NOTE ON THE CLASS NUMBER OF THE $p{\rm TH}$ CYCLOTOMIC FIELD, III

Humio Ichimura

Abstract: Let $p = 2\ell^f + 1$ be a prime number with $f \ge 2$ and an odd prime number ℓ . For $0 \le t \le f$, let K_t be the imaginary subfield of the *p*th cyclotomic field $\mathbb{Q}(\zeta_p)$ with $[K_t:\mathbb{Q}] = 2\ell^t$. Denote by $h_{p,t}^-$ the relative class number of K_t , and by $h_{p,t}^+$ the class number of the maximal real subfield K_t^+ . It is known that the ratio $h_{p,f}^-/h_{p,f-1}^-$ is odd (and hence so is $h_{p,f}^+/h_{p,f-1}^+$) whenever 2 is a primitive root modulo ℓ^2 . We show that $h_{p,f}^+/h_{p,f-1}^+$ is odd under a somewhat milder assumption on ℓ and that the ratio $h_{p,f-1}^-/h_{p,f-2}^-$ is always odd when $\ell = 3$.

Keywords: relative class number, cyclotomic field.

1. Introduction

Let p be an odd prime number. Let $K = \mathbb{Q}(\zeta_p)$ be the pth cyclotomic field, and h_p^- the relative class number of K. Here, for an integer $m \ge 2$, ζ_m denotes a primitive *m*th root of unity. When $p = 2\ell + 1$ for some odd prime number ℓ , it is conjectured that h_p^- is odd. There are several results and computations related to this conjecture, for which see Estes [3], Stevenhagen [12], Metsänkylä [10] and some references therein. In the previous papers [4, 5], we extended some of these results for prime numbers of the form $p = 2\ell^f + 1$ with $f \ge 2$ and $p = 2^{e+1}\ell + 1$ with $e \ge 1$. In what follows, let $p = 2\ell^f + 1$ be a prime number with $f \ge 2$ and an odd prime number ℓ . For each $0 \leq t \leq f$, we denote by K_t the imaginary subfield of K of degree $2\ell^t$ over \mathbb{Q} and by $k_t = K_t^+$ the maximal real subfield of K_t . Let $h_{p,t}^-$ be the relative class number of K_t , and $h_{p,t}^+$ the class number of k_t in the usual sense. Then we have $K_f = K$, $h_{p,f}^- = h_p^-$, $K_0 = \mathbb{Q}(\sqrt{-p})$ and $k_0 = \mathbb{Q}$. Using class field theory, we can easily show that $h_{p,t-1}^{\pm}$ divides $h_{p,t}^{\pm}$ for each t. In [4], we proved that the ratio $h_{p,f}^-/h_{p,f-1}^-$ is odd whenever 2 is a primitive root modulo ℓ^2 , and gave some computational results in the range $p = 2\ell^f + 1 < 2^{56}$, which suggest that $h_{p,t}^-/h_{p,t-1}^-$ might be odd if $t_0 + 1 \leq t \leq f$ with $t_0 = \operatorname{ord}_{\ell}(2^{\ell-1} - 1)$. It is

²⁰¹⁰ Mathematics Subject Classification: primary: 11R18; secondary: 11R29

known that the ratio $h_{p,t}^+/h_{p,t-1}^+$ is odd if $h_{p,t}^-/h_{p,t-1}^-$ is odd (see Lemma 1 in §2), and hence it follows from the above that the ratio $h_{p,f}^+/h_{p,f-1}^+$ is odd whenever 2 is a primitive root modulo ℓ^2 .

The purposes of this note are (i) to relax the assumption of the last assertion on the real class number (Proposition 1) and (ii) to deal with the case t = f - 1for the relative class number (Propositions 2, 3). The assertion on the real class number is given for a fixed f and varying ℓ , while the ones on the relative class number are given for a fixed ℓ and varying f.

Proposition 1. Under the above setting, assume that $\ell \equiv 3 \mod 4$ and the order of 2 modulo ℓ^2 is $(\ell - 1)\ell/2$. Then the ratio $h_{p,f}^+/h_{p,f-1}^+$ is odd.

Proposition 2. Let ℓ be an odd prime number such that 2 is a primitive root modulo ℓ^2 . Then the ratio $h_{p,f-1}^-/h_{p,f-2}^-$ is odd for any prime number $p = 2\ell^f + 1$ if $p > (2\ell(\ell-1))^{\ell(\ell-1)}$.

Let $\ell = 3$. By the computation of Williams and Zarnke [15], it is known that when $f \leq 325$, $p = 2 \cdot 3^f + 1$ is a prime number for

f = 1, 2, 4, 5, 6, 9, 16, 17, 30, 54, 57, 60, 65, 132, 180, 320.

