2

eu + 1

)n
eyu =

(
2u

e2u − 1

)n
eu(x+y),

which gives the following

m∑
k=0

(
m

k

)
B

(n)
m−k(x)E

(n)
k (y) = 2mB(n)

m

(
x+ y

2

)
. (5)

3. Integral of products of higher-order Bernoulli and Euler polynomials

This section is devoted to obtain the integral of products of r higher-order Euler
polynomials. Also, we derive a formula for the integral of products of l higher-
order Bernoulli polynomials and r higher-order Euler polynomials. Furthermore,
we relate these results to the reciprocity formulas for generalized Dedekind sums
Tr(c, d) and Hardy–Berndt sums s3,r(c, d) and s4,r(c, d).

3.1. Euler polynomials

Let bs, ys, αs be arbitrary real numbers with bs 6= 0, 1 6 s 6 r, and

În1,...,nr (x; b; y) = În1,...,nr (x; b1, ..., br; y1, ..., yr)

=
1

n1! · · ·nr!

x∫
0

r∏
s=1

E(αs)
ns (bsz + ys) dz,

Ĉn1,...,nr (x; b; y) = Ĉn1,...,nr (x; b1, ..., br; y1, ..., yr)

=
1

n1! · · ·nr!

(
r∏
s=1

E(αs)
ns (bsx+ ys)−

r∏
s=1

E(αs)
ns (ys)

)
.

Let
(

M
n1,...,nr

)
denote the multinomial coefficients defined by

(
M

n1, ..., nr

)
=

M !

n1! · · ·nr!
, n1 + · · ·+ nr = M and n1, ..., nr > 0.

Then, we have the following formula:
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Theorem 3.1. For any µ > 0,

În1,...,nr (x; b; y)

=

µ∑
a=0

(−1)
a

∑
j1+···+jr−1=a

(
a

j1, ..., jr−1

)
bj11 · · · b

jr−1

r−1 b
−a−1
r

× Ĉn1−j1,...,nr−1−jr−1,nr+a+1(x; b; y)

+
(−1)

µ+1

(n+ µ+ 1)!

x∫
0

(
r−1∏
s=1

E(αs)
ns (bsz + ys)

)(µ+1)

E
(αr)
nr+µ+1 (brz + yr) dz.

In particular if µ = n1 + · · ·+ nr−1, we have

În1,...,nr (x; b; y) =

µ∑
a=0

(−1)
a

∑
j1+···+jr−1=a

(
a

j1, ..., jr−1

)
bj11 · · · b

jr−1

r−1

× b−a−1
r Ĉn1−j1,...,nr−1−jr−1,nr+a+1(x; b; y). (6)

Proof. Let

f(z) = E(α1)
n1

(b1z + y1) · · ·E(αr−1)
nr−1

(br−1z + yr−1) .

Then

1

nr!

x∫
0

f(z)E(αr)
nr (brz + yr) dz

=

[
1

br (nr + 1)!
f(z)E

(αr)
nr+1 (brz + yr)

]x
0

− 1

(nr + 1)!

x∫
0

f ′(z)E(αr)
nr+1

(brz + yr) dz.

Using µ additional integrations by parts, we find that

1

nr!

x∫
0

f(z)E(αr)
nr (brz + yr) dz =

µ∑
a=0

(−1)
a

(nr + a+ 1)!

[
f (a)(z)E

(αr)
nr+a+1 (brz + yr)

]x
0

+
(−1)

µ+1

(nr + µ+ 1)!

x∫
0

f (µ+1)(z)E
(αr)
nr+µ+1 (brz + yr) dz.

Using the property of derivative

(f1 (z) · · · fm (z))
(a)

=
∑

j1+···+jm=a

(
a

j1, ..., jm

)
f1

(j1) (z) · · · f (jm)
m (z) ,

and (1), we get the desired result. �
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Setting x = 1 and bs = αs − 2ys with ys 6= αs/2, 1 6 s 6 r, in (6) we have

În1,...,nr (1;α1 − 2y1, . . . , αr − 2yr; y1, ..., yr)

=

n1+···+nr−1∑
a=0

(−1)
a

∑
j1+···+jr−1=a

(
a

j1, ..., jr−1

) (
(−1)

n1+···+nr+1 − 1
)

(n1 − j1)! · · · (nr + a+ 1)!

