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A BOMBIERI–VINOGRADOV THEOREM WITH PRODUCTS
OF GAUSSIAN PRIMES AS MODULI

Karin Halupczok

Abstract: We prove a version of the Bombieri–Vinogradov Theorem with certain products of
Gaussian primes as moduli, making use of their special form as polynomial expressions in several
variables. Adapting Vaughan’s proof of the classical Bombieri–Vinogadov Theorem, cp. [10] to
this setting, we apply the polynomial large sieve inequality that has been proved in [7] and which
includes recent progress in Vinogradov’s mean value theorem due to Parsell et al. in [9]. From
the benefit of these improvements, we obtain an extended range for the variables compared to
the range obtained from standard arguments only.
Keywords: polynomial large sieve inequality, Bombieri–Vinogradov Theorem, polynomial mod-
uli in several variables, Gaussian primes

1. Introduction

The classical theorem of Bombieri–Vinogradov states that

Theorem 1.1 (Theorem of E. Bombieri [2] and A. I. Vinogradov [11, 12]).
For any A,Q, x > 1 we have∑

q6Q

sup
y6x

max
a mod q

|E(y; q, a)| �A
x

(log x)A
+Q
√
x(log(Qx))3

where

E(y; q, a) := ψ(y; q, a)− y

ϕ(q)
and ψ(y; q, a) :=

∑
n6y

n≡a mod q

Λ(n),

so the nontrivial upper bound�A x(log x)−A is obtained for Q 6 x1/2(log x)−3−A.
It is well known to be a difficult task to break the “1/2-barrier”, which means to
show the estimate for q bigger that x1/2. The famous Elliott–Halberstam con-
jecture in [5] states that the estimate should hold even with Q � x1−ε. Many
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applications, especially recent progress in the solution of the small gap conjecture,
rely on such improvements on the bound Q for certain moduli sets for q. It has
been found by Y. Zhang in [13] that a restriction to certain smooth moduli breaks
the 1/2-barrier.

A standard approach to prove Bombieri–Vinogradov’s theorem is the proof of
Vaughan, cp. [10], by making use of the large sieve inequality. In [7], nontriv-
ial improvements of the large sieve inequality with polynomial moduli have been
achieved, based on the work of Parsell et al. in [9] in connection with progress
in Vinogradov’s mean value theorem. The results of [7] are superior to standard
approaches in a number of applications where the degree of the considered poly-
nomial is bigger than the number of variables.

In this article, we use Vaughan’s approach to prove a variant of the Bombieri–
Vinogradov Theorem with polynomial moduli having certain properties. The poly-
nomial behavior of the moduli is exploited in the proof by using the result in [7].
Our main result is the following:

Theorem 1.2 (A Bombieri–Vinogradov Theorem with special polyno-
mial moduli). Let A,Q, x > 1 be real and `, k > 1 be integers. Consider two
maps u, v : {1, . . . , k} → {1, . . . , `} such that {u(i), v(i)} 6= {u(j), v(j)} for i 6= j,
and let P ∈ Z[x1, . . . , x`] be the polynomial P (x) :=

∏k
i=1(x2

u(i) + x2
v(i)).

Let σ = 1/(4kr) with r :=
(

2k+`−1
`

)
− 1 and suppose that

xε/σ � Q 6 x(1/3−2ε)/(2k−σ) (1)

for an arbitrary ε > 0. Then we have the estimate∑
q∼Q

Gq
ϕ(P (q))

Q`
sup
y6x

max
a mod P (q)

gcd(a,P (q))=1

|E(y;P (q), a)| �A,`,k,ε
x

(log x)A
,

where
Gq := µ2(P (q))Λ(q2

u(1) + q2
v(1)) · · ·Λ(q2

u(k) + q2
v(k)),

and the sum runs over all q with Q < qi 6 2Q, i = 1, . . . , k.

