NOTE ON THE CLASS NUMBER OF THE p TH CYCLOTOMIC FIELD, III

Humio Ichimura

Abstract

Let $p=2 \ell^{f}+1$ be a prime number with $f \geqslant 2$ and an odd prime number ℓ. For $0 \leqslant t \leqslant f$, let K_{t} be the imaginary subfield of the p th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$ with $\left[K_{t}: \mathbb{Q}\right]=2 \ell^{t}$. Denote by $h_{p, t}^{-}$the relative class number of K_{t}, and by $h_{p, t}^{+}$the class number of the maximal real subfield K_{t}^{+}. It is known that the ratio $h_{p, f}^{-} / h_{p, f-1}^{-}$is odd (and hence so is $h_{p, f}^{+} / h_{p, f-1}^{+}$) whenever 2 is a primitive root modulo ℓ^{2}. We show that $h_{p, f}^{+} / h_{p, f-1}^{+}$is odd under a somewhat milder assumption on ℓ and that the ratio $h_{p, f-1}^{-} / h_{p, f-2}^{-}$is always odd when $\ell=3$.

Keywords: relative class number, cyclotomic field.

1. Introduction

Let p be an odd prime number. Let $K=\mathbb{Q}\left(\zeta_{p}\right)$ be the p th cyclotomic field, and h_{p}^{-}the relative class number of K. Here, for an integer $m \geqslant 2, \zeta_{m}$ denotes a primitive m th root of unity. When $p=2 \ell+1$ for some odd prime number ℓ, it is conjectured that h_{p}^{-}is odd. There are several results and computations related to this conjecture, for which see Estes [3], Stevenhagen [12], Metsänkylä [10] and some references therein. In the previous papers [4,5], we extended some of these results for prime numbers of the form $p=2 \ell^{f}+1$ with $f \geqslant 2$ and $p=2^{e+1} \ell+1$ with $e \geqslant 1$. In what follows, let $p=2 \ell^{f}+1$ be a prime number with $f \geqslant 2$ and an odd prime number ℓ. For each $0 \leqslant t \leqslant f$, we denote by K_{t} the imaginary subfield of K of degree $2 \ell^{t}$ over \mathbb{Q} and by $k_{t}=K_{t}^{+}$the maximal real subfield of K_{t}. Let $h_{p, t}^{-}$be the relative class number of K_{t}, and $h_{p, t}^{+}$the class number of k_{t} in the usual sense. Then we have $K_{f}=K, h_{p, f}^{-}=h_{p}^{-}, K_{0}=\mathbb{Q}(\sqrt{-p})$ and $k_{0}=\mathbb{Q}$. Using class field theory, we can easily show that $h_{p, t-1}^{ \pm}$divides $h_{p, t}^{ \pm}$for each t. In [4], we proved that the ratio $h_{p, f}^{-} / h_{p, f-1}^{-}$is odd whenever 2 is a primitive root modulo ℓ^{2}, and gave some computational results in the range $p=2 \ell^{f}+1<2^{56}$, which suggest that $h_{p, t}^{-} / h_{p, t-1}^{-}$might be odd if $t_{0}+1 \leqslant t \leqslant f$ with $t_{0}=\operatorname{ord}_{\ell}\left(2^{\ell-1}-1\right)$. It is
known that the ratio $h_{p, t}^{+} / h_{p, t-1}^{+}$is odd if $h_{p, t}^{-} / h_{p, t-1}^{-}$is odd (see Lemma 1 in §2), and hence it follows from the above that the ratio $h_{p, f}^{+} / h_{p, f-1}^{+}$is odd whenever 2 is a primitive root modulo ℓ^{2}.

The purposes of this note are (i) to relax the assumption of the last assertion on the real class number (Proposition 1) and (ii) to deal with the case $t=f-1$ for the relative class number (Propositions 2, 3). The assertion on the real class number is given for a fixed f and varying ℓ, while the ones on the relative class number are given for a fixed ℓ and varying f.

Proposition 1. Under the above setting, assume that $\ell \equiv 3 \bmod 4$ and the order of 2 modulo ℓ^{2} is $(\ell-1) \ell / 2$. Then the ratio $h_{p, f}^{+} / h_{p, f-1}^{+}$is odd.

Proposition 2. Let ℓ be an odd prime number such that 2 is a primitive root modulo ℓ^{2}. Then the ratio $h_{p, f-1}^{-} / h_{p, f-2}^{-}$is odd for any prime number $p=2 \ell^{f}+1$ if $p>(2 \ell(\ell-1))^{\ell(\ell-1)}$.

Let $\ell=3$. By the computation of Williams and Zarnke [15], it is known that when $f \leqslant 325, p=2 \cdot 3^{f}+1$ is a prime number for

$$
f=1,2,4,5,6,9,16,17,30,54,57,60,65,132,180,320
$$

We see from Proposition 2 that $h_{p, f-1}^{-} / h_{p, f-2}^{-}$is odd if $p>12^{6}$ since 2 is a primitive root modulo 9 . In view of the above data, this implies that the ratio is odd when $f \geqslant 16$ as $2 \cdot 3^{16}+1>12^{6}$. On the other hand, we already know by [4, Proposition 2] that $h_{p, t}^{-} / h_{p, t-1}^{-}$is odd for any $2 \leqslant t \leqslant f$ when $p=2 \cdot 3^{f}+1<2^{56}$, namely when $f \leqslant 30$ in the above data. Therefore, we obtain the following:

Proposition 3. When $\ell=3, h_{p, f-1}^{-} / h_{p, f-2}^{-}$is odd for any prime number $p=$ $2 \cdot 3^{f}+1$.