We see from Proposition 2 that $h_{p,f-1}^-/h_{p,f-2}^-$ is odd if $p > 12^6$ since 2 is a primitive root modulo 9. In view of the above data, this implies that the ratio is odd when $f \ge 16$ as $2 \cdot 3^{16} + 1 > 12^6$. On the other hand, we already know by [4, Proposition 2] that $h_{p,t}^-/h_{p,t-1}^-$ is odd for any $2 \le t \le f$ when $p = 2 \cdot 3^f + 1 < 2^{56}$, namely when $f \le 30$ in the above data. Therefore, we obtain the following:

Proposition 3. When $\ell = 3$, $h_{p,f-1}^-/h_{p,f-2}^-$ is odd for any prime number $p = 2 \cdot 3^f + 1$.

Remark 1.

- (I) When $p = 2\ell + 1$ (the case f = 1), it is shown in [3, 10, 12] that h_p^- is odd (and hence so is h_p^+) when $\ell \equiv 3 \mod 4$ and the order of 2 modulo ℓ is $(\ell - 1)/2$. It is not clear to us whether their methods can be applied for showing that $h_{p,f}^-/h_{p,f-1}^-$ is odd under the setting and the assumption of Proposition 1.
- (II) A similar condition appears also for an odd prime number r. Let $p = 2\ell + 1$ be as above, and assume that $\ell \equiv 3 \mod 4$ and that the order of r modulo ℓ is $\ell 1$ or $(\ell 1)/2$. Then Jakubec and Trojovský [9, Theorem 1] and Trojovský [13, Theorem 1] showed that h_p^+ is not divisible by r when $r \leq 10000$.

2. Proof of Proposition 1

For a while, we work in a more general setting. Let p be an odd prime number with $p \equiv 3 \mod 4$, and put $K = \mathbb{Q}(\zeta_p)$ and $K_0 = \mathbb{Q}(\sqrt{-p})$. We denote by Cl_N

the ideal class group of a number field N in the usual sense. Let Cl_K^- be the kernel of the norm map $Cl_K \to Cl_{K^+}$ where N^+ is the maximal real subfield of an imaginary abelian field N. We denote by A_K^- and A_K^+ the 2-primary parts of the class groups Cl_{K}^{-} and $Cl_{K^{+}}$, respectively. The Galois group $\Delta = \operatorname{Gal}(K^{+}/\mathbb{Q})$ is naturally identified with $\operatorname{Gal}(K/K_0)$ as $K = K^+K_0$. We can naturally regard the groups A_K^- and A_K^+ as modules over the group ring $\mathbb{Z}[\Delta]$. We fix algebraic closures $\overline{\mathbb{Q}}$ and $\overline{\mathbb{Q}}_2$ of the rationals \mathbb{Q} and the 2-adic rationals \mathbb{Q}_2 , respectively, and we fix an embedding $\mathbb{Q} \hookrightarrow \mathbb{Q}_2$ in all what follows. A character of Δ or a Dirichlet character of conductor p is assumed to be \mathbb{Q} -valued and at the same time as \mathbb{Q}_2 -valued via the embedding $\mathbb{Q} \hookrightarrow \mathbb{Q}_2$. Further, a character of Δ is often regarded as an even Dirichlet character of conductor p. For a character χ of Δ , let

$$e_{\chi} = \frac{1}{|\Delta|} \sum_{\sigma \in \Delta} \operatorname{Tr}_{\chi}(\chi(\sigma^{-1}))\sigma \in \mathbb{Z}_{2}[\Delta]$$
(1)

be the idempotent of $\mathbb{Z}_2[\Delta]$ associated to χ , Tr_{χ} being the trace map from $\mathbb{Q}_2(\chi)$ to \mathbb{Q}_2 . Here, \mathbb{Z}_2 denotes the ring of 2-adic integers and $\mathbb{Q}_2(\chi)$ the subfield of $\overline{\mathbb{Q}}_2$ generated by the values of χ over \mathbb{Q}_2 . For a module X over $\mathbb{Z}[\Delta]$, we set $X(\chi) = \widehat{X}^{e_{\chi}}$ or $e_{\chi}\widehat{X}$, where $\widehat{X} = X \otimes_{\mathbb{Z}} \mathbb{Z}_2$. The following assertion is shown in Cornacchia [1, Theorem 1]. (See also [8, Theorem 4] for an alternative proof.)

Lemma 1. Under the above setting, the following conditions are equivalent to each other.

- (I) At least one of $A_K^-(\chi)$ and $A_K^-(\chi^{-1})$ is trivial. (II) Both of $A_K^+(\chi)$ and $A_K^+(\chi^{-1})$ are trivial.

The following assertion is a consequence of Lemma 1.

Lemma 2. Under the setting of Lemma 1, assume that $-1 \equiv 2^a \mod d$ for some $a \in \mathbb{Z}$ where d is the order of χ . Then $A_K^-(\chi)$ is trivial if and only if so is $A_K^+(\chi)$.

Proof. Under the assumption on d, we see that χ and χ^{-1} are conjugate over \mathbb{Q}_2 , and hence that $X(\chi) = X(\chi^{-1})$ for every $\mathbb{Z}[\Delta]$ -module X. Therefore, the assertion follows from Lemma 1.

