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THE FIRST MOMENT OF TWISTED HECKE L-FUNCTIONS
WITH UNBOUNDED SHIFTS

Sandro Bettin

Abstract: We compute the first moment of twisted Hecke L-functions of weight 2 and prime
power level going to infinity, uniformly in the conductor of the twist and in the vertical shift.
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1. Introduction

L-functions associated to modular forms have been studied extensively with appli-
cations in many directions of number theory. In this paper we focus on averages
of Hecke L-functions twisted by a primitive Dirichlet character χ of conductor
coprime with the level N . The (twisted) L-functions associated to primitive forms
of a given weight form an orthogonal family in the sense of Katz and Sarnak [KS].
Thus, for a primitive Dirichlet character χ with conductor q coprime with N , one
expects that ∑h

f∈H∗k(N)

L (1/2, f ⊗ χ)
r

= Pr,k,χ(logN) + oq,k,r(1), (1.1)

asN →∞, where Pr,k,χ is a polynomial of degree r(r−1)
2 . Here, H∗k(N) denotes the

subset of Hk(N) consisting of primitive forms, where Hk(N) is the Hecke basis for
Sk(N), with Sk(N) being the space of primitive cusp forms of weight k and relative
to the subgroup Γ0(N). Also, the L-function L (s, f ⊗ χ) is normalized to have
central point at s = 1

2 , that is if f(z) has Fourier expansion
∑
n>1 an(f)n(k−1)/2

then

L (s, f ⊗ χ) :=
∑
n>1

an(f)χ(n)n−s, <(s) > 1.
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Finally,
∑h indicates the harmonic average, that is∑h

f∈Hk(N)∗

αf =
∑

f∈Hk(N)∗

αf
2π(f, f)

where (f, g) is Petersson’s inner product.
Duke [Duk] computed the asymptotics (1.1) in the case r = 1, 2, provided that

N is prime and k = 2, with an error term of size Oε
(
N−1/2+ε

)
. For the first

moment, Ellenberg [Ell] improved the bound for the error term to O
(
N−1+ε

)
. He

needed this better estimate to tackle the problem of finding all primitive solutions
to the generalized Fermat equation a2 + b2 = cp.

In the pioneering work [IS], Iwaniec and Sarnak studied the first and second
moment (both in the level and the weight aspects) in the case of real characters.
They showed that for r = 1, 2 the asymptotics (1.1) holds for all even k > 2 and
they relaxed also the condition on the primality of N , replacing it by ϕ(N)

N → 1
with N square-free, where ϕ(n) is Euler’s totient function. They studied this
asymptotic in an attempt to show that there are no Siegel zeros, proving that
the non-existence of such exceptional zeros would follow from the non-vanishing
(with some additional lower bound) of strictly more than 1

4 of the central values
of the Hecke L-functions (asymptotically, when either the level or the weight goes
to infinity).

The asymptotics for the (mollified) fourth moment was proved by Kowal-
ski, Michel and VanderKam [KMV] for prime levels. From this result they also
deduced the non-vanishing of a positive proportion of the central values of
L (s, f)L (s, f ⊗ χ) for any fixed characters χ. (For other applications of results on
moments of Hecke L-functions see, among others, [DFI], [KM] and [Van].) Their
work was later extended to prime powers by Balkanova [Bal]. Finally, the asymp-
totic for the third moment was proven by Rouymi [Rou] in the case where the level
is a prime power.

Rather than computing moments at the central point, it is often useful to add
shifts and consider∑h

f∈H∗k(N)

L (1/2 + α1, f ⊗ χ) · · ·L (1/2 + αm, f ⊗ χ) ,

as these reveal more clearly the combinatorics behind the main terms. Usually
the shifts are taken to be fixed (or less than qε for some small ε > 0), however
when studying the n-correlation of zeros one would like to apply conjectures on
moments of ratios of shifted L-functions and integrate over the shifts. Thus, one
needs to understand for what range of shifted parameters the asymptotics for the
moments still hold.