Remark 1.

(I) When $p=2 \ell+1$ (the case $f=1$), it is shown in $[3,10,12]$ that h_{p}^{-}is odd (and hence so is h_{p}^{+}) when $\ell \equiv 3 \bmod 4$ and the order of 2 modulo ℓ is $(\ell-1) / 2$. It is not clear to us whether their methods can be applied for showing that $h_{p, f}^{-} / h_{p, f-1}^{-}$is odd under the setting and the assumption of Proposition 1.
(II) A similar condition appears also for an odd prime number r. Let $p=2 \ell+1$ be as above, and assume that $\ell \equiv 3 \bmod 4$ and that the order of r modulo ℓ is $\ell-1$ or $(\ell-1) / 2$. Then Jakubec and Trojovský [9, Theorem 1] and Trojovsky [13, Theorem 1] showed that h_{p}^{+}is not divisible by r when $r \leqslant 10000$.

2. Proof of Proposition 1

For a while, we work in a more general setting. Let p be an odd prime number with $p \equiv 3 \bmod 4$, and put $K=\mathbb{Q}\left(\zeta_{p}\right)$ and $K_{0}=\mathbb{Q}(\sqrt{-p})$. We denote by $C l_{N}$
the ideal class group of a number field N in the usual sense. Let $C l_{K}^{-}$be the kernel of the norm map $C l_{K} \rightarrow C l_{K^{+}}$where N^{+}is the maximal real subfield of an imaginary abelian field N. We denote by A_{K}^{-}and A_{K}^{+}the 2 -primary parts of the class groups $C l_{K}^{-}$and $C l_{K^{+}}$, respectively. The Galois group $\Delta=\operatorname{Gal}\left(K^{+} / \mathbb{Q}\right)$ is naturally identified with $\operatorname{Gal}\left(K / K_{0}\right)$ as $K=K^{+} K_{0}$. We can naturally regard the groups A_{K}^{-}and A_{K}^{+}as modules over the group ring $\mathbb{Z}[\Delta]$. We fix algebraic closures $\overline{\mathbb{Q}}$ and $\overline{\mathbb{Q}}_{2}$ of the rationals \mathbb{Q} and the 2-adic rationals \mathbb{Q}_{2}, respectively, and we fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{2}$ in all what follows. A character of Δ or a Dirichlet character of conductor p is assumed to be $\overline{\mathbb{Q}}$-valued and at the same time as $\overline{\mathbb{Q}}_{2}$-valued via the embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{2}$. Further, a character of Δ is often regarded as an even Dirichlet character of conductor p. For a character χ of Δ, let

$$
\begin{equation*}
e_{\chi}=\frac{1}{|\Delta|} \sum_{\sigma \in \Delta} \operatorname{Tr}_{\chi}\left(\chi\left(\sigma^{-1}\right)\right) \sigma \in \mathbb{Z}_{2}[\Delta] \tag{1}
\end{equation*}
$$

be the idempotent of $\mathbb{Z}_{2}[\Delta]$ associated to $\chi, \operatorname{Tr}_{\chi}$ being the trace map from $\mathbb{Q}_{2}(\chi)$ to \mathbb{Q}_{2}. Here, \mathbb{Z}_{2} denotes the ring of 2-adic integers and $\mathbb{Q}_{2}(\chi)$ the subfield of $\overline{\mathbb{Q}}_{2}$ generated by the values of χ over \mathbb{Q}_{2}. For a module X over $\mathbb{Z}[\Delta]$, we set $X(\chi)=\widehat{X}^{e_{\chi}}$ or $e_{\chi} \widehat{X}$, where $\widehat{X}=X \otimes_{\mathbb{Z}} \mathbb{Z}_{2}$. The following assertion is shown in Cornacchia [1, Theorem 1]. (See also [8, Theorem 4] for an alternative proof.)
Lemma 1. Under the above setting, the following conditions are equivalent to each other.
(I) At least one of $A_{K}^{-}(\chi)$ and $A_{K}^{-}\left(\chi^{-1}\right)$ is trivial.
(II) Both of $A_{K}^{+}(\chi)$ and $A_{K}^{+}\left(\chi^{-1}\right)$ are trivial.

The following assertion is a consequence of Lemma 1.
Lemma 2. Under the setting of Lemma 1, assume that $-1 \equiv 2^{a} \bmod d$ for some $a \in \mathbb{Z}$ where d is the order of χ. Then $A_{K}^{-}(\chi)$ is trivial if and only if so is $A_{K}^{+}(\chi)$.
Proof. Under the assumption on d, we see that χ and χ^{-1} are conjugate over \mathbb{Q}_{2}, and hence that $X(\chi)=X\left(\chi^{-1}\right)$ for every $\mathbb{Z}[\Delta]$-module X. Therefore, the assertion follows from Lemma 1.