× bj11 · · · b
jr−1

r−1 b
−a−1
r E

(α1)
n1−j1 (y1) · · ·E(αr−1)

nr−1−jr−1
(yr−1)E

(αr)
nr+a+1 (yr)

since E(αs)
ns−js (bs + ys) = E

(αs)
ns−js (αs − ys) = (−1)

ns−js E
(αs)
ns−js (ys) and j1 + · · · +

jr−1 = a. Therefore, if n1 + · · ·+ nr + 1 is even, then

În1,...,nr (1;α1 − 2y1, . . . , αr − 2yr; y1, ..., yr) = 0,

and if n1 + · · ·+ nr + 1 is odd, then

În1,...,nr (1;α1 − 2y1, . . . , αr − 2yr; y1, ..., yr)

= −2

n1+···+nr−1∑
a=0

(−1)
a (αr − 2yr)

−a−1

(nr + a+ 1)!
E

(αr)
nr+a+1 (yr)

×
∑

j1+···+jr−1=a

(
a

j1, ..., jr−1

) r−1∏
s=1

(αs − 2ys)
js

(ns − js)!
E

(αs)
ns−js (ys) .

For example, we have

1∫
0

E
(3)
2 (7z − 2)E

(1/2)
3

(
−3

2
z + 1

)
E

(5)
10 (4z + 1/2) dz = 0

and
1

2!10!

1∫
0

E
(3)
2 (3z)E

(5)
10 (−3z + 4) dz =

2

3

2∑
a=0

E
(3)
2−a (0)

(2− a)!

E
(5)
11+a (4)

(11 + a)!
.

It is seen from the definition of the integral În1,...,nr (x; b; y) that the left-hand
side of (6) is invariant under interchanging the order of the integrands. That is,
for r = 2,

n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
ba1b
−a−1
2

×
(
E

(γ)
n−a (b1x+ y1)E

(β)
m+a+1 (b2x+ y2)− E(γ)

n−a (y1)E
(β)
m+a+1 (y2)

)
=

m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
ba2b
−a−1
1

×
(
E

(γ)
m−a (b2x+ y2)E

(β)
n+a+1 (b1x+ y1)− E(γ)

m−a (y2)E
(β)
n+a+1 (y1)

)
. (7)
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So, we may investigate the reciprocity relation for sums of products of higher-order
Euler polynomials as follows: Let

T :=

n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
ba1b
−a−1
2 E

(γ)
n−a (y1)E

(β)
m+a+1 (y2)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
ba2b
−a−1
1 E

(γ)
m−a (y2)E

(β)
n+a+1 (y1) .

We first rewrite this as

T =

n∑
a=0

(−1)
n−a

(
m+ n+ 1

a

)
bn−a1 ba−n−1

2 E(γ)
a (y1)E

(β)
m+n+1−a (y2)

−
m∑
a=0

(−1)
m−a

(
m+ n+ 1

a

)
bm−a2 ba−m−1

1 E(γ)
a (y2)E

(β)
m+n+1−a (y1) . (8)

Without loss of generality we may assume that n > m; in this case we separate
the sum from 0 to m and m + 1 to n on the first summation in (8), and rewrite
these as

m∑
a=0

(−1)
n−a

(
m+ n+ 1

a

)
bn−a1 ba−n−1

2 E(γ)
a (y1)E

(β)
m+n+1−a (y2)

=

m+n+1∑
a=n+1

(−1)
m+1−a

(
m+ n+ 1

a

)
ba−m−1
1 bm−a2 E

(γ)
m+n+1−a (y1)E(β)

a (y2)

and

n∑
a=m+1

(−1)
n−a

(
m+ n+ 1

a

)
bn−a1 ba−n−1

2 E(γ)
a (y1)E

(β)
m+n+1−a (y2)

=

n∑
a=m+1

(−1)
m+1−a

(
m+ n+ 1

a

)
ba−m−1
1 bm−a2 E

(γ)
m+n+1−a (y1)E(β)

a (y2) .