In this paper we shall consider the shifted first moment. Kamiya addressed
this problem in [Kam], showing that if N is prime and <(α) = 0 then∑h

f∈H∗k(N)

L

(
1

2
+ α, f ⊗ χ

)
∼ 1, (1.2)
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for k ∈ {2, 4, 6, 8, 10, 14} and qT � N
1
2−ε, where T := 1 + |=(α)|. The following

theorem extends the range of validity of (1.2) to qT � N2−ε with N a prime
power, as well as allowing for a twist of the form am(f) as needed for non-vanishing
applications [BF]. We take k = 2 for simplicity, however the result is easily
generalizable to all k.

Theorem 1.1. Let N = pν with p prime and ν > 1 and let χ be a primitive
character modulo q with (q,N) = 1. Let |<(α)| � 1

logN and write T = 1 + |=(α)|.
Then, if ν > 2 and p|m thenMm(α, χ;N) = 0. In all other cases for all ε > 0 we
have

Mm(α, χ;N) =
χ(m)

m
1
2 +α

(1− δν(p)) +Oε((qTm)1/2N−1+ε),

as N goes to infinity, where δν(p) = 0 if ν = 1, δν(p) = 1
p−p−1 if ν = 2 and

δν(p) = 1
p otherwise.

The proof is rather simple and is based on Petersson’s formula and on the func-
tional equation for the “twisted periodic zeta-function” which is the meromorphic
continuation to C of

F ∗
(
s, χ,

a

c

)
:=
∑
n>1

χ(n) e
(
na
c

)
ns

<(s) > 1 (1.3)

with (a, c) = 1, c > 0, and χ a primitive character modulo q. Analogously to what
happens in the case where q = 1, the functional equation relates F ∗

(
s, χ, ac

)
with

F∗ (1− s, χ,−aq/c) where F∗ (s, χ, x) is the “twisted Hurwitz zeta-function”

F∗ (s, χ, x) :=
∑

n+x>0

χ(n)

(n+ x)s
, <(s) > 1, x ∈ R. (1.4)

Acknowledgments. A weaker version of Theorem 1.1 was proven in the author’s
PhD thesis. The author would like to thank Olga Balkanova for useful comments.

2. Preliminaries and the computation of the main term

Remark 2.1. Throughout the paper, we use the common convention in analytic
number theory that ε denotes an arbitrarily small positive quantity that may vary
from line to line.

We define T := |=(α)| + 1 and assume that T,m, q � N100 (otherwise the
result is trivial) and <(α)� 1

logN .
We shall show that

Mm(α, χ;N) :=
∑h

f∈Hk(N)

af (m)L
(

1
2 + α, f ⊗ χ

)
=

χ(m)

m
1
2 +α

+Oε

( (qTm)1/2

N1−ε

)
,

(2.1)

where N is any integer. If N is prime and k = 2, then H2(N) = H∗2 (N) and so
we obtain Theorem 1.1 in the case ν = 1.
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Next, we express L
(

1
2 + α, f ⊗ χ

)
as a sum of length Y � q2T 2N1+ε.

Lemma 2.1. Let f ∈ Hk (N) and let χ be a primitive Dirichlet character modulo
q with (q,N) = 1. Let ε > 0 and let Y � q2T 2N1+ε. Then

L
(

1
2 + α, f

)
=
∑
n>1

χ(n)af (n)

n
1
2 +α

V
( n
Y

)
+Oε,A(N−A) (2.2)

for any A > 0, where

V (x) :=
1

2πi

∫
(2)

es
2

x−s
ds
s
. (2.3)

Proof. Exchanging the order of summation and integration and moving the line
of integration to −M for some M > 0 we see that the sum on the right hand side
of (2.2) is equal to

L
(

1
2 + α, f ⊗ χ

)
+

1

2πi

∫
(−M)

es
2

L
(

1
2 + s+ α, f ⊗ χ

)
Y s

ds
s
.