Let δ be the quadratic character associated to $K_{0}=\mathbb{Q}(\sqrt{-p})$. Regarding a character χ of Δ as an even Dirichlet character of conductor p, we denote by

$$
B_{1, \delta \chi}=\frac{1}{p} \sum_{a=1}^{p-1} a \delta \chi(a)
$$

the generalized Bernoulli number. As for the order of $A_{K}^{-}(\chi)$, Greither [6, Theorem A] proved that

$$
\begin{equation*}
\left|A_{K}^{-}(\chi)\right|=\left|\mathcal{O}_{\chi} / \beta_{\delta \chi^{-1}} \mathcal{O}_{\chi}\right| \quad \text { with } \quad \beta_{\delta \chi}=\frac{1}{2} B_{1, \delta \chi} \tag{2}
\end{equation*}
$$

as a consequence of the Iwasawa main conjecture. Here, \mathcal{O}_{χ} is the ring of integers of $\mathbb{Q}_{2}(\chi)$.

We return back to the specific setting in $\S 1$ with $p=2 \ell^{f}+1$ and recall what we have shown in the previous paper [4]. We use the same notation as above. In particular, $K=K_{f}$ and $\Delta=\operatorname{Gal}\left(K_{f} / K_{0}\right)=\operatorname{Gal}\left(k_{f} / \mathbb{Q}\right)$. In what follows, we assume that $\operatorname{ord}_{\ell}\left(2^{\ell-1}-1\right)=1$, where $\operatorname{ord}_{\ell}(*)$ is the additive ℓ-adic valuation with $\operatorname{ord}_{\ell}(\ell)=1$. This is satisfied in the setting of Propositions 1 and 2. For an element $x \in \mathbb{Z}_{p}$, let $s_{p}(x) \in \mathbb{Z}$ be the unique integer with $s_{p}(x) \equiv x \bmod p$ and $0 \leqslant s_{p}(x) \leqslant p-1$. Fixing a primitive root g modulo p, we put

$$
G_{t, j_{0}}=G_{t, j_{0}}(T)=\sum_{v=0}^{\ell-1}\left(\sum_{u=0}^{\ell^{f-t}-1} s_{p}\left(g^{2\left(\ell^{t} u+\ell^{t-1} v+j_{0}\right)}\right)\right) T^{v}(\in \mathbb{Z}[T])
$$

for each integer $j_{0} \geqslant 0$. Let χ_{t} be an arbitrary character of Δ with order ℓ^{t} for each $0 \leqslant t \leqslant f$. The value $\beta_{\delta \chi_{t}}$ is contained in $F_{t}=\mathbb{Q}\left(\zeta_{\ell^{t}}\right)$. In [4, page 303], we have shown that

$$
\begin{equation*}
\operatorname{Tr}_{F_{t} / F_{1}}\left(\zeta_{\ell^{t}}^{-j_{0}} \beta_{\delta \chi_{t}}\right)=\frac{\ell^{t-1}}{p} G_{t, j_{0}}\left(\zeta_{\ell}\right) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\zeta_{\ell^{t}}=\chi_{t}\left(g^{2}\right) \quad \text { and } \quad \zeta_{\ell}=\zeta_{\ell^{t}}^{\ell^{t-1}}=\chi_{t}\left(g^{2 \ell^{t-1}}\right) \tag{4}
\end{equation*}
$$

What we have actually shown in the proof of the main theorem of [4] is the following. Let $\Phi_{\ell}=\Phi_{\ell}(T)$ be the ℓ th cyclotomic polynomial. For a polynomial $G=G(T) \in \mathbb{Z}[T]$, let $\widetilde{G}=G \bmod 2 \in \mathbb{F}_{2}[T]$. Here, \mathbb{F}_{2} is the finite field of two elements.

Lemma 3. When $t=f$, there exists some j_{0} such that $\widetilde{G}_{f, j_{0}}$ is not divisible by $\widetilde{\Phi}_{\ell}$.
Assume that $\ell \equiv 3 \bmod 4$ and that the order of 2 modulo ℓ^{2} is $(\ell-1) \ell / 2$. Let D_{t} be the decomposition group of the prime 2 for the abelian extension F_{t} / \mathbb{Q}. Then the assumption on ℓ implies that for each $1 \leqslant t \leqslant f$, the Galois group $\operatorname{Gal}\left(F_{t} / \mathbb{Q}\right)$ is generated by D_{t} and the complex conjugation. We fix a character χ_{t} of Δ with order ℓ^{t}. Then we observe from the above that any character of Δ with order ℓ^{t} is conjugate to χ_{t} or χ_{t}^{-1} over \mathbb{Q}_{2}. Hence, we obtain

$$
X=\bigoplus_{t=1}^{f}\left(X\left(\chi_{t}\right) \oplus X\left(\chi_{t}^{-1}\right)\right) \bigoplus X\left(\chi_{0}\right)
$$

for every $\mathbb{Z}_{2}[\Delta]$-module X.
Proof of Proposition 1. Under the setting and assumptions of Proposition 1, assume to the contrary that $h_{p, f}^{+} / h_{p, f-1}^{+}$is even. Then it follows from the above that at least one of $A_{K}^{+}\left(\chi_{f}\right)$ or $A_{K}^{+}\left(\chi_{f}^{-1}\right)$ is nontrivial. By Lemma 1, this implies that both of $A_{K}^{-}\left(\chi_{f}\right)$ and $A_{K}^{-}\left(\chi_{f}^{-1}\right)$ are nontrivial. Let \mathfrak{P}_{f} be the prime ideal of F_{f} over 2 corresponding to the fixed embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{2}$, and we put $\mathfrak{P}_{1}=\mathfrak{P}_{f} \cap F_{1}$.

