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NOTE ON THE CLASS NUMBER OF THE pTH CYCLOTOMIC
FIELD, III

Humio Ichimura

Abstract: Let p = 2`f + 1 be a prime number with f > 2 and an odd prime number `. For
0 6 t 6 f , let Kt be the imaginary subfield of the pth cyclotomic field Q(ζp) with [Kt : Q] = 2`t.
Denote by h−p,t the relative class number of Kt, and by h+p,t the class number of the maximal
real subfield K+

t . It is known that the ratio h−p,f/h
−
p,f−1 is odd (and hence so is h+p,f/h

+
p,f−1)

whenever 2 is a primitive root modulo `2. We show that h+p,f/h
+
p,f−1 is odd under a somewhat

milder assumption on ` and that the ratio h−p,f−1/h
−
p,f−2 is always odd when ` = 3.

Keywords: relative class number, cyclotomic field.

1. Introduction

Let p be an odd prime number. Let K = Q(ζp) be the pth cyclotomic field,
and h−p the relative class number of K. Here, for an integer m > 2, ζm denotes
a primitive mth root of unity. When p = 2`+ 1 for some odd prime number `, it
is conjectured that h−p is odd. There are several results and computations related
to this conjecture, for which see Estes [3], Stevenhagen [12], Metsänkylä [10] and
some references therein. In the previous papers [4, 5], we extended some of these
results for prime numbers of the form p = 2`f + 1 with f > 2 and p = 2e+1` + 1
with e > 1. In what follows, let p = 2`f + 1 be a prime number with f > 2 and an
odd prime number `. For each 0 6 t 6 f , we denote by Kt the imaginary subfield
of K of degree 2`t over Q and by kt = K+

t the maximal real subfield of Kt. Let
h−p,t be the relative class number of Kt, and h+

p,t the class number of kt in the usual
sense. Then we have Kf = K, h−p,f = h−p , K0 = Q(

√
−p) and k0 = Q. Using

class field theory, we can easily show that h±p,t−1 divides h±p,t for each t. In [4], we
proved that the ratio h−p,f/h

−
p,f−1 is odd whenever 2 is a primitive root modulo `2,

and gave some computational results in the range p = 2`f +1 < 256, which suggest
that h−p,t/h

−
p,t−1 might be odd if t0 + 1 6 t 6 f with t0 = ord`(2

`−1 − 1). It is
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known that the ratio h+
p,t/h

+
p,t−1 is odd if h−p,t/h

−
p,t−1 is odd (see Lemma 1 in §2),

and hence it follows from the above that the ratio h+
p,f/h

+
p,f−1 is odd whenever 2

is a primitive root modulo `2.
The purposes of this note are (i) to relax the assumption of the last assertion

on the real class number (Proposition 1) and (ii) to deal with the case t = f − 1
for the relative class number (Propositions 2, 3). The assertion on the real class
number is given for a fixed f and varying `, while the ones on the relative class
number are given for a fixed ` and varying f .

Proposition 1. Under the above setting, assume that ` ≡ 3 mod 4 and the order
of 2 modulo `2 is (`− 1)`/2. Then the ratio h+

p,f/h
+
p,f−1 is odd.

Proposition 2. Let ` be an odd prime number such that 2 is a primitive root
modulo `2. Then the ratio h−p,f−1/h

−
p,f−2 is odd for any prime number p = 2`f + 1

if p > (2`(`− 1))`(`−1).

Let ` = 3. By the computation of Williams and Zarnke [15], it is known that
when f 6 325, p = 2 · 3f + 1 is a prime number for

f = 1, 2, 4, 5, 6, 9, 16, 17, 30, 54, 57, 60, 65, 132, 180, 320.

We see from Proposition 2 that h−p,f−1/h
−
p,f−2 is odd if p > 126 since 2 is a primitive

root modulo 9. In view of the above data, this implies that the ratio is odd when
f > 16 as 2 ·316 +1 > 126. On the other hand, we already know by [4, Proposition
2] that h−p,t/h

−
p,t−1 is odd for any 2 6 t 6 f when p = 2 · 3f + 1 < 256, namely

when f 6 30 in the above data. Therefore, we obtain the following:

Proposition 3. When ` = 3, h−p,f−1/h
−
p,f−2 is odd for any prime number p =

2 · 3f + 1.

Remark 1.