By the functional equation

Λ(s, f ⊗ χ) :=
(√

Nq/2π
)s

Γ (s+ (k − 1)/2)L(s, f ⊗ χ)

= ωΛ(1− s, f ⊗ χ),

where |ω| = 1 we see that the integral is bounded by (Nq2T 2/Y )M , since

Γ (1− α− s)
Γ (1 + α+ s)

� T−2<(s)e
|s|2
2

by Stirling’s formula. The Lemma then follows by taking M large enough. �

Lemma 2.2 (Petersson’s formula). Let F be an orthonormal basis of S2(N).
Then, for m,n > 1 we have∑h

f∈F

af (m) af (n) = δm,n + 2πi−k
∑
c>1,
N |c

S(m,n; c)

c
J1

(
4π
√
mn

c

)
,

(2.4)

where δm,n = 1 if m = n and δm,n = 0 otherwise.

Applying Lemma (2.1) with Y = (mNqT )2 and using Petersson’s formula we
can write Mm(α, χ;N) as

Mm(α, χ;N) =
∑
n>1

χ(n)

n
1
2 +α

(∑h

f∈F

af (m) af (n)

)
V
( n
Y

)
=

χ(m)

m
1
2 +α

V
(m
Y

)
− 2π

∑
n>1

χ(n)

n
1
2 +α

∑
c>1,
N |c

S(m,n; c)

c
J1

(
4π
√
mn

c

)
V
( n
Y

)
,

(2.5)
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where S(m,n, c) is the Kloosterman sum. Now,

V
(m
Y

)
=

1

2πi

∫
(2)

es
2

(Y/m)s
ds
s

= 1 +O(N−A)

for any A > 0, so we just need to bound the series on the last line of (2.5).
By Weil’s bound, S(m,n, c) �ε (m,n, c)

1
2 c

1
2 +ε, and the bounds J1(x) � x and

V (x)�A min(1, x−A) for any A > 0, the contribution to the aforementioned series
coming from the terms with c > C is bounded by∑

c>C

1

c
3
2−ε

∑
n>1

m
1
2

n<(α)

∣∣∣V ( n
Y

)∣∣∣� m
1
2Y

C
1
2−ε

.

Taking C = ND with D fixed but large enough, we obtain that the contribution
of these terms is OA(N−2). Thus, opening the Kloosterman sum and exchanging
the order of summation, we arrive to

Mm(α, χ;N) =
χ(m)

m
1
2 +α
− 2π

∑
c6C,
N |c

∑
a (mod c),

(a,c)=1

e (ma/c)

c
Tm(a, c, α, χ;Y ) +O(N−2),

(2.6)

where

Tm(a, c, α, χ;Y ) :=
∑
n>1

χ(n) e (na/c)

n
1
2 +α

J1

(
4π
√
mn

c

)
V
( n
Y

)
. (2.7)

3. The twisted periodic zeta function

In order to bound Tm(a, c, α, χ) we need some properties of the twisted periodic
zeta function F ∗

(
s, χ, ac

)
defined in (1.3).

Lemma 3.1. Let (a, c) = 1 and let χ be a primitive Dirichlet character modulo
q. Then F

(
s, χ, ac

)
is an entire function of s with the exception of a simple pole

at s = 1 of residue χ(a) τ(χ)
q if c = q, where τ(χ) is the Gauss sum. Moreover

F ∗
(
1− s, χ, ac

)
satisfies the functional equation

F ∗
(

1− s, χ, a
c

)
= Γ(s)

τ(χ)

q1−s

(
e−

πis
2 F∗

(
s, χ,−aq

c

)
+ χ(−1)e

πis
2 F∗

(
s, χ,

aq

c

))
,

(3.1)

where F∗ (s, χ, x) is as defined in (1.4).

Proof. We start by decomposing F
(
s, χ, ac

)
into a linear combination of Hurwitz’s

zeta functions,

F ∗
(
s, χ,

a

c

)
=

1

(cq)s

cq∑
`=1

χ(`) e

(
`a

c

)
ζ

(
s,
`

cq

)
,
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where for <(s) > 1 the Hurwitz zeta function is defined by ζ(s, x) :=∑
n+x>0(n + x)−s. The Hurwitz zeta-function is holomorphic on C with the ex-

ception of a simple pole of residue 1 at s = 1. Thus, F ∗
(
s, χ, ac

)
is entire apart

from (possibly) a simple pole at s = 1. The residue is

1

cq

cq∑
`=1

χ(`) e

(
`a

c

)
=

1

cq

q∑
`1=1

χ(`1)

c−1∑
`2=0

e

(
(`1 + `2q)a

c

)

and so it is 0 unless c|q in which case it is equal to

1

q

q∑
`=1

χ(`) e

(
`a

c

)
=

1

q
χ(aq/c)τ(χ),

by (3.12) of [IK] (and the following remark). It follows that the residue is χ(a)τ(χ)/q
if q = c and otherwise F ∗

(
s, χ, ac

)
is entire.