In the weights Gq, the Λ-arguments are all primes ≡ 1 mod 4 by Gauss’ the-
orem on the sum of two squares, and P (q) is a squarefree number composed of
such Gaussian primes. Hence we consider certain subsets of

{p1 · · · pk; all pi ≡ 1 mod 4 prime, pairwise different and 2Q2 < pi 6 8Q2}

as moduli, which is the set of squarefree products of k Gaussian primes from
a certain interval of length 6Q2. Note that the subsets we consider become quite
sparse if the degree 2k of P is bigger than the number ` of variables. In that case,
the estimate in Theorem 1.2 can not be deduced directly by applying the classical
Theorem 1.1 due to the assigned weights that reflect the sparsity of the moduli.
In other words, Theorem 1.2 takes the distribution of the moduli into account,
whereas the classical theorem only sees the size of the moduli.
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It is clear from the proof that the range with exponent 1/6k in (1) could also be
obtained using a standard approach. The improvement here is the term 3σ coming
from the benefit of the polynomial large sieve inequality from [7]. So to speak,
it breaks the “1/6k-barrier”. Whether this “1/6k-barrier” is really such a hard
barrier is not that clear since by the classical theorem, one might heuristically
expect a hard barrier at 1/4k.

A similar phenomenon is already known from the literature in the case of
polynomials in one variable of degree d; in that case, heuristically, 1/2d might be
reached. This has been investigated by Elliott in [4], who proved such a Bombieri–
Vinogradov-type theorem with exponent 1/4d and gave evidence that one might
be able to reach 1/3d by further improvements, though the barrier of the method
seems to be at 1/4d. Later, Mikawa and Peneva [8] improved the exponent to
8/19d, and Baker [1] to 9/20d.

For the polynomials of degree d = 2k considered in this article, Theorem 1.2
confirms the exponent 1/3d, even improving it in a way depending on σ. Note
however, that we always have at least two variables. It is not clear yet whether the
improvements in [8, 1] can be extended to a several variable setting as in the present
article. The proof of Theorem 1.2 relies on the classical Fourier Analysis approach,
whereas deeper such techniques are used in [8] and [1]. Elliott’s argument in [4] is
a largely self-contained careful application of Linnik’s Dispersion Method, without
appeal to Fourier Analysis.

We continue by giving some important comments on our choice of the moduli.
Firstly, the proof of the polynomial version of the Basic Mean Value Theorem

in Section 4 does not depend on this choice: it works for arbitrary polynomials P
of degree k in ` variables, assuming only that the biggest value MQ and smallest
value mQ of P in the dyadic Q-box q ∼ Q are such that Qk � mQ 6 MQ � Qk

holds for P . In the proof, one needs primes p = q2
u + q2

v with qu, qv of similar size.
But then, Theorem 1.2 and its proof rely on the special structure of the moduli:
we use that each divisor is again of such a form so that the polynomial basic mean
value theorem can be used iteratively.

Secondly, one should make clear that the estimate in our Theorem 1.2 is non-
trivial in the sense that the number of moduli is big enough and not too sparse,
so that it can not be deduced using the trivial estimate E(y;P (q), a)� y/ϕ(q).

This would indeed follow from the following conjecture.

Conjecture 1.3 (Number of moduli). Consider u, v, P as in Theorem 1.2.
There exists a constant C > 0 depending on k and ` only such that

∑
q∼Q

µ2(P (q))Λ(q2
u(1) + q2

v(1)) · · ·Λ(q2
u(k) + q2

v(k))�k,`
Q`

(logQ)C
.

As a second result of this article, we confirm this conjecture in certain cases,
namely when not too many of the Gaussian primes share a summand q2

i .
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Theorem 1.4 (Special cases). Assume that the maps u, v : {1, . . . , k} →
{1, . . . , `} are such that for each i 6 k, one of the numbers u(i) and v(i) does
not occur in the set {u(i+ 1), . . . , u(k), v(i+ 1), . . . , v(k)}. Then the assertion in
Conjecture 1.3 holds true.

To give an example, if the sequence of the pairs (u(i), v(i)) is (1, 2), (2, 3),
(3, 4), we deal with the polynomial P (x) = (x2

1 + x2
2)(x2

2 + x2
3)(x2

3 + x2
4). On

the other hand, the sequence of pairs (1, 2), (2, 3), (3, 1) does not comply with the
condition. Clearly, if this condition holds, then ` > k + 1. However, the degree
2k of the polynomial may still be bigger than the number ` of variables, so that
Theorem 1.2 is nontrivial.