(I) When p = 2`+1 (the case f = 1), it is shown in [3, 10, 12] that h−p is odd
(and hence so is h+

p ) when ` ≡ 3 mod 4 and the order of 2 modulo ` is
(`− 1)/2. It is not clear to us whether their methods can be applied for
showing that h−p,f/h

−
p,f−1 is odd under the setting and the assumption of

Proposition 1.
(II) A similar condition appears also for an odd prime number r. Let p = 2`+1

be as above, and assume that ` ≡ 3 mod 4 and that the order of r modulo
` is `− 1 or (`− 1)/2. Then Jakubec and Trojovský [9, Theorem 1] and
Trojovský [13, Theorem 1] showed that h+

p is not divisible by r when
r 6 10000.

2. Proof of Proposition 1

For a while, we work in a more general setting. Let p be an odd prime number
with p ≡ 3 mod 4, and put K = Q(ζp) and K0 = Q(

√
−p). We denote by ClN
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the ideal class group of a number field N in the usual sense. Let Cl−K be the
kernel of the norm map ClK → ClK+ where N+ is the maximal real subfield of an
imaginary abelian field N . We denote by A−K and A+

K the 2-primary parts of the
class groups Cl−K and ClK+ , respectively. The Galois group ∆ = Gal(K+/Q) is
naturally identified with Gal(K/K0) as K = K+K0. We can naturally regard the
groups A−K and A+

K as modules over the group ring Z[∆]. We fix algebraic closures
Q̄ and Q̄2 of the rationals Q and the 2-adic rationals Q2, respectively, and we fix an
embedding Q̄ ↪→ Q̄2 in all what follows. A character of ∆ or a Dirichlet character
of conductor p is assumed to be Q̄-valued and at the same time as Q̄2-valued via
the embedding Q̄ ↪→ Q̄2. Further, a character of ∆ is often regarded as an even
Dirichlet character of conductor p. For a character χ of ∆, let

eχ =
1

|∆|
∑
σ∈∆

Trχ(χ(σ−1))σ ∈ Z2[∆] (1)

be the idempotent of Z2[∆] associated to χ, Trχ being the trace map from Q2(χ)
to Q2. Here, Z2 denotes the ring of 2-adic integers and Q2(χ) the subfield of
Q̄2 generated by the values of χ over Q2. For a module X over Z[∆], we set
X(χ) = X̂eχ or eχX̂, where X̂ = X ⊗Z Z2. The following assertion is shown in
Cornacchia [1, Theorem 1]. (See also [8, Theorem 4] for an alternative proof.)

Lemma 1. Under the above setting, the following conditions are equivalent to
each other.

(I) At least one of A−K(χ) and A−K(χ−1) is trivial.
(II) Both of A+

K(χ) and A+
K(χ−1) are trivial.

The following assertion is a consequence of Lemma 1.

Lemma 2. Under the setting of Lemma 1, assume that −1 ≡ 2a mod d for some
a ∈ Z where d is the order of χ. Then A−K(χ) is trivial if and only if so is A+

K(χ).

Proof. Under the assumption on d, we see that χ and χ−1 are conjugate over
Q2, and hence that X(χ) = X(χ−1) for every Z[∆]-module X. Therefore, the
assertion follows from Lemma 1. �

Let δ be the quadratic character associated to K0 = Q(
√
−p). Regarding

a character χ of ∆ as an even Dirichlet character of conductor p, we denote by

B1,δχ =
1

p

p−1∑
a=1

aδχ(a)

the generalized Bernoulli number. As for the order of A−K(χ), Greither [6, Theo-
rem A] proved that

|A−K(χ)| = |Oχ/βδχ−1Oχ| with βδχ =
1

2
B1,δχ (2)

as a consequence of the Iwasawa main conjecture. Here, Oχ is the ring of integers
of Q2(χ).
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We return back to the specific setting in §1 with p = 2`f + 1 and recall what
we have shown in the previous paper [4]. We use the same notation as above. In
particular, K = Kf and ∆ = Gal(Kf/K0) = Gal(kf/Q). In what follows, we
assume that ord`(2

`−1 − 1) = 1, where ord`(∗) is the additive `-adic valuation
with ord`(`) = 1. This is satisfied in the setting of Propositions 1 and 2. For an
element x ∈ Zp, let sp(x) ∈ Z be the unique integer with sp(x) ≡ x mod p and
0 6 sp(x) 6 p− 1. Fixing a primitive root g modulo p, we put