The functional equation for the Hurwitz zeta function expresses ζ(1− s, x) in
terms of the periodic zeta-function F (s, x) :=

∑
n>1 e (nx)n−s:

ζ(1− s, x) = Γ(s)(e−
πis
2 F (s, x) + e

πis
2 F (s,−x)).

Thus, for <(s) < 0 we have

F
(

1− s, χ, a
c

)
=

Γ(s)

(cq)1−s

cq∑
`=1

χ(`) e

(
`a

c

)(
e−

πis
2 F

(
s,
`

cq

)
+ e

πis
2 F

(
s,− `

cq

))

=
Γ(s)

(cq)1−s

∑
ε=±1

eε
πis
2

∑
n>1

1

ns

cq∑
`=1

χ(`) e

(
`aq − εn

cq

)
.

The inner sum is equal to 0 unless εn ≡ aq (mod c) and so

F
(

1− s, χ, a
c

)
=

Γ(s)

c−sq1−s

∑
ε=±1

eε
πis
2

∑
n=εaq+rc,
n>0, r∈Z

1

ns

q∑
`′=1

χ(`′) e

(
`′a

c

)
e

(
−εn`

′

cq

)

=
Γ(s)

c−sq1−s

∑
ε=±1

eε
πis
2

∑
n=εaq+rc,
n>0, r∈Z

1

ns

q∑
`′=1

χ(`′) e

(
−εr`

′

q

)

=
Γ(s)

q1−s

∑
ε=±1

eε
πis
2

∑
r+εaq/c>0

1

(r + εaq/c)s
χ(−εr)τ(χ)

by (3.12) of [IK]. Equation (3.1) then follows. �
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From the functional equation we can obtain the following “convexity bound”
for F

(
s, χ, ac

)
.

Corollary 3.1. Let χ be a primitive character modulo q and let (a, c) = 1. Let
−1 6 <(s) 6 1 and let |s− 1| > ε for some ε > 0. Then

F ∗
(
s, χ,

a

c

)
�ε (q + q|s|) 1

2−
1
2<(s)+ε

×

{
1 if c | q,({

qa
c

}−1+<(s)−ε
+
{
− qac

}−1+<(s)−ε
)

if c - q,

where {x} denotes the fractional part of x. In particular, if r > 1 and η1, . . . , ηcr �
1 then we have

cr∑
a=1,

(a,c)=1

ηaF
∗
(
s, χ,

a

c

)
�ε rc

1+ε(q + q|s|) 1
2−

1
2<(s)+ε. (3.2)

Proof. Let δc,q = 1 if c = q and δc,q = 0 otherwise. Then for <(s) = 1 + ε with
ε > 0 we have

F ∗
(
s, χ,

a

c

)
− δc,q

χ(a)τ(χ)/q

s− 1
�ε 1.

By the functional equation (3.1), for <(s) = −ε we have

F ∗
(
s, χ,

a

c

)
− δc,q

χ(a)τ(χ)/q

s− 1
� 1 + (q|s|) 1

2 +ε
(
ζ
(

1 + ε,−aq
c

)
+ ζ

(
1 + ε,

aq

c

))
,

� (q|s|) 1
2 +ε

({qa
c

}−1−ε
+
{
−qa
c

}−1−ε
)

if c - q and � (q|s|) 1
2 +ε otherwise. The Corollary then follows by the Phragmén-

Lindelöf theorem. �

4. Bounding the error terms

We start by recalling the Mellin transform of J1(x),

J1(x) =
1

2πi

∫
(−δ)