Let δ be the quadratic character associated to $K_0 = \mathbb{Q}(\sqrt{-p})$. Regarding a character χ of Δ as an even Dirichlet character of conductor p, we denote by

$$B_{1,\delta\chi} = \frac{1}{p} \sum_{a=1}^{p-1} a \delta\chi(a)$$

the generalized Bernoulli number. As for the order of $A_{K}^{-}(\chi)$, Greither [6, Theorem A proved that

$$|A_K^-(\chi)| = |\mathcal{O}_{\chi}/\beta_{\delta\chi^{-1}}\mathcal{O}_{\chi}| \quad \text{with} \quad \beta_{\delta\chi} = \frac{1}{2}B_{1,\delta\chi} \tag{2}$$

as a consequence of the Iwasawa main conjecture. Here, \mathcal{O}_{χ} is the ring of integers of $\mathbb{Q}_2(\chi)$.

96 Humio Ichimura

We return back to the specific setting in §1 with $p = 2\ell^f + 1$ and recall what we have shown in the previous paper [4]. We use the same notation as above. In particular, $K = K_f$ and $\Delta = \operatorname{Gal}(K_f/K_0) = \operatorname{Gal}(k_f/\mathbb{Q})$. In what follows, we assume that $\operatorname{ord}_{\ell}(2^{\ell-1}-1) = 1$, where $\operatorname{ord}_{\ell}(*)$ is the additive ℓ -adic valuation with $\operatorname{ord}_{\ell}(\ell) = 1$. This is satisfied in the setting of Propositions 1 and 2. For an element $x \in \mathbb{Z}_p$, let $s_p(x) \in \mathbb{Z}$ be the unique integer with $s_p(x) \equiv x \mod p$ and $0 \leq s_p(x) \leq p-1$. Fixing a primitive root g modulo p, we put

$$G_{t,j_0} = G_{t,j_0}(T) = \sum_{v=0}^{\ell-1} \left(\sum_{u=0}^{\ell^{f^{-t}-1}} s_p(g^{2(\ell^t u + \ell^{t^{-1}}v + j_0)}) \right) T^v \ (\in \mathbb{Z}[T])$$

for each integer $j_0 \ge 0$. Let χ_t be an arbitrary character of Δ with order ℓ^t for each $0 \le t \le f$. The value $\beta_{\delta\chi_t}$ is contained in $F_t = \mathbb{Q}(\zeta_{\ell^t})$. In [4, page 303], we have shown that

$$\operatorname{Tr}_{F_t/F_1}\left(\zeta_{\ell^t}^{-j_0}\beta_{\delta\chi_t}\right) = \frac{\ell^{t-1}}{p}G_{t,j_0}(\zeta_\ell) \tag{3}$$

with

$$\zeta_{\ell^t} = \chi_t(g^2)$$
 and $\zeta_{\ell} = \zeta_{\ell^t}^{\ell^{t-1}} = \chi_t(g^{2\ell^{t-1}}).$ (4)

What we have actually shown in the proof of the main theorem of [4] is the following. Let $\Phi_{\ell} = \Phi_{\ell}(T)$ be the ℓ th cyclotomic polynomial. For a polynomial $G = G(T) \in \mathbb{Z}[T]$, let $\tilde{G} = G \mod 2 \in \mathbb{F}_2[T]$. Here, \mathbb{F}_2 is the finite field of two elements.

Lemma 3. When t = f, there exists some j_0 such that \widetilde{G}_{f,j_0} is not divisible by $\widetilde{\Phi}_{\ell}$.

Assume that $\ell \equiv 3 \mod 4$ and that the order of 2 modulo ℓ^2 is $(\ell - 1)\ell/2$. Let D_t be the decomposition group of the prime 2 for the abelian extension F_t/\mathbb{Q} . Then the assumption on ℓ implies that for each $1 \leq t \leq f$, the Galois group $\operatorname{Gal}(F_t/\mathbb{Q})$ is generated by D_t and the complex conjugation. We fix a character χ_t of Δ with order ℓ^t . Then we observe from the above that any character of Δ with order ℓ^t is conjugate to χ_t or χ_t^{-1} over \mathbb{Q}_2 . Hence, we obtain

$$X = \bigoplus_{t=1}^{f} \left(X(\chi_t) \oplus X(\chi_t^{-1}) \right) \bigoplus X(\chi_0)$$

for every $\mathbb{Z}_2[\Delta]$ -module X.

Proof of Proposition 1. Under the setting and assumptions of Proposition 1, assume to the contrary that $h_{p,f}^+/h_{p,f-1}^+$ is even. Then it follows from the above that at least one of $A_K^+(\chi_f)$ or $A_K^+(\chi_f^{-1})$ is nontrivial. By Lemma 1, this implies that both of $A_K^-(\chi_f)$ and $A_K^-(\chi_f^{-1})$ are nontrivial. Let \mathfrak{P}_f be the prime ideal of F_f over 2 corresponding to the fixed embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_2$, and we put $\mathfrak{P}_1 = \mathfrak{P}_f \cap F_1$.