Then we see from (2) that $\beta_{\delta \chi_{f}} \equiv \beta_{\delta \chi_{f}^{-1}} \equiv 0 \bmod \mathfrak{P}_{f}$. Because of the assumption on ℓ, the prime ideal \mathfrak{P}_{1} of F_{1} remains prime in F_{f}. It follows that

$$
\operatorname{Tr}_{F_{f} / F_{1}}\left(\zeta^{-1} \beta_{\delta \chi_{f}}\right) \equiv \operatorname{Tr}_{F_{f} / F_{1}}\left(\zeta^{-1} \beta_{\delta \chi_{f}^{-1}}\right) \equiv 0 \bmod \mathfrak{P}_{1}
$$

for any ℓ^{f} th root ζ of unity. Therefore, we observe from (3) and (4) that $\zeta_{\ell}=$ $\chi_{f}\left(g^{2 \ell^{f-1}}\right) \bmod \mathfrak{P}_{1}$ and $\zeta_{\ell}^{-1}=\chi_{f}^{-1}\left(g^{2 \ell^{f-1}}\right) \bmod \mathfrak{P}_{1}$ are roots of $\widetilde{G}_{f, j_{0}}$ for all j_{0}. On the other hand, the assumption on ℓ implies that $\widetilde{\Phi}_{\ell}$ is decomposed as $\widetilde{\Phi}_{\ell}=P(X) Q(X)$ where $P(X), Q(X)$ are irreducible over \mathbb{F}_{2} and $Q(X)=$ $X^{(\ell-1) / 2} P(1 / X)$ is the reciprocal polynomial of $P(X)$. Therefore, it follows that $\widetilde{G}_{f, j_{0}}$ are multiple of $\widetilde{\Phi}_{\ell}$ for all j_{0}. However, this is impossible by Lemma 3 .

3. Cyclotomic units

In what follows, we always assume that 2 is a primitive root modulo ℓ^{2}, and work under the setting of $\S 1$. Then, all characters of $\Delta=\operatorname{Gal}\left(K_{f} / K_{0}\right)$ with order ℓ^{t} are conjugate to χ_{t} over \mathbb{Q}_{2}. Hence, it follows that

$$
X=\bigoplus_{t=0}^{f} X\left(\chi_{t}\right)
$$

for every $\mathbb{Z}[\Delta]$-module X. In particular, the 2-part of the ratio $h_{p, t}^{-} / h_{p, t-1}^{-}$equals $\left|A_{K}^{-}\left(\chi_{t}\right)\right|$. Thus, we obtain from Lemma 2 the equivalence

$$
\begin{equation*}
2 \nmid h_{p, t}^{-} / h_{p, t-1}^{-} \Longleftrightarrow A_{K}^{+}\left(\chi_{t}\right)=\{0\} . \tag{5}
\end{equation*}
$$

Let E be the group of units of $k_{f}=\mathbb{Q}\left(\zeta_{p}\right)^{+}$, and C the subgroup of E consisting of cyclotomic units of k_{f} in the sense of Washington [14, §8.1]. As is well known, E / C is a finite abelian group and $|E / C|=h^{+}$([14, Theorem 8.2]). Cornacchia and Greither [2, Proposition 2] proved

$$
\begin{equation*}
\left|(E / C)\left(\chi_{t}\right)\right|=\left|A_{K}^{+}\left(\chi_{t}\right)\right| \tag{6}
\end{equation*}
$$

for each t as a consequence of the Iwasawa main conjecture.
For t with $0 \leqslant t<f$, let $N_{f, t}$ be the norm map from k_{f} to k_{t}, which is identified with the norm map from K_{f} to K_{t}. We see that

$$
e_{\chi_{f-1}}=\frac{1}{\ell^{2}}\left(\ell N_{f, f-1}-N_{f, f-2}\right)
$$

This follows from the definition (1) as follows. For each $\sigma \in \Delta$, we note that $\chi_{f-1}(\sigma)=1$ if and only if $\sigma^{\ell}=1$, and that with $1 \leqslant i \leqslant f-1, \chi_{f-1}(\sigma)$ is a primitive ℓ^{i} th root of unity if and only if the order of σ equals ℓ^{i+1}. The prime number 2 remains prime in $\mathbb{Q}\left(\zeta_{\ell f-1}\right)$ since 2 is a primitive root modulo ℓ^{2}. Hence, $\mathbb{Q}_{2}\left(\chi_{f-1}\right)=\mathbb{Q}_{2}\left(\zeta_{\ell f-1}\right)$ is of degree $(\ell-1) \ell^{f-2}$ over \mathbb{Q}_{2}. Put $\operatorname{Tr}=\operatorname{Tr}_{\chi_{f-1}}$ for brevity.

Then, we see that $\operatorname{Tr}(\delta)=0$ for $\delta \in \mu_{\ell^{f-1}} \backslash \mu_{\ell}$, and that $\operatorname{Tr}(\delta)=(\ell-1) \ell^{f-2}$ or $-\ell^{f-2}$ for $\delta \in \mu_{\ell}$ according as $\delta=1$ or not. Combining these, we can easily show the assertion from (1).