Thus, we have

T =
1

bm+1
1 bn+1

2

m+n+1∑
a=0

(−1)
m+1−a

(
m+ n+ 1

a

)
× ba1bm+n+1−a

2 E
(γ)
m+n+1−a (y1)E(β)

a (y2) . (9)

Combining (7) and (9) gives the following reciprocity relation for sums of products
of higher-order Euler polynomials:
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Corollary 3.2.
n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
ba1b
−a−1
2 E

(γ)
n−a (b1x+ y1)E

(β)
m+a+1 (b2x+ y2)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
ba2b
−a−1
1 E

(γ)
m−a (b2x+ y2)E

(β)
n+a+1 (b1x+ y1) (10)

=
1

bm+1
1 bn+1

2

m+n+1∑
a=0

(−1)
m+1−a

(
m+ n+ 1

a

)
ba1b

m+n+1−a
2 E

(γ)
m+n+1−a (y1)E(β)

a (y2) .

In particular for y1 = γ/2, y2 = β/2 and even (m+ n) , the right-hand side of (10)
vanishes.

Remark 3.3. Beginning from the left-hand side of (10) and using the arguments
in the proof of (9), the right-hand side of (10) turns into

1

bm+1
1 bn+1

2

m+n+1∑
a=0

(−1)
m+1−a

(
m+ n+ 1

a

)
× ba1bm+n+1−a

2 E
(γ)
m+n+1−a (b1x+ y1)E(β)

a (b2x+ y2) .

So it follows that for all x,

m+n+1∑
a=0

(−1)
a

(
m+ n+ 1

a

)
ba1b

m+n+1−a
2 E

(γ)
m+n+1−a (b1x+ y1)E(β)

a (b2x+ y2)

=

m+n+1∑
a=0

(−1)
a

(
m+ n+ 1

a

)
ba1b

m+n+1−a
2 E

(γ)
m+n+1−a (y1)E(β)

a (y2) .

• Let b1 = b2 = 1 in (10). Then the right-hand side becomes, with the use
of (2),

(−1)
n
T =

m+n+1∑
a=0

(
m+ n+ 1

a

)
E

(γ)
m+n+1−a (γ − y1)E(β)

a (y2) .

Now using (4) by taking x = y2 and y = γ − y1, (10) reduces to
n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
E

(γ)
n−a (x+ y1)E

(β)
m+a+1 (x+ y2)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
E

(γ)
m−a (x+ y2)E

(β)
n+a+1 (x+ y1)

= 2 (−1)
n y2 − y1 + γ − 1

γ + β − 1
E

(γ+β−1)
m+n+1 (y2 − y1 + γ − 1)

− 2
(−1)

n

γ + β − 1
E

(γ+β−1)
m+n+2 (y2 − y1 + γ − 1)

= (−1)
n
E

(γ+β)
m+n+1 (y2 − y1 + γ) .
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• Setting b1 = 1, b2 = −1 and using (4), (10) becomes

n∑
a=0

(
m+ n+ 1

n− a

)
E

(γ)
n−a (x+ y1)E

(β)
m+a+1 (y2 − x)

+

m∑
a=0

(
m+ n+ 1

m− a

)
E

(γ)
m−a (y2 − x)E

(β)
n+a+1 (x+ y1)

= 2
y2 + y1 − 1

γ + β − 1
E

(γ+β−1)
m+n+1 (y2 + y1 − 1)− 2

γ + β − 1
E

(γ+β−1)
m+n+2 (y2 + y1 − 1)

= E
(γ+β)
m+n+1 (y2 + y1) .

• Set β = γ = 1, b1 = 2 and b2 = −1 in (10). In view of [4, Theorem 6], (10)
becomes

n∑
a=0

(
m+ n+ 1

n− a

)
2m+1+aEn−a (2x+ y1)Em+a+1 (−x+ y2)

+

m∑
a=0

(
m+ n+ 1

m− a

)
2m−aEm−a (−x+ y2)En+a+1 (2x+ y1)

=

m+n+1∑
a=0

(
m+ n+ 1

a

)
2aEa (y2)Em+n+1−a (y1)

= Em+n+1(2y2 + y1) + 2m+n+1Em+n+1

(
2y2 + y1

2

)
− 2m+n+1Em+n+1

(
2y2 + y1 + 1

2

)
.