Then we see from (2) that $\beta_{\delta\chi_f} \equiv \beta_{\delta\chi_f^{-1}} \equiv 0 \mod \mathfrak{P}_f$. Because of the assumption on ℓ , the prime ideal \mathfrak{P}_1 of F_1 remains prime in F_f . It follows that

$$\operatorname{Tr}_{F_f/F_1}\left(\zeta^{-1}\beta_{\delta\chi_f}\right) \equiv \operatorname{Tr}_{F_f/F_1}\left(\zeta^{-1}\beta_{\delta\chi_f^{-1}}\right) \equiv 0 \mod \mathfrak{P}_1$$

for any ℓ^f th root ζ of unity. Therefore, we observe from (3) and (4) that $\zeta_{\ell} = \chi_f(g^{2\ell^{f-1}}) \mod \mathfrak{P}_1$ and $\zeta_{\ell}^{-1} = \chi_f^{-1}(g^{2\ell^{f-1}}) \mod \mathfrak{P}_1$ are roots of \widetilde{G}_{f,j_0} for all j_0 . On the other hand, the assumption on ℓ implies that $\widetilde{\Phi}_{\ell}$ is decomposed as $\widetilde{\Phi}_{\ell} = P(X)Q(X)$ where P(X), Q(X) are irreducible over \mathbb{F}_2 and $Q(X) = X^{(\ell-1)/2}P(1/X)$ is the reciprocal polynomial of P(X). Therefore, it follows that \widetilde{G}_{f,j_0} are multiple of $\widetilde{\Phi}_{\ell}$ for all j_0 . However, this is impossible by Lemma 3.

3. Cyclotomic units

In what follows, we always assume that 2 is a primitive root modulo ℓ^2 , and work under the setting of §1. Then, all characters of $\Delta = \text{Gal}(K_f/K_0)$ with order ℓ^t are conjugate to χ_t over \mathbb{Q}_2 . Hence, it follows that

$$X = \bigoplus_{t=0}^{f} X(\chi_t)$$

for every $\mathbb{Z}[\Delta]$ -module X. In particular, the 2-part of the ratio $h_{p,t}^-/h_{p,t-1}^-$ equals $|A_K^-(\chi_t)|$. Thus, we obtain from Lemma 2 the equivalence

$$2 \nmid h_{p,t}^{-} / h_{p,t-1}^{-} \iff A_{K}^{+}(\chi_{t}) = \{0\}.$$
 (5)

Let *E* be the group of units of $k_f = \mathbb{Q}(\zeta_p)^+$, and *C* the subgroup of *E* consisting of cyclotomic units of k_f in the sense of Washington [14, §8.1]. As is well known, E/C is a finite abelian group and $|E/C| = h^+$ ([14, Theorem 8.2]). Cornacchia and Greither [2, Proposition 2] proved

$$|(E/C)(\chi_t)| = |A_K^+(\chi_t)|$$
(6)

for each t as a consequence of the Iwasawa main conjecture.

For t with $0 \leq t < f$, let $N_{f,t}$ be the norm map from k_f to k_t , which is identified with the norm map from K_f to K_t . We see that

$$e_{\chi_{f-1}} = \frac{1}{\ell^2} (\ell N_{f,f-1} - N_{f,f-2}).$$

This follows from the definition (1) as follows. For each $\sigma \in \Delta$, we note that $\chi_{f-1}(\sigma) = 1$ if and only if $\sigma^{\ell} = 1$, and that with $1 \leq i \leq f-1$, $\chi_{f-1}(\sigma)$ is a primitive ℓ^i th root of unity if and only if the order of σ equals ℓ^{i+1} . The prime number 2 remains prime in $\mathbb{Q}(\zeta_{\ell f-1})$ since 2 is a primitive root modulo ℓ^2 . Hence, $\mathbb{Q}_2(\chi_{f-1}) = \mathbb{Q}_2(\zeta_{\ell f-1})$ is of degree $(\ell-1)\ell^{f-2}$ over \mathbb{Q}_2 . Put $\operatorname{Tr} = \operatorname{Tr}_{\chi_{f-1}}$ for brevity.

Then, we see that $\operatorname{Tr}(\delta) = 0$ for $\delta \in \mu_{\ell^{f-1}} \setminus \mu_{\ell}$, and that $\operatorname{Tr}(\delta) = (\ell - 1)\ell^{f-2}$ or $-\ell^{f-2}$ for $\delta \in \mu_{\ell}$ according as $\delta = 1$ or not. Combining these, we can easily show the assertion from (1).