We put $\mathcal{O}=\mathbb{Z}_{2}\left[\zeta_{\ell f-1}\right]$. Then the χ_{f-1}-part $X\left(\chi_{f-1}\right)$ of a $\mathbb{Z}[\Delta]$-module X is naturally regarded as an \mathcal{O}-module. We see that $E\left(\chi_{f-1}\right) \cong \mathcal{O}$ as \mathcal{O}-modules by a theorem of Minkowski on the group of units of a Galois extension over \mathbb{Q} (cf. Narkiewicz [11, Theorem 3.26]). Let g be a fixed primitive root modulo p, and put

$$
\begin{equation*}
\xi=\prod_{j}^{\prime}\left(\zeta_{p}^{g^{2 e^{f-2_{j}}}}+1\right) \tag{7}
\end{equation*}
$$

where j runs over the integers with $0 \leqslant j \leqslant \ell^{2}-1$ and $\ell \nmid j$. Let $\mathfrak{f}=\mathfrak{f}_{2}$ be the Frobenius automorphism of K_{f} at 2 . We show the following:
Lemma 4. If the ratio $h_{p, f-1}^{-} / h_{p, f-2}^{-}$is even, then $\xi^{\mathfrak{f}} \equiv \xi^{2} \bmod 4$.
Proof. Put

$$
\xi_{1}=\left(\zeta_{p}+\zeta_{p}^{-1}\right)^{\ell N_{f, f-1}-N_{f, f-2}},
$$

which is an element of $C\left(\chi_{f-1}\right)$. Assume that $h_{p, f-1}^{-} / h_{p, f-2}^{-}$is even. Then, as $E\left(\chi_{f-1}\right) \cong \mathcal{O}$, we see from (5) and (6) that $C\left(\chi_{f-1}\right) \subseteq E\left(\chi_{f-1}\right)^{2}$. Therefore, ξ_{1} is a square in E, and hence $\xi_{1} \in\left(K_{f}^{\times}\right)^{2}$. We see that ξ_{1} is Galois conjugate to the element

$$
\xi_{2}=\left(\zeta_{p}+1\right)^{\ell N_{f, f-1}} \times\left(\zeta_{p}+1\right)^{-N_{f, f-2}} .
$$

Thus, $\xi_{2} \in\left(K_{f}^{\times}\right)^{2}$. Let σ be the automorphism of K_{f} sending ζ_{p} to ζ_{p}^{g}. Then we see that

$$
\begin{aligned}
\xi_{2} & =\left(\prod_{j=0}^{\ell-1}\left(\zeta_{p}+1\right)^{\sigma^{2 \ell f-1_{j}}}\right)^{\ell} \times\left(\prod_{j=0}^{\ell^{2}-1}\left(\zeta_{p}+1\right)^{\sigma^{2 \ell^{f-2_{j}}}}\right)^{-1} \\
& =\left(\prod_{j=0}^{\ell-1}\left(\zeta_{p}+1\right)^{\sigma^{2 \ell f-1}}\right)^{\ell-1} \times\left(\prod_{j}^{\prime}\left(\zeta_{p}+1\right)^{\sigma^{2 \ell f-2_{j}}}\right)^{-1} \\
& \equiv \xi^{-1} \bmod \left(K_{f}^{\times}\right)^{2} .
\end{aligned}
$$

Here, in the fourth product \prod_{j}^{\prime}, j runs over the same range as in (7). Thus, it follows that $\xi=x^{2}$ for some $x \in K_{f}^{\times}$. As 2 is unramified in K_{f}, we have $x^{\mathfrak{f}} \equiv x^{2} \bmod 2$. Hence,

$$
\xi^{\mathfrak{f}}=\left(x^{\mathfrak{f}}\right)^{2} \equiv\left(x^{2}\right)^{2} \equiv \xi^{2} \bmod 4 .
$$

Let J be the set of integers with $0 \leqslant j \leqslant \ell^{2}-1$ and $\ell \nmid j$. For each $m \in J$, let $J_{m}=J \backslash\{m\}$ and let Ψ_{m} be the set of maps $\kappa: J_{m} \rightarrow\{0,1\}$. For $m \in J$ and $\kappa \in \Psi_{m}$, we put

$$
A(m, \kappa)=g^{2 \ell^{f-2} m}+2 \sum_{j \in J_{m}} \kappa(j) g^{2 \ell^{f-2} j} .
$$

Lemma 5. Assume that there exist an integer $m_{0} \in J$ and a map $\kappa_{0} \in \Psi_{m_{0}}$ such that $A(m, \kappa) \not \equiv A\left(m_{0}, \kappa_{0}\right) \bmod p$ for all pairs $(m, \kappa) \neq\left(m_{0}, \kappa_{0}\right)$. Then the ratio $h_{p, f-1}^{-} / h_{p, f-2}^{-}$is odd.

Proof. Let m_{0} and κ_{0} be as above. Assume to the contrary that $h_{p, f-1}^{-} / h_{p, f-2}^{-}$ is even. Then by Lemma 4 we see that

$$
\begin{align*}
\prod_{j}^{\prime}\left(\zeta_{p}^{\left.2 g^{2 \ell^{f-2_{j}}}+1\right)}\right. & \equiv \prod_{j}^{\prime}\left(\zeta_{p}^{g^{2 \ell^{f-2}}{ }^{j}}+1\right)^{2} \\
& \equiv \prod_{j}^{\prime}\left(\left(\zeta_{p}^{2 g^{2 \ell f-2_{j}}}+1\right)+2 \zeta_{p}^{g^{2 \ell f-2_{j}}}\right) \bmod 4 \tag{8}
\end{align*}
$$