Gt,j0 = Gt,j0(T ) =

`−1∑
v=0

`f−t−1∑
u=0

sp(g
2(`tu+`t−1v+j0))

T v (∈ Z[T ])

for each integer j0 > 0. Let χt be an arbitrary character of ∆ with order `t for
each 0 6 t 6 f . The value βδχt is contained in Ft = Q(ζ`t). In [4, page 303], we
have shown that

TrFt/F1

(
ζ−j0`t βδχt

)
=
`t−1

p
Gt,j0(ζ`) (3)

with
ζ`t = χt(g

2) and ζ` = ζ`
t−1

`t = χt(g
2`t−1

). (4)

What we have actually shown in the proof of the main theorem of [4] is the
following. Let Φ` = Φ`(T ) be the `th cyclotomic polynomial. For a polynomial
G = G(T ) ∈ Z[T ], let G̃ = G mod 2 ∈ F2[T ]. Here, F2 is the finite field of two
elements.

Lemma 3. When t = f , there exists some j0 such that G̃f,j0 is not divisible by Φ̃`.

Assume that ` ≡ 3 mod 4 and that the order of 2 modulo `2 is (` − 1)`/2.
Let Dt be the decomposition group of the prime 2 for the abelian extension Ft/Q.
Then the assumption on ` implies that for each 1 6 t 6 f , the Galois group
Gal(Ft/Q) is generated by Dt and the complex conjugation. We fix a character
χt of ∆ with order `t. Then we observe from the above that any character of ∆
with order `t is conjugate to χt or χ−1

t over Q2. Hence, we obtain

X =

f⊕
t=1

(
X(χt)⊕X(χ−1

t )
)⊕

X(χ0)

for every Z2[∆]-module X.

Proof of Proposition 1. Under the setting and assumptions of Proposition 1,
assume to the contrary that h+

p,f/h
+
p,f−1 is even. Then it follows from the above

that at least one of A+
K(χf ) or A+

K(χ−1
f ) is nontrivial. By Lemma 1, this implies

that both of A−K(χf ) and A−K(χ−1
f ) are nontrivial. Let Pf be the prime ideal of Ff

over 2 corresponding to the fixed embedding Q̄ ↪→ Q̄2, and we put P1 = Pf ∩ F1.
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Then we see from (2) that βδχf ≡ βδχ−1
f
≡ 0 mod Pf . Because of the assumption

on `, the prime ideal P1 of F1 remains prime in Ff . It follows that

TrFf/F1

(
ζ−1βδχf

)
≡ TrFf/F1

(
ζ−1βδχ−1

f

)
≡ 0 mod P1

for any `f th root ζ of unity. Therefore, we observe from (3) and (4) that ζ` =

χf (g2`f−1

) mod P1 and ζ−1
` = χ−1

f (g2`f−1

) mod P1 are roots of G̃f,j0 for all
j0. On the other hand, the assumption on ` implies that Φ̃` is decomposed
as Φ̃` = P (X)Q(X) where P (X), Q(X) are irreducible over F2 and Q(X) =
X(`−1)/2P (1/X) is the reciprocal polynomial of P (X). Therefore, it follows that
G̃f,j0 are multiple of Φ̃` for all j0. However, this is impossible by Lemma 3. �

3. Cyclotomic units

In what follows, we always assume that 2 is a primitive root modulo `2, and work
under the setting of §1. Then, all characters of ∆ = Gal(Kf/K0) with order `t
are conjugate to χt over Q2. Hence, it follows that

X =

f⊕
t=0

X(χt)

for every Z[∆]-module X. In particular, the 2-part of the ratio h−p,t/h
−
p,t−1 equals

|A−K(χt)|. Thus, we obtain from Lemma 2 the equivalence

2 - h−p,t/h
−
p,t−1 ⇐⇒ A+

K(χt) = {0}. (5)

Let E be the group of units of kf = Q(ζp)
+, and C the subgroup of E consisting

of cyclotomic units of kf in the sense of Washington [14, §8.1]. As is well known,
E/C is a finite abelian group and |E/C| = h+ ([14, Theorem 8.2]). Cornacchia
and Greither [2, Proposition 2] proved

|(E/C)(χt)| = |A+
K(χt)| (6)

for each t as a consequence of the Iwasawa main conjecture.
For t with 0 6 t < f , let Nf,t be the norm map from kf to kt, which is identified

with the norm map from Kf to Kt. We see that

eχf−1
=

1

`2
(`Nf,f−1 −Nf,f−2).