2s−1 Γ
(
s+1

2

)
Γ
(

3
2 −

s
2

)x−s ds,
for any −1 < δ < 0. We take δ = −1 + ε for some small ε > 0 and obtain

Tε(a, c, α, χ;Y ) =
1

4πi

∫
(−1+ε)

Γ
(
s+1

2

)
Γ
(

3
2 −

s
2

) (2π

c

)−s∑
n>1

χ(n) e
(
na
c

)
m

s
2n

1
2 +α+ s

2

V
( n
Y

)
ds.
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Now, using the integral representation (2.3) of V (x), we have

Tm(a, c, α, χ;Y ) =
1

2(2πi)2

∫
(−1+ε)

Γ
(
s+1

2

)
Γ
(

3
2 −

s
2

) (2π

c

)−s ∫
(2)

ew
2

m−
s
2×

× F
(

1

2
+ α+

s

2
+ w,χ,

a

c

)
Y w

dw
w

ds.

We move the line of integration of the w-integral to <(w) = ε without pass-
ing through any pole (notice that we can assume c 6= q since we have N |c and
(N, q) = 1). Thus, using (3.2) we obtain∑

a (mod c),
(a,c)=1

e

(
ma

c

)
Tm(a, c, α, χ;Y )

� (qm)
1
2 (cY )ε

∫
(ε)

∫
(ε)

(|s|+ |w|+ |α|) 1
2 |ew2

Γ
(
s
2

)
|

|Γ
(
2− s

2

)
|

|dw ds|
|w|

� (qmT )
1
2 (Y c)ε,

by Stirling’s formula. Thus, by (2.6) we have

Mm(α, χ;N) =
χ(m)

m
1
2 +α

+Oε

(
(qmT )

1
2 /N1−ε

)
,

as desired.

5. Prime powers

We now consider the case of N = pν with ν > 2.

Lemma 5.1. Let N = pν with p prime and ν > 2. Let δν(p) = 1
p−p−1 if ν = 2

and δν(p) = p−1 otherwise. Then, if (p,mn) = 1 we have∑h

f∈H∗2k(N)

λf (m)λf (n) =
∑h

f∈H2k(N)

λf (m)λf (n)− δν(p)
∑h

f∈H2k(N/p)

λf (m)λf (n),

whereas if (p,mn) > 1 then the left hand side is equal to 0.

Proof. This is Remark 4 of [Rou]. �

By Lemma 2.1 and Lemma 5.1 we obtain that if N = pν with ν > 2 then
Mm(α, χ;N) = 0 if (m, p) > 1 and otherwise

Mm(α, χ;N) =
∑h

f∈H2k(N)

af (m)L (1/2 + α, f ⊗ χ) +

− δν(p)
∑h

f∈H2k(N/p)

af (m)L (1/2 + α, f ⊗ χ) +

+
χ(p)

p
1
2 +α

(Em,p(α, χ;N)− δν(p)Em,p(α, χ;N/p)) +O(N−2),

(5.1)
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where

Em,p(α, χ;N) := −
∑
n>1

∑h

f∈H2k(N)

χ(n)af (m)af (pn)

n
1
2 +α

V
(pn
Y

)
with Y = (qTN)2. By (2.1), the first two terms on the right hand side of (5.1)
are equal to χ(m)

m
1
2
+α

(1− 1
pν

) +O((qTm)1/2N−1+ε), thus we just need to bound the
contribution of Em,p(α, χ;N). Applying Petersson’s formula (2.4) and proceeding
as in Section 2 we obtain

Em,p(α, χ;N) := 2π
∑
c6C,
N |c

1

c

∑
a (mod c),

(a,c)=1

e

(
ma

c

)
Tm/p(a, c/p, α, χ;Y/p)

with Tm(a, c, α, χ;Y ) as in (2.7) and C = ND for some large but fixed D. By the
same arguments as in the previous section (using (3.2) with r = p) we have∑

a (mod c),
(a,c)=1

e

(
ma

c/p

)
Tm/p(a, c/p, α, χ;Y/p)� p(qm/pT )

1
2 (Y c)ε,

and so Em,p(α, χ;N)� (pqmT )1/2N−1+ε. Inserting such bound in (5.1) we obtain
Theorem 1.1 also in the prime powers case.
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