We prove Theorem 1.4 in Section 6 by making use of the main theorem of
Fouvry and Iwaniec in [6].

Some other additional remarks on Theorem 1.2:
(i) Further improvements of Theorem 1.2 could be made if the relevant term

Q`−σN in the polynomial large sieve inequality, which is dominant in the
relevant ranges, could be further improved. Ideas how this could be reached,
but showing also its difficulty, are discussed in [7, Sec. 5].

(ii) The restriction q ∼ Q can be generalized to R � q � Q. In that case
the estimate in Theorem 1.2 holds with upper bound Q � x1/6k−εRσ/2k.
Therefore the benefit coming from σ melts if R decreases. The theorem gives
the biggest possible upper bound for Q if Q/R� 1.

(iii) It should be possible to obtain a power of log x instead of the term xε in
the range for Q by working more precisely. This would require a refinement
of the used theorem [9, Thm. 10.1] of Parsel et al. where Qε is replaced by
a power of logQ.

Notation. Let k, ` denote positive integers and let ε denote a positive real
number. In this article, we suppress the dependence of the implicit constants on
k, ` or ε in our notation and simply write � for �k,`,ε or �k,`.

For a real number Q > 1 the symbol q ∼ Q means Q < q 6 2Q, and the
notation q ∼ Q means that the `-tuple q = (q1, . . . , q`) of integers is contained in
a dyadic Q-box, that is qi ∼ Q for i = 1, . . . , `.

For α ∈ R, the symbol e(α) := exp(2πiα) denotes the complex exponential
function. The greatest common divisor is abbreviated by gcd. As usual, we denote
the von Mangoldt function by Λ, Euler’s totient function by ϕ, and the Möbius
function by µ.

2. Auxiliary tools

Assumptions 2.1. Let ` be a positive integer and let P ∈ Z[x1, . . . , x`] be a poly-
nomial in ` variables of degree k > 2. Let σ := 1/(2rk) with r :=

(
k+`−1
`

)
− 1, and

for a real number Q > 1 consider the `-tuples in the dyadic Q-box q ∼ Q.
Assume that P takes only positive values in the Q-box and that the biggest value

MQ and smallest value mQ of P in this box are such that Qk � mQ 6MQ � Qk

holds for P .
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In [7, Cor. 3], we obtained the following polynomial large sieve inequality.

Theorem 2.2 (Polynomial large sieve inequality). Let P be a polynomial as
in Assumptions 2.1, let (vn) be a complex sequence, and let

S(α) :=
∑

M<n6M+N

vne(α)

and

Σ = ΣQ,N,P :=
∑
q∼Q

∑
16a6P (q)

gcd(a,P (q))=1

∣∣∣∣S( a

P (q)

)∣∣∣∣2.
Then we have the bound

Σ� (QN)ε ·∆(Q,N) ·
∑

M<n6M+N

|vn|2 (2)

with ∆(Q,N) := Qk+` +Q`−σN +Q`+kσN1−σ.

Further, the following Lemmas are standard tools in the proof of the classical
Bombieri–Vinogradov Theorem: their proofs can be found in the literature, see
e. g. [10].

Lemma 2.3 (Consequence of Vaughan’s identity). Let U, x > 1, U2 6 x,
f : N→ C. Then ∑

U<n6x

f(n)Λ(n)� (log x)T1 + T2 + T3

with
T1 =

∑
`6U

max
w

∣∣∣ ∑
w<k6x/`

f(k`)
∣∣∣

and
Ti =

∣∣∣ ∑
U<m6max{x/U,U2}

ai(m)bi(k)f(mk)
∣∣∣ for i = 2, 3,

where ai(m), bi(k) are arithmetic functions depending on U only and |bi(k)| 6∑
d|k 1, |ai(k)| 6 log k for all k ∈ N.

Lemma 2.3 is presented as [3, Satz 6.1.1] in the book of Brüdern. It can be
deduced easily from the widely-known Vaughan identity.

Lemma 2.4 (Polya–Vinogradov’s inequality). Let w < z be real. For any
nonprincipal character χ mod q > 1 we have∑

w<k6z

χ(k)� q1/2 log q.
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Lemma 2.5 (Formula for χ(n)). Let q > 1. Then for all n ∈ Z and all primitive
characters χ mod q we have

χ(n)τ(χ) =
∑

h mod q

χ(h)e(hn/q),

where τ(χ) :=
∑q
a=1 χ(a)e(a/q) is the Gaussian sum. We have |τ(χ)| =

√
q for

primitive χ mod q.