This follows from the definition (1) as follows. For each σ ∈ ∆, we note that
χf−1(σ) = 1 if and only if σ` = 1, and that with 1 6 i 6 f − 1, χf−1(σ) is
a primitive `ith root of unity if and only if the order of σ equals `i+1. The prime
number 2 remains prime in Q(ζ`f−1) since 2 is a primitive root modulo `2. Hence,
Q2(χf−1) = Q2(ζ`f−1) is of degree (`−1)`f−2 overQ2. Put Tr = Trχf−1

for brevity.
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Then, we see that Tr(δ) = 0 for δ ∈ µ`f−1 \ µ`, and that Tr(δ) = (` − 1)`f−2 or
−`f−2 for δ ∈ µ` according as δ = 1 or not. Combining these, we can easily show
the assertion from (1).

We put O = Z2[ζ`f−1 ]. Then the χf−1-part X(χf−1) of a Z[∆]-module X is
naturally regarded as an O-module. We see that E(χf−1) ∼= O as O-modules by
a theorem of Minkowski on the group of units of a Galois extension over Q (cf.
Narkiewicz [11, Theorem 3.26]). Let g be a fixed primitive root modulo p, and put

ξ =
∏
j

′
(
ζg

2`f−2j

p + 1

)
(7)

where j runs over the integers with 0 6 j 6 `2 − 1 and ` - j. Let f = f2 be the
Frobenius automorphism of Kf at 2. We show the following:

Lemma 4. If the ratio h−p,f−1/h
−
p,f−2 is even, then ξf ≡ ξ2 mod 4.

Proof. Put
ξ1 = (ζp + ζ−1

p )`Nf,f−1−Nf,f−2 ,

which is an element of C(χf−1). Assume that h−p,f−1/h
−
p,f−2 is even. Then, as

E(χf−1) ∼= O, we see from (5) and (6) that C(χf−1) ⊆ E(χf−1)2. Therefore, ξ1
is a square in E, and hence ξ1 ∈ (K×f )2. We see that ξ1 is Galois conjugate to the
element

ξ2 = (ζp + 1)`Nf,f−1 × (ζp + 1)−Nf,f−2 .

Thus, ξ2 ∈ (K×f )2. Let σ be the automorphism of Kf sending ζp to ζgp . Then we
see that

ξ2 =

`−1∏
j=0

(ζp + 1)σ
2`f−1j

`

×

`2−1∏
j=0

(ζp + 1)σ
2`f−2j

−1

=

`−1∏
j=0

(ζp + 1)σ
2`f−1j

`−1

×

∏
j

′
(ζp + 1)σ

2`f−2j

−1

≡ ξ−1 mod (K×f )2.

Here, in the fourth product
∏′
j , j runs over the same range as in (7). Thus,

it follows that ξ = x2 for some x ∈ K×f . As 2 is unramified in Kf , we have
xf ≡ x2 mod 2. Hence,

ξf = (xf)2 ≡ (x2)2 ≡ ξ2 mod 4. �

Let J be the set of integers with 0 6 j 6 `2 − 1 and ` - j. For each m ∈ J , let
Jm = J \ {m} and let Ψm be the set of maps κ : Jm → {0, 1}. For m ∈ J and
κ ∈ Ψm, we put

A(m,κ) = g2`f−2m + 2
∑
j∈Jm

κ(j)g2`f−2j .
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Lemma 5. Assume that there exist an integer m0 ∈ J and a map κ0 ∈ Ψm0
such

that A(m,κ) 6≡ A(m0, κ0) mod p for all pairs (m, κ) 6= (m0, κ0). Then the ratio
h−p,f−1/h

−
p,f−2 is odd.

Proof. Let m0 and κ0 be as above. Assume to the contrary that h−p,f−1/h
−
p,f−2

is even. Then by Lemma 4 we see that∏
j

′
(ζ2g2`

f−2j

p + 1) ≡
∏
j

′
(ζg

2`f−2j

p + 1)2

≡
∏
j

′
((ζ2g2`

f−2j

p + 1) + 2ζg
2`f−2j

p ) mod 4. (8)

The third product is congruent to

∏
j

′
(ζ2g2`

f−2j

p + 1) + 2
∑
m∈J

ζg
2`f−2m

p

∏
j∈Jm

(ζ2g2`
f−2j

p + 1)

≡
∏
j

′
(ζ2g2`

f−2j

p + 1) + 2
∑
m∈J

∑
κ∈Ψm

ζA(m,κ)
p mod 4.