• Let γ = β = 1 and y1 = y2 = 0 in (10). Then,

n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
ba1b
−a−1
2 En−a (b1x)Em+a+1 (b2x)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
ba2b
−a−1
1 Em−a (b2x)En+a+1 (b1x)

=
1

bm+1
1 bn+1

2

m+n+1∑
a=0

(−1)
m+1−a

(
m+ n+ 1

a

)
ba1b

m+n+1−a
2

× Em+n+1−a (0)Ea (0) . (11)

From the property B2n+1(0) = 0, n > 1 and (3) for x = 0, we have
(−1)

a
Ea(0) = −Ea(0) for a > 0. Then, the right-hand side of (11) can
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be written

T =
(−1)

m

bm+1
1 bn+1

2

m+n+1∑
a=0

(
m+ n+ 1

a

)
ba1b

m+n+1−a
2

× Em+n+1−a (0)Ea (0)− 2
(−b2)

m

bm+1
1

Em+n+1 (0) . (12)

Remark 3.4. Kim and Son [8] proved the reciprocity formula for generalized
Dedekind sums Tr(c, d) as

cdrTr(c, d) + dcrTr(d, c) = −1

2

r∑
a=0

(
r

a

)
da−1cr−1−aEa(0)Er−a(0) +Er+1(0), (13)

where Tr(d, c) is defined by

Tr(c, d) =

|d|−1∑
j=0

(−1)
j
E1

(
j

d

)
Er

(
cj

d

)

in which

Er(x) = Er(x), 0 6 x < 1,

Er(x+ p) = (−1)
p
Er(x), p ∈ Z.

It is seen from (12) and (13) that the reciprocity formula of the generalized
Dedekind sum Tr(c, d) can be written in terms of the reciprocity relation of Euler
polynomials.

3.2. Bernoulli and Euler polynomials

Theorem 3.5. Let bs and ys, 1 6 s 6 l+r be arbitrary real numbers with bs 6= 0.
Let N = n1! · · ·nl!m1! · · ·mr! and

Jn1,...,mr (x; b; y) = Jn1,...,mr (x; b1, ..., bl+r; y1, ..., yl+r)

=
1

N

x∫
0

l∏
s=1

B(γs)
ns (bsz + ys)

r∏
i=1

E(βi)
mi (bl+iz + yl+i) dz,

Dn1,...,mr (x; b; y) = Dn1,...,mr (x; b1, ..., bl+r; y1, ..., yl+r)

=
1

N

l∏
s=1

B(γs)
ns (bsx+ ys)

r∏
i=1

E(βi)
mi (bl+ix+ yl+i)

− 1

N

l∏
s=1

B(γs)
ns (ys)

r∏
i=1

E(βi)
mi (yl+i) .
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Then, for µ = n1 + · · ·+ nl +m1 + · · ·+mr−1,

Jn1,...,mr (x; b; y) =

µ∑
a=0

(−1)
a

∑
j1+···+jl+r−1=a

(
a

j1, ..., jl+r−1

)
× bj11 · · · b

jl+r−1

l+r−1 b
−a−1
l+r Dn1−j1,...,mr−1−jl+r−1,mr+a+1(x; b; y).

Proof. The proof can be obtained by using the arguments in the proof of Theo-
rem 3.1. �

In order to obtain the reciprocity relation for sums of products of higher-order
Bernoulli and Euler polynomials, similar to T, we define

T1 :=

n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
ba1b
−a−1
2 B

(γ)
n−a (y1)E

(β)
m+a+1 (y2)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
ba2b
−a−1
1 E

(γ)
m−a (y2)B

(β)
n+a+1 (y1) .

Similarly, we have

T1 =

n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
ba1b
−a−1
2 B

(γ)
n−a (b1x+ y1)E

(β)
m+a+1 (b2x+ y2)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
ba2b
−a−1
1 E

(γ)
m−a (b2x+ y2)B

(β)
n+a+1 (b1x+ y1)

=
1

bm+1
1 bn+1

2

m+n+1∑
a=0

(−1)
m+1−a

(
m+ n+ 1

a

)
× ba1bm+n+1−a

2 E(β)
a (y2)B

(γ)
m+n+1−a (y1) . (14)

Notice that the right-hand side of (14) vanishes for y1 = γ/2, y2 = β/2 and even
m+ n.