Lemma 2.6 (Get rid of mn 6 X). Let T,X > 1 be real, M,N > 1 be integers
and let (γn), (ηn) be complex sequences. Then

∑
m6M,n6N
mn6X

γmηn �
∫ T

−T

∣∣∣ ∑
m6M

γmm
it
∑
n6N

ηnn
it
∣∣∣min(|t|−1, log(2MN))dt

+MNT−1
∑

m6M,n6N

|γmηn|. (3)

3. The polynomial large sieve inequality for characters and its bilinear
version

Lemma 3.1 (Polynomial large sieve inequality with characters). Let
Q, x > 1 and (vn) be a complex sequence. Then

∑
q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

∣∣∣∑
n6x

vnχ(n)
∣∣∣2 � (Qx)ε ·∆(Q, x) ·

∑
n6x

|vn|2,

where the star means that the sum is stretched over all primitive characters χ mod
P (q).

Proof. If χ mod P (q) is primitive, Lemma 2.5 gives

∣∣∣∑
n6x

vnχ(n)
∣∣∣2 =

1

P (q)

∣∣∣ P (q)∑
a=1

∑
n6x

χ(a)e
( an

P (q)

)
vn

∣∣∣2.
We sum this equation on the right hand side over all characters, and on the left
hand side over all primitive characters. We obtain
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∑∗

χ(P (q))

∣∣∣∑
n6x

vnχ(n)
∣∣∣2 6 1

P (q)

∑
χ(P (q))

∣∣∣ P (q)∑
a=1

∑
n6x

χ(a)e
( an

P (q)

)
vn

∣∣∣2

=
1

P (q)

P (q)∑
a,c=1

∑
m,n6x

∑
χ(P (q))

χ(a)χ(c)e
(an− cm

P (q)

)
vnvm

=
ϕ(P (q))

P (q)

∑
a mod P (q)

gcd(a,P (q))=1

∑
m,n6x

e
(a(n−m)

P (q)

)
vnvm

=
ϕ(P (q))

P (q)

∑
a mod P (q)

gcd(a,P (q))=1

∣∣∣S( a

P (q)

)∣∣∣2,
hence ∑

q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

∣∣∣∑
n6x

vnχ(n)
∣∣∣2 � (Qx)ε ·∆(Q, x) ·

∑
n6x

|vn|2

by Theorem 2.2. �

Lemma 3.2 (Bilinear inequality). Let x,Q,M,N > 1, let (am) and (bn) be
complex sequences. Then∑

q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

max
X

∣∣∣ ∑
m6M
n6N
mn6X

ambnχ(mn)
∣∣∣

� (QMN)ε ·
(

∆(Q,M)∆(Q,N) ·
∑
m6M

|am|2
∑
n6N

|bn|2
)1/2

,

where the star means that the sum runs over all primitive characters.

Proof. Let A(t, χ) :=
∑
m6M amχ(m)mit, B(t, χ) :=

∑
n6N bnχ(n)nit and write

‖a‖ := (
∑
m6M |am|2)1/2 and ‖b‖ := (

∑
n6N |bn|2)1/2. Then using Lemma 2.6

with γm = amχ(m), ηn = bnχ(n) and summing up, we bound the left hand side
of the lemma by

�
∫ T

−T

∑
q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

|A(t, χ)B(t, χ)|min(|t|−1, log(2MN))dt

+
∑
q6Q

P (q)MNT−1
∑

m6M,n6N

|ambn|

� (QMN)ε∆(Q,M)1/2∆(Q,N)1/2‖a‖‖b‖
∫ T

−T
Ξ(t)dt

+Qk+`(MN)3/2T−1‖a‖‖b‖,

where Lemma 3.1 and the Cauchy–Schwarz inequality has been used in the second
estimate. The assertion follows with T = (MN)3/2. �
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4. Proof of the polynomial Basic Mean Value Theorem

In this section, we prove the polynomial version of the Basic Mean Value Theorem
using the polynomial large sieve.