Therefore, it follows from (8) that∑
m∈J

∑
κ∈Ψm

ζA(m,κ)
p ≡ 0 mod 2.

Multiplying this by ζ−A(m0,κ0)
p , we obtain

1 +
∑

(m,κ)

′
ζA(m,κ)−A(m0,κ0)
p ≡ 0 mod 2 (9)

where (m,κ) runs over the pairs with (m, κ) 6= (m0, κ0). The number N of such
pairs equals |J | × 2|J|−1 − 1, and hence it is odd. Therefore, taking the trace of
the left hand side of (9) to the rationals Q, we obtain

(p− 1) +N × (−1) ≡ 1 mod 2

because ζA(m,κ)−A(m0,κ0)
p is a primitive pth root of unity by the assumption of

Lemma 5. This contradicts the congruence (9). �

As g is a primitive root modulo p, the order of g2`f−2

mod p is `2. As
p ≡ 1 mod `f and f > 2, p splits completely in Q(ζ`2). Let P be an arbitrary
prime ideal of Q(ζ`2) over p, which is necessarily of degree one. Then there exists
a primitive `2th root η of unity in Q(ζ`2) such that

η ≡ g2`f−2

mod P. (10)
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For m ∈ J and κ ∈ Ψm, we put

B(m,κ) = ηm + 2
∑
j∈Jm

κ(j)ηj ∈ Q(ζ`2).

Then, by (10), we obtain the following equivalence on the condition in Lemma 5.

A(m,κ) ≡ A(m0, κ0) mod p⇐⇒ B(m,κ) ≡ B(m0, κ0) mod P. (11)

4. Proof of Proposition 2

Let η be the primitive `2th root of unity satisfying (10). Because of (11), we can
work in the `2th cyclotomic field Q(ζ`2). We assume that 2 is a primitive root
modulo `2. Then the automorphism sending η to η2 is a generator of the Galois
group Gal(Q(ζ`2)/Q). For each 1 6 i 6 `− 1 and 1 6 j 6 `, we put

ηi = η2i−1

and ηi,j = η
1+(j−1)`
i = η2i−1(1+(j−1)`).

These `(` − 1) elements are all the primitive `2th roots of unity. Let ρ be an
automorphism of Q(ζ`2) over Q(ζ`) sending η to η1+`. Then, setting ζ` = η`, we
see that

ηρi,j = ηi,j+1 = ζ2i−1

` ηi,j .

It follows that

Tr(ηi) =
∑̀
j=1

ηi,j = ηi ×
∑̀
j=1

(ζ2i−1

` )j−1 = 0 (12)

where Tr denotes the trace map from Q(ζ`2) to Q(ζ`). Regarding Q(ζ`2) as a vector
space over Q, let V be its subspace spanned by all the primitive `2th roots of unity
over Q. For each i with 1 6 i 6 ` − 1, let Vi be the subspace of V spanned by
ηi,j with 1 6 j 6 `. The following lemma on these vector spaces over Q is easy to
show.

Lemma 6.
(I) The automorphism ρ acts on Vi via ζ2i−1

` -multiplication, and V = V1 ⊕
V2 · · · ⊕ V`−1.

(II) For each i, the equality (12) is the unique linear relation over Q satisfied
by the elements ηi,j with 1 6 j 6 `, namely dimQ Vi = `− 1.

Let I be the set of pairs (i, j) with 1 6 i 6 ` − 1 and 1 6 j 6 `. We identify
the set I with J in §3 via the correspondence

(i, j)←→ 2i−1(1 + (j − 1)`) mod `2.

For each (u, v) ∈ I, let Iu,v = I \ {(u, v)} and let Ψu,v be the set of maps κ :
Iu,v → {0, 1}. For each map κ ∈ Ψu,v, we put

C(u, v, κ) = ηu,v + 2
∑
(i,j)

′
κ(i, j)ηi,j
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where (i, j) runs over the set Iu,v. We choose κ0 ∈ Ψ1,1 so that κ0(i, 1) = 1 for
i > 2 and κ0(i, j) = 0 for j > 2, and put

C0 = C(1, 1, κ0) = η1,1 + 2(η2,1 + · · ·+ η`−1,1).

The triple (1, 1, κ0) plays the role of the pair (m0, κ0) in Lemma 5.