The third product is congruent to

$$
\begin{aligned}
\prod_{j}^{\prime}\left(\zeta_{p}^{2 g^{2 \ell^{f-2} j}}+1\right)+2 \sum_{m \in J} \zeta_{p}^{9^{2 \ell^{f-2} m}} \prod_{j \in J_{m}}\left(\zeta_{p}^{2 g^{2 \ell^{f-2} j}}+1\right) \\
\equiv \prod_{j}^{\prime}\left(\zeta_{p}^{2 g^{2 \ell^{f-2_{j}}}}+1\right)+2 \sum_{m \in J} \sum_{\kappa \in \Psi_{m}} \zeta_{p}^{A(m, \kappa)} \bmod 4 .
\end{aligned}
$$

Therefore, it follows from (8) that

$$
\sum_{m \in J} \sum_{\kappa \in \Psi_{m}} \zeta_{p}^{A(m, \kappa)} \equiv 0 \bmod 2
$$

Multiplying this by $\zeta_{p}^{-A\left(m_{0}, \kappa_{0}\right)}$, we obtain

$$
\begin{equation*}
1+\sum_{(m, \kappa)}{ }^{\prime} \zeta_{p}^{A(m, \kappa)-A\left(m_{0}, \kappa_{0}\right)} \equiv 0 \bmod 2 \tag{9}
\end{equation*}
$$

where (m, κ) runs over the pairs with $(m, \kappa) \neq\left(m_{0}, \kappa_{0}\right)$. The number N of such pairs equals $|J| \times 2^{|J|-1}-1$, and hence it is odd. Therefore, taking the trace of the left hand side of (9) to the rationals \mathbb{Q}, we obtain

$$
(p-1)+N \times(-1) \equiv 1 \bmod 2
$$

because $\zeta_{p}^{A(m, \kappa)-A\left(m_{0}, \kappa_{0}\right)}$ is a primitive p th root of unity by the assumption of Lemma 5. This contradicts the congruence (9).

As g is a primitive root modulo p, the order of $g^{2 \ell^{f-2}} \bmod p$ is ℓ^{2}. As $p \equiv 1 \bmod \ell^{f}$ and $f \geqslant 2, p$ splits completely in $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$. Let \mathfrak{P} be an arbitrary prime ideal of $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$ over p, which is necessarily of degree one. Then there exists a primitive ℓ^{2} th root η of unity in $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$ such that

$$
\begin{equation*}
\eta \equiv g^{2 \ell^{f-2}} \bmod \mathfrak{P} \tag{10}
\end{equation*}
$$

For $m \in J$ and $\kappa \in \Psi_{m}$, we put

$$
B(m, \kappa)=\eta^{m}+2 \sum_{j \in J_{m}} \kappa(j) \eta^{j} \in \mathbb{Q}\left(\zeta_{\ell^{2}}\right) .
$$

Then, by (10), we obtain the following equivalence on the condition in Lemma 5.

$$
\begin{equation*}
A(m, \kappa) \equiv A\left(m_{0}, \kappa_{0}\right) \bmod p \Longleftrightarrow B(m, \kappa) \equiv B\left(m_{0}, \kappa_{0}\right) \bmod \mathfrak{P} \tag{11}
\end{equation*}
$$

4. Proof of Proposition 2

Let η be the primitive ℓ^{2} th root of unity satisfying (10). Because of (11), we can work in the ℓ^{2} th cyclotomic field $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$. We assume that 2 is a primitive root modulo ℓ^{2}. Then the automorphism sending η to η^{2} is a generator of the Galois $\operatorname{group} \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{\ell^{2}}\right) / \mathbb{Q}\right)$. For each $1 \leqslant i \leqslant \ell-1$ and $1 \leqslant j \leqslant \ell$, we put

$$
\eta_{i}=\eta^{2^{i-1}} \quad \text { and } \quad \eta_{i, j}=\eta_{i}^{1+(j-1) \ell}=\eta^{2^{i-1}(1+(j-1) \ell)} .
$$

These $\ell(\ell-1)$ elements are all the primitive ℓ^{2} th roots of unity. Let ρ be an automorphism of $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$ over $\mathbb{Q}\left(\zeta_{\ell}\right)$ sending η to $\eta^{1+\ell}$. Then, setting $\zeta_{\ell}=\eta^{\ell}$, we see that

$$
\eta_{i, j}^{\rho}=\eta_{i, j+1}=\zeta_{\ell}^{2^{i-1}} \eta_{i, j} .
$$

It follows that

$$
\begin{equation*}
\operatorname{Tr}\left(\eta_{i}\right)=\sum_{j=1}^{\ell} \eta_{i, j}=\eta_{i} \times \sum_{j=1}^{\ell}\left(\zeta_{\ell}^{2^{i-1}}\right)^{j-1}=0 \tag{12}
\end{equation*}
$$

where Tr denotes the trace map from $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$ to $\mathbb{Q}\left(\zeta_{\ell}\right)$. Regarding $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$ as a vector space over \mathbb{Q}, let V be its subspace spanned by all the primitive ℓ^{2} th roots of unity over \mathbb{Q}. For each i with $1 \leqslant i \leqslant \ell-1$, let V_{i} be the subspace of V spanned by $\eta_{i, j}$ with $1 \leqslant j \leqslant \ell$. The following lemma on these vector spaces over \mathbb{Q} is easy to show.

Lemma 6.

(I) The automorphism ρ acts on V_{i} via $\zeta_{\ell}^{2^{i-1}}$-multiplication, and $V=V_{1} \oplus$ $V_{2} \cdots \oplus V_{\ell-1}$.
(II) For each i, the equality (12) is the unique linear relation over \mathbb{Q} satisfied by the elements $\eta_{i, j}$ with $1 \leqslant j \leqslant \ell$, namely $\operatorname{dim}_{\mathbb{Q}} V_{i}=\ell-1$.