Theorem 4.1 (Polynomial Basic Mean Value Theorem). Let Q, x > 1, let
P be a polynomial and σ > 0 as in Assumptions 2.1, and for a primitive character
χ mod q we write ψ(x, χ) :=

∑
n6x χ(n)Λ(n). Then∑

q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

sup
y6x
|ψ(y, χ)| � (Qx)ε · ∆̃(Q, x) (4)

with

∆̃(Q, x) := Q`−σx+Q`+(k−σ)/2x5/6 +Q`+(k−1)σ/2x1−σ/6, if x > Q2k+σ,

and
∆̃(Q, x) := Q`+5k/6−σ/3x2/3, if Qk+3−σ 6 x 6 Q2k+σ.

The second range for x 6 Q2k+σ is not relevant in the proof of Theorem 1.2,
but the result and proof in this case is included here for completeness.

Proof. Let y = y(χ) 6 x be such that |ψ(y, χ)| = maxz6x |ψ(z, χ)|. Let U > 1,
U2 6 x. Then Vaughan’s identity in the form of Lemma 2.3 yields

|ψ(y, χ)| � U + (log x)T1(χ) + T2(χ) + T3(χ),

where
T1(χ) =

∑
r6U

max
w

∣∣∣ ∑
w<s6y/r

χ(sr)
∣∣∣,

with
Ti(χ) =

∣∣∣ ∑
m>U,

m6max(U2,x/U)

∑
s6x/m

ai(m)bi(s)χ(sm)
∣∣∣, i = 2, 3.

Choosing U such that it depends on Q and x only, we can sum over all primitive
χ and q. We obtain∑

q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

|ψ(y(χ), χ)| � (UQ`+k +K1 log x+K2 +K3) log x,

where
Kj :=

∑
q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

Tj(χ), j = 1, 2, 3.

We estimate K1 using Polya–Vinogradov’s inequality Lemma 2.4 as

K1 � U
∑
q∼Q

P (q)3/2 log2 x� Q`+3k/2U log2 x,

which already dominates the term UQ`+k log x above.
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We proceed to estimate K2 +K3. Let M 6 x. We will use dyadic summation
over M . For arithmetic functions a, b we consider the expression

KM :=
∑
q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

∣∣∣ ∑
m∼M

∑
s6x/m

a(m)b(s)χ(sm)
∣∣∣.

Writing the conditions of summation over s as s 6 x/M , ms 6 x, we apply the
bilinear inequality of Lemma 3.2 (choosing a(m) = 0 for m 6M) which yields

KM � (Qx)ε
(

∆(Q,M)∆(Q, x/M)
∑
m∼M

|a(m)|2
∑

s6x/M

|b(s)|2
)1/2

.

Now use
∑
m62M |a(m)|2 �M(logM)2,

∑
s6z |b(s)|2 � z(log z)3: this yields

KM � x1/2+ε∆(Q,M)1/2∆(Q, x/M)1/2 for M 6 x,

hence

KM � x1/2+ε(Q`+k +Q`−σM +Q`+kσM1−σ)1/2

× (Q`+k +Q`−σxM−1 +Q`+kσ(x/M)1−σ)1/2

� x1/2+ε(Q2`+2k +Q2`+k−σxM−1 +Q2`+k+kσ(x/M)1−σ

+Q2`+k−σM +Q2`−2σx+Q2`+(k−1)σx1−σMσ

+Q2`+k+kσM1−σ +Q2`+(k−1)σxM−σ +Q2`+2kσx1−σ)1/2.

Now the dyadic summation for M = 2νU , M 6W 6 x, with ν = 0, 1, 2, . . . yields∑
q∼Q

P (q)

ϕ(P (q))

∑∗

χ(P (q))

∣∣∣ ∑
U<m6W

∑
s6x/m

a(m)b(s)χ(sm)
∣∣∣

� x1/2+ε(Q2`+2k +Q2`+k−σxU−1 +Q2`+k+kσ(x/U)1−σ

+Q2`+k−σW +Q2`−2σx+Q2`+(k−1)σx1−σWσ

+Q2`+k+kσW 1−σ +Q2`+(k−1)σxU−σ +Q2`+2kσx1−σ)1/2.