Lemma 7. For (u, v) ∈ I and κ ∈ Ψu,v, we have C(u, v, κ) 6= C0 if (u, v, κ) 6=
(1, 1, κ0).

Proof. We fix a triple (u, v, κ) with (u, v, κ) 6= (1, 1, κ0). For each i with i 6= u,
we define an element Xi of Vi by

Xi = (κ(i, 1)− 1)ηi,1 +
∑̀
j=2

κ(i, j)ηi,j .

Further, we define elements Y1 and Z1 of V1 when (u, v) 6= (1, 1) by

Y1 = (2κ(1, 1)− 1)η1,1 + 2
∑̀
j=2

κ(1, j)η1,j , for u 6= 1,

Z1 = (2κ(1, 1)− 1)η1,1 + η1,v + 2
∑
j 6=1,v

κ(1, j)η1,j , for v 6= 1,

and elements Yu and Zu of Vu when u 6= 1 by

Yu = −ηu,1 + 2
∑̀
j=2

κ(u, j)ηu,j , for v = 1,

Zu = 2(κ(u, 1)− 1)ηu,1 + ηu,v + 2
∑
j 6=1,v

κ(u, j)ηu,j , for v 6= 1.

By Lemma 6(II), we see that Xi = 0 if and only if κ(i, 1)−1 = κ(i, j) for 2 6 j 6 `.
As the value of κ is 0 or 1, we obtain the equivalence

Xi = 0⇐⇒ κ(i, 1) = 1 and κ(i, j) = 0 for 2 6 j 6 `. (13)

Similarly, we can show that Yk 6= 0 and Zk 6= 0 with k = 1, u from Lemma 6(II).
First, we deal with the case (u, v) = (1, 1). We have

C(1, 1, κ)− C0 = 2
∑̀
j=2

κ(1, j)η1,j + 2

`−1∑
i=2

Xi. (14)

Assume that C(1, 1, κ) = C0. Then it follows from (14) and Lemma 6(I) that

∑̀
j=2

κ(1, j)η1,j = X2 = · · · = X`−1 = 0.
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From Lemma 6(II) and (13), we obtain κ = κ0, which contradicts the assumption
(u, v, κ) = (1, 1, κ) 6= (1, 1, κ0). Next, let u = 1 and v 6= 1. Then we have

C(1, v, κ)− C0 = Z1 + 2

`−1∑
i=2

Xi. (15)

As Z1 6= 0, we see that C(1, v, κ) 6= C0 from Lemma 6(I). Finally, let u 6= 1. We
have

C(u, v, κ)− C0 =


Y1 + Yu + 2

∑
i 6=1,u

Xi, for v = 1

Y1 + Zu + 2
∑
i 6=1,u

Xi, for v > 2.
(16)

Hence, C(u, v, κ) 6= C0 as Y1 6= 0. �

Proof of Proposition 2. For each element α =
∑
ξ aξξ in V with ξ ∈ µ`2 \ µ`

and ai ∈ Q, we have
|ι(α)| 6

∑
ξ

|aξ|

for any embedding ι of Q(ζ`2) into the complex numbers C. It follows that

N(α) 6

∑
ξ

|aξ|

`(`−1)

, (17)

where N denotes the norm map from Q(ζ`2) to Q. For (u, v, κ) 6= (1, 1, κ0), we
obtain

1 6 N(C(u, v, κ)− C0) 6 (2`(`− 1))`(`−1)

from Lemma 7 and the estimate (17) because the coefficients of the primitive
`2th roots ηi,j of unity in (14), (15) and (16) are 0, ±1 or ±2. Hence, if p >
(2`(`− 1))`(`−1), we see that

C(u, v, κ) 6≡ C0 mod P

for (u, v, κ) 6= (1, 1, κ0). Here, P is an arbitrary prime ideal of Q(ζ`2) over p.
Therefore, by Lemma 5 and the equivalence (11), we obtain the assertion. �

Remark 2. In [7], Horie studied the non-`-part of the class numbers of the cyclo-
tomic Z`-extension of Q. We have used some of his ideas/techniques for showing
Proposition 2.

Corrigendum. In the previous paper [4, §4], we gave five tables; Tables 3, 4, 5,
6 and 7. However, their labeling is wrong, and it is necessary to change Table
n to Table n − 2 for each 3 6 n 6 7 except for the one in the first line of
[4, Proposition 3]. Further, in Table 7, the entry for the column r = 7 and the
row j0 = 2 is incorrect and it should be changed to 4.
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