• Setting β = γ = 1 and b1 = 2, b2 = −1 in (14), we get

2m+1T1 = −
m+n+1∑
a=0

(
m+ n+ 1

a

)
2aEa (y2)Bm+n+1−a (y1)

= −Bm+n+1(2y2 + y1) + 2m+n−1 (m+ n+ 1)Em+n

(
2y2 + y1 + 1

2

)
− 2m+n−1 (m+ n+ 1)Em+n

(
2y2 + y1

2

)
by [4, Theorem 10]. After similar manipulations to T , we have for γ = β
and b2 = b1 = 1

(−1)
n
T1 =

m+n+1∑
a=0

(
m+ n+ 1

a

)
B

(γ)
m+n+1−a (γ − y1)E(γ)

a (y2) .
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In view of (5) for x = γ − y1, y = y2, we get

T1 = (−1)
n

2m+n+1B
(γ)
m+n+1

(
γ − y1 + y2

2

)
.

• For y1 = y2 = 0 and γ = β = 1, T1 can be written as

T1 =

n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
ba1b
−a−1
2 Bn−a (0)Em+a+1 (0)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
ba2b
−a−1
1 Em−a (0)Bn+a+1 (0)

=
(−1)m+1

bm+1
1 bn+1

2

m+n+1∑
a=0

(−1)
a

(
m+ n+ 1

a

)
ba1b

m+n+1−a
2 Bm+n+1−a (0)Ea (0) .

Using (3) for x = 0, we get

T1 =
(−1)m+1

bm+1
1 bn+1

2

m+n+2∑
a=1

(−1)
a−1

(
m+ n+ 1

a− 1

)
× ba−1

1 bm+n+2−a
2 Bm+n+2−a

2

a
(1− 2a)Ba.

Therefore, we have
n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
ba1b
−a−1
2 Bn−aEm+a+1 (0)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
ba2b
−a−1
1 Em−a (0)Bn+a+1

=
(−1)m

bm+2
1 bn+1

2

2

m+ n+ 2

m+n+2∑
a=1

(−1)
a

(
m+ n+ 2

a

)
× ba1bm+n+2−a

2 (1− 2a)Bm+n+2−aBa. (15)

Remark 3.6. Observe that the sum on the right-hand side of (15) is the reci-
procity formula for the Hardy–Berndt sums s3,r(c, d) and s4,r(c, d) given by [2]

(r + 1)
(
cdrs3,r (c, d)− 2−2d (2c)

r
s4,r (d, c)

)
= 2

r+1∑
a=1

(
r + 1

a

)
(−1)

a
cadr+1−a (1− 2a)BaBr+1−a, (16)

where d and r are odd and

s3,r(c, d) =

d−1∑
j=1

(−1)
j
Br

(
cj

d

)
, s4,r(c, d) = −4

d−1∑
j=1

Br

(
cj

2d

)
.
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Thus, the reciprocity formulas given by (15) and (16) can be associated as

n∑
a=0

(−1)
m−a

(
m+ n+ 1

n− a

)
bm+2+a
1 bn−a2 Bn−aEm+a+1 (0)

−
m∑
a=0

(−1)
m−a

(
m+ n+ 1

m− a

)
bn+1+a
2 bm+1−a

1 Em−a (0)Bn+a+1

= b1b
r
2s3,r(b1, b2)− 2−2b2(2b1)rs4,r(b2, b1)

=
2

r + 1

r+1∑
a=1

(−1)
a

(
r + 1

a

)
ba1b

r+1−a
2 (1− 2a)Br+1−aBa

for odd integers r = (m+ n+ 1) and b2.

From this relationship, (15) can be evaluated for some special cases. Since
s3,r(d, 1) = 0 and s4,r(d, 1) = 0, we have

n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
b−a−1Bn−aEm+a+1 (0)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
baEm−a (0)Bn+a+1

= (−1)mbms3,m+n+1(1, b)

for odd integers (m+ n+ 1) and b, and

n∑
a=0

(−1)
a

(
m+ n+ 1

n− a

)
baBn−aEm+a+1 (0)

−
m∑
a=0

(−1)
a

(
m+ n+ 1

m− a

)
b−a−1Em−a (0)Bn+a+1

= (−1)m+12m+n−1bn−1s4,m+n+1(1, b)

for odd integer (m+ n+ 1) .
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