We put $\mathcal{O} = \mathbb{Z}_2[\zeta_{\ell^{f-1}}]$. Then the χ_{f-1} -part $X(\chi_{f-1})$ of a $\mathbb{Z}[\Delta]$ -module X is naturally regarded as an \mathcal{O} -module. We see that $E(\chi_{f-1}) \cong \mathcal{O}$ as \mathcal{O} -modules by a theorem of Minkowski on the group of units of a Galois extension over \mathbb{Q} (cf. Narkiewicz [11, Theorem 3.26]). Let g be a fixed primitive root modulo p, and put

$$\xi = \prod_{j}' \left(\zeta_p^{g^{2\ell f - 2_j}} + 1 \right) \tag{7}$$

where j runs over the integers with $0 \leq j \leq \ell^2 - 1$ and $\ell \nmid j$. Let $\mathfrak{f} = \mathfrak{f}_2$ be the Frobenius automorphism of K_f at 2. We show the following:

Lemma 4. If the ratio $h_{p,f-1}^-/h_{p,f-2}^-$ is even, then $\xi^{\sharp} \equiv \xi^2 \mod 4$.

Proof. Put

$$\xi_1 = (\zeta_p + \zeta_p^{-1})^{\ell N_{f,f-1} - N_{f,f-2}},$$

which is an element of $C(\chi_{f-1})$. Assume that $h_{p,f-1}^-/h_{p,f-2}^-$ is even. Then, as $E(\chi_{f-1}) \cong \mathcal{O}$, we see from (5) and (6) that $C(\chi_{f-1}) \subseteq E(\chi_{f-1})^2$. Therefore, ξ_1 is a square in E, and hence $\xi_1 \in (K_f^{\times})^2$. We see that ξ_1 is Galois conjugate to the element

$$\xi_2 = (\zeta_p + 1)^{\ell N_{f,f-1}} \times (\zeta_p + 1)^{-N_{f,f-2}}.$$

Thus, $\xi_2 \in (K_f^{\times})^2$. Let σ be the automorphism of K_f sending ζ_p to ζ_p^g . Then we see that

$$\begin{aligned} \xi_2 &= \left(\prod_{j=0}^{\ell-1} (\zeta_p + 1)^{\sigma^{2\ell^{f-1}j}}\right)^{\ell} \times \left(\prod_{j=0}^{\ell^{2-1}} (\zeta_p + 1)^{\sigma^{2\ell^{f-2}j}}\right)^{-1} \\ &= \left(\prod_{j=0}^{\ell-1} (\zeta_p + 1)^{\sigma^{2\ell^{f-1}j}}\right)^{\ell-1} \times \left(\prod_j' (\zeta_p + 1)^{\sigma^{2\ell^{f-2}j}}\right)^{-1} \\ &\equiv \xi^{-1} \bmod (K_f^{\times})^2. \end{aligned}$$

Here, in the fourth product \prod_{j}' , j runs over the same range as in (7). Thus, it follows that $\xi = x^2$ for some $x \in K_f^{\times}$. As 2 is unramified in K_f , we have $x^{\mathfrak{f}} \equiv x^2 \mod 2$. Hence,

$$\xi^{\dagger} = (x^{\dagger})^2 \equiv (x^2)^2 \equiv \xi^2 \mod 4.$$

Let J be the set of integers with $0 \leq j \leq \ell^2 - 1$ and $\ell \nmid j$. For each $m \in J$, let $J_m = J \setminus \{m\}$ and let Ψ_m be the set of maps $\kappa : J_m \to \{0, 1\}$. For $m \in J$ and $\kappa \in \Psi_m$, we put

$$A(m,\kappa) = g^{2\ell^{f-2}m} + 2\sum_{j\in J_m} \kappa(j) g^{2\ell^{f-2}j}.$$

Lemma 5. Assume that there exist an integer $m_0 \in J$ and a map $\kappa_0 \in \Psi_{m_0}$ such that $A(m,\kappa) \not\equiv A(m_0,\kappa_0) \mod p$ for all pairs $(m,\kappa) \neq (m_0,\kappa_0)$. Then the ratio $h_{p,f-1}^-/h_{p,f-2}^-$ is odd.

Proof. Let m_0 and κ_0 be as above. Assume to the contrary that $h_{p,f-1}^-/h_{p,f-2}^-$ is even. Then by Lemma 4 we see that

$$\prod_{j}' (\zeta_{p}^{2g^{2\ell^{f-2}_{j}}} + 1) \equiv \prod_{j}' (\zeta_{p}^{g^{2\ell^{f-2}_{j}}} + 1)^{2}$$
$$\equiv \prod_{j}' ((\zeta_{p}^{2g^{2\ell^{f-2}_{j}}} + 1) + 2\zeta_{p}^{g^{2\ell^{f-2}_{j}}}) \mod 4.$$
(8)

The third product is congruent to

$$\begin{split} \prod_{j}' (\zeta_{p}^{2g^{2\ell^{f-2}j}} + 1) + 2 \sum_{m \in J} \zeta_{p}^{g^{2\ell^{f-2}m}} \prod_{j \in J_{m}} (\zeta_{p}^{2g^{2\ell^{f-2}j}} + 1) \\ &\equiv \prod_{j}' (\zeta_{p}^{2g^{2\ell^{f-2}j}} + 1) + 2 \sum_{m \in J} \sum_{\kappa \in \Psi_{m}} \zeta_{p}^{A(m,\kappa)} \mod 4. \end{split}$$