Let I be the set of pairs (i, j) with $1 \leqslant i \leqslant \ell-1$ and $1 \leqslant j \leqslant \ell$. We identify the set I with J in $\S 3$ via the correspondence

$$
(i, j) \longleftrightarrow 2^{i-1}(1+(j-1) \ell) \bmod \ell^{2}
$$

For each $(u, v) \in I$, let $I_{u, v}=I \backslash\{(u, v)\}$ and let $\Psi_{u, v}$ be the set of maps κ : $I_{u, v} \rightarrow\{0,1\}$. For each map $\kappa \in \Psi_{u, v}$, we put

$$
C(u, v, \kappa)=\eta_{u, v}+2 \sum_{(i, j)}^{\prime} \kappa(i, j) \eta_{i, j}
$$

where (i, j) runs over the set $I_{u, v}$. We choose $\kappa_{0} \in \Psi_{1,1}$ so that $\kappa_{0}(i, 1)=1$ for $i \geqslant 2$ and $\kappa_{0}(i, j)=0$ for $j \geqslant 2$, and put

$$
C_{0}=C\left(1,1, \kappa_{0}\right)=\eta_{1,1}+2\left(\eta_{2,1}+\cdots+\eta_{\ell-1,1}\right)
$$

The triple $\left(1,1, \kappa_{0}\right)$ plays the role of the pair $\left(m_{0}, \kappa_{0}\right)$ in Lemma 5.
Lemma 7. For $(u, v) \in I$ and $\kappa \in \Psi_{u, v}$, we have $C(u, v, \kappa) \neq C_{0}$ if $(u, v, \kappa) \neq$ $\left(1,1, \kappa_{0}\right)$.

Proof. We fix a triple (u, v, κ) with $(u, v, \kappa) \neq\left(1,1, \kappa_{0}\right)$. For each i with $i \neq u$, we define an element X_{i} of V_{i} by

$$
X_{i}=(\kappa(i, 1)-1) \eta_{i, 1}+\sum_{j=2}^{\ell} \kappa(i, j) \eta_{i, j}
$$

Further, we define elements Y_{1} and Z_{1} of V_{1} when $(u, v) \neq(1,1)$ by

$$
\begin{aligned}
& Y_{1}=(2 \kappa(1,1)-1) \eta_{1,1}+2 \sum_{j=2}^{\ell} \kappa(1, j) \eta_{1, j}, \quad \text { for } u \neq 1, \\
& Z_{1}=(2 \kappa(1,1)-1) \eta_{1,1}+\eta_{1, v}+2 \sum_{j \neq 1, v} \kappa(1, j) \eta_{1, j}, \quad \text { for } v \neq 1,
\end{aligned}
$$

and elements Y_{u} and Z_{u} of V_{u} when $u \neq 1$ by

$$
\begin{aligned}
& Y_{u}=-\eta_{u, 1}+2 \sum_{j=2}^{\ell} \kappa(u, j) \eta_{u, j}, \quad \text { for } v=1, \\
& Z_{u}=2(\kappa(u, 1)-1) \eta_{u, 1}+\eta_{u, v}+2 \sum_{j \neq 1, v} \kappa(u, j) \eta_{u, j}, \quad \text { for } v \neq 1 .
\end{aligned}
$$

By Lemma 6 (II), we see that $X_{i}=0$ if and only if $\kappa(i, 1)-1=\kappa(i, j)$ for $2 \leqslant j \leqslant \ell$. As the value of κ is 0 or 1 , we obtain the equivalence

$$
\begin{equation*}
X_{i}=0 \Longleftrightarrow \kappa(i, 1)=1 \text { and } \kappa(i, j)=0 \text { for } 2 \leqslant j \leqslant \ell . \tag{13}
\end{equation*}
$$

Similarly, we can show that $Y_{k} \neq 0$ and $Z_{k} \neq 0$ with $k=1, u$ from Lemma 6(II).
First, we deal with the case $(u, v)=(1,1)$. We have

$$
\begin{equation*}
C(1,1, \kappa)-C_{0}=2 \sum_{j=2}^{\ell} \kappa(1, j) \eta_{1, j}+2 \sum_{i=2}^{\ell-1} X_{i} . \tag{14}
\end{equation*}
$$

Assume that $C(1,1, \kappa)=C_{0}$. Then it follows from (14) and Lemma 6(I) that

$$
\sum_{j=2}^{\ell} \kappa(1, j) \eta_{1, j}=X_{2}=\cdots=X_{\ell-1}=0
$$

From Lemma 6(II) and (13), we obtain $\kappa=\kappa_{0}$, which contradicts the assumption $(u, v, \kappa)=(1,1, \kappa) \neq\left(1,1, \kappa_{0}\right)$. Next, let $u=1$ and $v \neq 1$. Then we have

$$
\begin{equation*}
C(1, v, \kappa)-C_{0}=Z_{1}+2 \sum_{i=2}^{\ell-1} X_{i} \tag{15}
\end{equation*}
$$

As $Z_{1} \neq 0$, we see that $C(1, v, \kappa) \neq C_{0}$ from Lemma 6(I). Finally, let $u \neq 1$. We have

$$
C(u, v, \kappa)-C_{0}= \begin{cases}Y_{1}+Y_{u}+2 \sum_{i \neq 1, u} X_{i}, & \text { for } v=1 \tag{16}\\ Y_{1}+Z_{u}+2 \sum_{i \neq 1, u} X_{i}, & \text { for } v \geqslant 2 .\end{cases}
$$