Therefore, it follows from (8) that

$$\sum_{m\in J}\sum_{\kappa\in \Psi_m}\zeta_p^{A(m,\kappa)}\equiv 0 \bmod 2$$

Multiplying this by $\zeta_p^{-A(m_0,\kappa_0)}$, we obtain

$$1 + \sum_{(m,\kappa)} \zeta_p^{A(m,\kappa) - A(m_0,\kappa_0)} \equiv 0 \mod 2 \tag{9}$$

where (m, κ) runs over the pairs with $(m, \kappa) \neq (m_0, \kappa_0)$. The number N of such pairs equals $|J| \times 2^{|J|-1} - 1$, and hence it is odd. Therefore, taking the trace of the left hand side of (9) to the rationals \mathbb{Q} , we obtain

$$(p-1) + N \times (-1) \equiv 1 \mod 2$$

because $\zeta_p^{A(m,\kappa)-A(m_0,\kappa_0)}$ is a primitive *p*th root of unity by the assumption of Lemma 5. This contradicts the congruence (9).

As g is a primitive root modulo p, the order of $g^{2\ell^{f-2}} \mod p$ is ℓ^2 . As $p \equiv 1 \mod \ell^f$ and $f \ge 2$, p splits completely in $\mathbb{Q}(\zeta_{\ell^2})$. Let \mathfrak{P} be an arbitrary prime ideal of $\mathbb{Q}(\zeta_{\ell^2})$ over p, which is necessarily of degree one. Then there exists a primitive ℓ^2 th root η of unity in $\mathbb{Q}(\zeta_{\ell^2})$ such that

$$\eta \equiv g^{2\ell^{f-2}} \mod \mathfrak{P}. \tag{10}$$

For $m \in J$ and $\kappa \in \Psi_m$, we put

$$B(m,\kappa) = \eta^m + 2\sum_{j \in J_m} \kappa(j)\eta^j \in \mathbb{Q}(\zeta_{\ell^2}).$$

Then, by (10), we obtain the following equivalence on the condition in Lemma 5.

$$A(m,\kappa) \equiv A(m_0,\kappa_0) \mod p \iff B(m,\kappa) \equiv B(m_0,\kappa_0) \mod \mathfrak{P}.$$
(11)

4. Proof of Proposition 2

Let η be the primitive ℓ^2 th root of unity satisfying (10). Because of (11), we can work in the ℓ^2 th cyclotomic field $\mathbb{Q}(\zeta_{\ell^2})$. We assume that 2 is a primitive root modulo ℓ^2 . Then the automorphism sending η to η^2 is a generator of the Galois group Gal($\mathbb{Q}(\zeta_{\ell^2})/\mathbb{Q}$). For each $1 \leq i \leq \ell - 1$ and $1 \leq j \leq \ell$, we put

$$\eta_i = \eta^{2^{i-1}}$$
 and $\eta_{i,j} = \eta_i^{1+(j-1)\ell} = \eta^{2^{i-1}(1+(j-1)\ell)}$

These $\ell(\ell - 1)$ elements are all the primitive ℓ^2 th roots of unity. Let ρ be an automorphism of $\mathbb{Q}(\zeta_{\ell^2})$ over $\mathbb{Q}(\zeta_{\ell})$ sending η to $\eta^{1+\ell}$. Then, setting $\zeta_{\ell} = \eta^{\ell}$, we see that

$$\eta_{i,j}^{\rho} = \eta_{i,j+1} = \zeta_{\ell}^{2^{i-1}} \eta_{i,j}$$

It follows that

$$\operatorname{Tr}(\eta_i) = \sum_{j=1}^{\ell} \eta_{i,j} = \eta_i \times \sum_{j=1}^{\ell} (\zeta_{\ell}^{2^{i-1}})^{j-1} = 0$$
(12)

where Tr denotes the trace map from $\mathbb{Q}(\zeta_{\ell^2})$ to $\mathbb{Q}(\zeta_{\ell})$. Regarding $\mathbb{Q}(\zeta_{\ell^2})$ as a vector space over \mathbb{Q} , let V be its subspace spanned by all the primitive ℓ^2 th roots of unity over \mathbb{Q} . For each i with $1 \leq i \leq \ell - 1$, let V_i be the subspace of V spanned by $\eta_{i,j}$ with $1 \leq j \leq \ell$. The following lemma on these vector spaces over \mathbb{Q} is easy to show.

Lemma 6.

- (I) The automorphism ρ acts on V_i via $\zeta_{\ell}^{2^{i-1}}$ -multiplication, and $V = V_1 \oplus V_2 \cdots \oplus V_{\ell-1}$.
- (II) For each *i*, the equality (12) is the unique linear relation over \mathbb{Q} satisfied by the elements $\eta_{i,j}$ with $1 \leq j \leq \ell$, namely $\dim_{\mathbb{Q}} V_i = \ell - 1$.

Let I be the set of pairs (i, j) with $1 \leq i \leq \ell - 1$ and $1 \leq j \leq \ell$. We identify the set I with J in §3 via the correspondence

$$(i, j) \longleftrightarrow 2^{i-1}(1 + (j-1)\ell) \mod \ell^2.$$

For each $(u,v) \in I$, let $I_{u,v} = I \setminus \{(u,v)\}$ and let $\Psi_{u,v}$ be the set of maps $\kappa : I_{u,v} \to \{0, 1\}$. For each map $\kappa \in \Psi_{u,v}$, we put

$$C(u, v, \kappa) = \eta_{u,v} + 2\sum_{(i,j)}' \kappa(i,j) \eta_{i,j}$$

where (i, j) runs over the set $I_{u,v}$. We choose $\kappa_0 \in \Psi_{1,1}$ so that $\kappa_0(i, 1) = 1$ for $i \ge 2$ and $\kappa_0(i, j) = 0$ for $j \ge 2$, and put

$$C_0 = C(1, 1, \kappa_0) = \eta_{1,1} + 2(\eta_{2,1} + \dots + \eta_{\ell-1,1}).$$

The triple $(1, 1, \kappa_0)$ plays the role of the pair (m_0, κ_0) in Lemma 5.

Lemma 7. For $(u, v) \in I$ and $\kappa \in \Psi_{u,v}$, we have $C(u, v, \kappa) \neq C_0$ if $(u, v, \kappa) \neq (1, 1, \kappa_0)$.

Proof. We fix a triple (u, v, κ) with $(u, v, \kappa) \neq (1, 1, \kappa_0)$. For each *i* with $i \neq u$, we define an element X_i of V_i by

$$X_{i} = (\kappa(i,1) - 1)\eta_{i,1} + \sum_{j=2}^{\ell} \kappa(i,j)\eta_{i,j}.$$

Further, we define elements Y_1 and Z_1 of V_1 when $(u, v) \neq (1, 1)$ by

$$Y_1 = (2\kappa(1,1) - 1)\eta_{1,1} + 2\sum_{j=2}^{\ell} \kappa(1,j)\eta_{1,j}, \quad \text{for } u \neq 1,$$
$$Z_1 = (2\kappa(1,1) - 1)\eta_{1,1} + \eta_{1,v} + 2\sum_{j\neq 1,v} \kappa(1,j)\eta_{1,j}, \quad \text{for } v \neq 1,$$

and elements Y_u and Z_u of V_u when $u \neq 1$ by

$$Y_u = -\eta_{u,1} + 2\sum_{j=2}^{\ell} \kappa(u,j)\eta_{u,j}, \quad \text{for } v = 1,$$

$$Z_u = 2(\kappa(u,1) - 1)\eta_{u,1} + \eta_{u,v} + 2\sum_{j \neq 1,v} \kappa(u,j)\eta_{u,j}, \quad \text{for } v \neq 1.$$

By Lemma 6(II), we see that $X_i = 0$ if and only if $\kappa(i, 1) - 1 = \kappa(i, j)$ for $2 \leq j \leq \ell$. As the value of κ is 0 or 1, we obtain the equivalence

$$X_i = 0 \iff \kappa(i, 1) = 1 \text{ and } \kappa(i, j) = 0 \text{ for } 2 \leqslant j \leqslant \ell.$$
(13)

Similarly, we can show that $Y_k \neq 0$ and $Z_k \neq 0$ with k = 1, u from Lemma 6(II).

First, we deal with the case (u, v) = (1, 1). We have

$$C(1,1,\kappa) - C_0 = 2\sum_{j=2}^{\ell} \kappa(1,j)\eta_{1,j} + 2\sum_{i=2}^{\ell-1} X_i.$$
 (14)

Assume that $C(1, 1, \kappa) = C_0$. Then it follows from (14) and Lemma 6(I) that

$$\sum_{j=2}^{\ell} \kappa(1,j)\eta_{1,j} = X_2 = \dots = X_{\ell-1} = 0.$$

From Lemma 6(II) and (13), we obtain $\kappa = \kappa_0$, which contradicts the assumption $(u, v, \kappa) = (1, 1, \kappa) \neq (1, 1, \kappa_0)$. Next, let u = 1 and $v \neq 1$. Then we have

$$C(1, v, \kappa) - C_0 = Z_1 + 2\sum_{i=2}^{\ell-1} X_i.$$
(15)

As $Z_1 \neq 0$, we see that $C(1, v, \kappa) \neq C_0$ from Lemma 6(I). Finally, let $u \neq 1$. We have

$$C(u, v, \kappa) - C_0 = \begin{cases} Y_1 + Y_u + 2 \sum_{i \neq 1, u} X_i, & \text{for } v = 1\\ Y_1 + Z_u + 2 \sum_{i \neq 1, u} X_i, & \text{for } v \ge 2. \end{cases}$$
(16)

Hence, $C(u, v, \kappa) \neq C_0$ as $Y_1 \neq 0$.