Hence, $C(u, v, \kappa) \neq C_{0}$ as $Y_{1} \neq 0$.
Proof of Proposition 2. For each element $\alpha=\sum_{\xi} a_{\xi} \xi$ in V with $\xi \in \mu_{\ell^{2}} \backslash \mu_{\ell}$ and $a_{i} \in \mathbb{Q}$, we have

$$
|\iota(\alpha)| \leqslant \sum_{\xi}\left|a_{\xi}\right|
$$

for any embedding ι of $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$ into the complex numbers \mathbb{C}. It follows that

$$
\begin{equation*}
N(\alpha) \leqslant\left(\sum_{\xi}\left|a_{\xi}\right|\right)^{\ell(\ell-1)} \tag{17}
\end{equation*}
$$

where N denotes the norm map from $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$ to \mathbb{Q}. For $(u, v, \kappa) \neq\left(1,1, \kappa_{0}\right)$, we obtain

$$
1 \leqslant N\left(C(u, v, \kappa)-C_{0}\right) \leqslant(2 \ell(\ell-1))^{\ell(\ell-1)}
$$

from Lemma 7 and the estimate (17) because the coefficients of the primitive ℓ^{2} th roots $\eta_{i, j}$ of unity in (14), (15) and (16) are $0, \pm 1$ or ± 2. Hence, if $p>$ $(2 \ell(\ell-1))^{\ell(\ell-1)}$, we see that

$$
C(u, v, \kappa) \not \equiv C_{0} \bmod \mathfrak{P}
$$

for $(u, v, \kappa) \neq\left(1,1, \kappa_{0}\right)$. Here, \mathfrak{P} is an arbitrary prime ideal of $\mathbb{Q}\left(\zeta_{\ell^{2}}\right)$ over p. Therefore, by Lemma 5 and the equivalence (11), we obtain the assertion.

Remark 2. In [7], Horie studied the non- ℓ-part of the class numbers of the cyclotomic \mathbb{Z}_{ℓ}-extension of \mathbb{Q}. We have used some of his ideas/techniques for showing Proposition 2.

Corrigendum. In the previous paper [4, §4], we gave five tables; Tables 3, 4, 5, 6 and 7. However, their labeling is wrong, and it is necessary to change Table n to Table $n-2$ for each $3 \leqslant n \leqslant 7$ except for the one in the first line of [4, Proposition 3]. Further, in Table 7, the entry for the column $r=7$ and the row $j_{0}=2$ is incorrect and it should be changed to 4 .

Acknowledgement. The author is grateful to the referee for several valuable comments, in particular for pointing out a mistake in the first version of the paper.

References

[1] P. Cornacchia, The parity of class number of the cyclotomic fields of prime conductor, Proc. Amer. Math. Soc., 125 (1997), 3163-3168.
[2] P. Cornacchia and C. Greither, Fitting ideals of class groups of real fields of prime power conductor, J. Number Theory, 73 (1998), 459-471.
[3] D. Estes, On the parity of the class number of the field of q th roots of unity, Rocky Mountain J. Math., 19 (1989), 675-689.
[4] S. Fujima and H. Ichimura, Note on the class number of the pth cyclotomic field, Funct. Approx. Comment. Math., 52.2 (2015), 299-309.
[5] S. Fujima and H. Ichimura, Note on the class number of the pth cyclotomic field, II, Experiment. Math., doi:10.1080/10586458.2016.1230528.
[6] C. Greither, Class groups of abelian extensions and the main conjecture, Ann. Inst. Fourier, 42 (1996), 449-499.
[7] K. Horie, Ideal class groups of the Iwasawa-theoretical extensions of the rationals, J. London Math. Soc., 66 (2002), 257-275.
[8] H. Ichimura, On a duality of Gras between totally positive and primary cyclotomic units, Math. J. Okayama Univ., 58 (2016), 125-132.
[9] S. Jakubec and P. Trojovský, On divisiblity of the class number h^{+}of the real cyclotomic fields $\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ by primes $p<5000$, Abh. Math. Univ. Hamburg, 67 (1997), 269-280.
[10] T. Metsänkylä, Some divisibility results for the cyclotomic class numbers, Tatra Mt. Math. Publ., 11 (1997), 59-68.
[11] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers (3rd. ed.), Springer, Berlin, 2004.
[12] P. Stevenhagen, Class number parity of the pth cyclotomic field, Math. Comp., 63 (1994), 773-784.
[13] P. Trojovský, On divisibility of the class number h^{+}of the real cyclotomic field $\mathbb{Q}\left(\zeta_{q}+\zeta_{q}^{-1}\right)$ by primes $q<10000$, Math. Slovaca, 50.5 (2000), 541-555.
[14] L.C. Washington, Introduction to Cyclotomic Fields (2nd ed.), Springer, New York, 1997.
[15] H.C. Williams and C.R. Zarnke, Some prime numbers of the forms $2 A 3^{n}+1$ and $2 A 3^{n}-1$, Math. Comp., 26 (1972), 995-998.

Address: Humio Ichimura: Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, 3108512, Japan.
E-mail: humio.ichimura.sci@vc.ibaraki.ac.jp
Received: 22 July 2016; revised: 6 September 2016