Proof of Proposition 2. For each element $\alpha = \sum_{\xi} a_{\xi} \xi$ in V with $\xi \in \mu_{\ell^2} \setminus \mu_{\ell}$ and $a_i \in \mathbb{Q}$, we have

$$|\iota(\alpha)| \leqslant \sum_{\xi} |a_{\xi}|$$

for any embedding ι of $\mathbb{Q}(\zeta_{\ell^2})$ into the complex numbers \mathbb{C} . It follows that

$$N(\alpha) \leqslant \left(\sum_{\xi} |a_{\xi}|\right)^{\ell(\ell-1)},\tag{17}$$

where N denotes the norm map from $\mathbb{Q}(\zeta_{\ell^2})$ to \mathbb{Q} . For $(u, v, \kappa) \neq (1, 1, \kappa_0)$, we obtain

$$1 \leqslant N(C(u, v, \kappa) - C_0) \leqslant (2\ell(\ell - 1))^{\ell(\ell - 1)}$$

from Lemma 7 and the estimate (17) because the coefficients of the primitive ℓ^2 th roots $\eta_{i,j}$ of unity in (14), (15) and (16) are 0, ± 1 or ± 2 . Hence, if $p > (2\ell(\ell-1))^{\ell(\ell-1)}$, we see that

$$C(u, v, \kappa) \not\equiv C_0 \mod \mathfrak{P}$$

for $(u, v, \kappa) \neq (1, 1, \kappa_0)$. Here, \mathfrak{P} is an arbitrary prime ideal of $\mathbb{Q}(\zeta_{\ell^2})$ over p. Therefore, by Lemma 5 and the equivalence (11), we obtain the assertion.

Remark 2. In [7], Horie studied the non- ℓ -part of the class numbers of the cyclotomic \mathbb{Z}_{ℓ} -extension of \mathbb{Q} . We have used some of his ideas/techniques for showing Proposition 2.

Corrigendum. In the previous paper [4, §4], we gave five tables; Tables 3, 4, 5, 6 and 7. However, their labeling is wrong, and it is necessary to change Table n to Table n-2 for each $3 \leq n \leq 7$ except for the one in the first line of [4, Proposition 3]. Further, in Table 7, the entry for the column r = 7 and the row $j_0 = 2$ is incorrect and it should be changed to 4.

Acknowledgement. The author is grateful to the referee for several valuable comments, in particular for pointing out a mistake in the first version of the paper.

References

- P. Cornacchia, The parity of class number of the cyclotomic fields of prime conductor, Proc. Amer. Math. Soc., 125 (1997), 3163-3168.
- [2] P. Cornacchia and C. Greither, Fitting ideals of class groups of real fields of prime power conductor, J. Number Theory, 73 (1998), 459-471.
- [3] D. Estes, On the parity of the class number of the field of q th roots of unity, Rocky Mountain J. Math., 19 (1989), 675-689.
- [4] S. Fujima and H. Ichimura, Note on the class number of the pth cyclotomic field, Funct. Approx. Comment. Math., 52.2 (2015), 299-309.
- [5] S. Fujima and H. Ichimura, Note on the class number of the pth cyclotomic field, II, Experiment. Math., doi:10.1080/10586458.2016.1230528.
- [6] C. Greither, Class groups of abelian extensions and the main conjecture, Ann. Inst. Fourier, 42 (1996), 449-499.
- [7] K. Horie, Ideal class groups of the Iwasawa-theoretical extensions of the rationals, J. London Math. Soc., 66 (2002), 257-275.
- [8] H. Ichimura, On a duality of Gras between totally positive and primary cyclotomic units, Math. J. Okayama Univ., 58 (2016), 125-132.
- [9] S. Jakubec and P. Trojovský, On divisibility of the class number h⁺ of the real cyclotomic fields Q(ζ_p + ζ_p⁻¹) by primes p < 5000, Abh. Math. Univ. Hamburg, 67 (1997), 269-280.
- [10] T. Metsänkylä, Some divisibility results for the cyclotomic class numbers, Tatra Mt. Math. Publ., 11 (1997), 59-68.
- [11] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers (3rd. ed.), Springer, Berlin, 2004.
- P. Stevenhagen, Class number parity of the pth cyclotomic field, Math. Comp., 63 (1994), 773-784.
- [13] P. Trojovský, On divisibility of the class number h^+ of the real cyclotomic field $\mathbb{Q}(\zeta_q + \zeta_q^{-1})$ by primes q < 10000, Math. Slovaca, **50.5** (2000), 541-555.
- [14] L.C. Washington, Introduction to Cyclotomic Fields (2nd ed.), Springer, New York, 1997.
- [15] H.C. Williams and C.R. Zarnke, Some prime numbers of the forms $2A3^n + 1$ and $2A3^n - 1$, Math. Comp., **26** (1972), 995-998.

Address: Humio Ichimura: Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, 310-8512, Japan.

E-mail: humio.ichimura.sci@vc.ibaraki.ac.jp

Received: 22 July 2016; revised: 6 September 2016