Choosing W = max(U2, x/U), a = ai, b = bi for i = 2, 3, we bound K2 and K3 by

K2 +K3 � x1/2+ε(Q2`+2k +Q2`−2σx+Q2`+2kσx1−σ

+Q2`+k−σxU−1 +Q2`+k+kσ(x/U)1−σ +Q2`+(k−1)σxU−σ

+Q2`+k−σU2 +Q2`+k+kσU2(1−σ) +Q2`+(k−1)σx1−σU2σ)1/2.

Together with K1 � xεQ`+3k/2U , we optimize the terms depending on the two
ranges Q � x1/(2k+σ) and x1/2k+σ � Q � x1/(k+3−σ) by choosing U suitably to
obtain the bounds stated in the theorem.
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First range: Q2k+σ 6 x. In that case, we choose U = x1/3 so that U2 = x/U ,
this yields

K2 +K3 � xε(Q`+kx1/2 +Q`−σx+Q`+kσx1−σ/2

+Q`+(k−σ)/2x5/6 +Q`+k/2+kσ/2x5/6−σ/3 +Q`+(k−1)σ/2x1−σ/6),

and this also bounds K1 since K1 � xεQ`+3k/2x1/3 � Q`+k/2−σ/2x5/6 holds in
the assumed first range. Further, in this bound for K2 + K3, we can leave out
the first, third and fifth summand since a simple calculation shows that they are
dominated by the fourth and sixth.

So, in the assumed range, we obtain

K2 +K3 � xε(Q`−σx+Q`+k/2−σ/2x5/6 +Q`+(k−1)σ/2x1−σ/6).

Second range: Qk+3−σ 6 x 6 Q2k+σ. There, we choose U = x2/3Q−B with
B = (σ + 2k)/3. Hence

K2 +K3 � xε(Q`+kx1/2 +Q`−σx+Q`+kσx1−σ/2

+Q`+(k−σ)/2x2/3QB/2 +Q`+k/2+kσ/2x2/3−σ/6QB(1−σ)/2

+Q`+(k−1)σ/2x1−σ/3QBσ/2).

Now the dominating summand in this bound is Q`+(k−σ)/2+B/2x2/3 within this
range, and it also dominates the bound for K1.

This shows the theorem. �

5. Proof of Theorem 1.2

Before starting with the proof of Theorem 1.2, we deduce an auxiliary result from
the previous sections.

Lemma 5.1. For a polynomial P as in Assumptions 2.1 of degree k in ` variables
we have

E := Q−`
∑
q∼Q

P (q)

ϕ(P (q))

∑∗

χ1(P (q))

sup
y6x
|ψ(x, χ1)| � x1−δ

for any small value δ > 0, assuming that xε/σ � Q 6 x(1/3−2ε)/(k−σ) for any fixed
ε > δ.

Proof. Theorem 4.1 yields the bound E � Q−`xε∆̃(Q, x) with

∆̃(Q, x) := Q`−σx+Q`+(k−σ)/2x5/6 +Q`+(k−1)σ/2x1−σ/6

assuming that Q 6 x1/(2k+σ): hence

E � xε(Q−σx+Q(k−σ)/2x5/6 +Q(k−1)σ/2x1−σ/6)� x1−δ

holds in the range x(ε+δ)/σ � Q 6 x(1/3−2(ε+δ))/(k−σ) for Q. Now replace ε + δ
by ε > δ in the upper and lower bound. �
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Now we give the main proof.

Proof of Theorem 1.2. Let P be the polynomial of degree 2k as in the state-
ment and σ = 1/(4rk) with r =

(
2k+`−1

`

)
− 1, ε′ = 2ε/(2k − σ).

Let Q, x > 1, and for a character χ mod P (q), we set ψ′(x, χ) := ψ(x, χ) if χ is
different from the principal character χ0, and ψ′(x, χ0) := ψ(x, χ0)− x otherwise.
So for y 6 x we have

E(y;P (q), a) = ψ(y;P (q), a)− y

ϕ(P (q))
=

1

ϕ(P (q))

∑
χ(P (q))

χ(a)ψ′(y, χ),

and hence

max
a mod P (q)

gcd(a,P (q))=1

|E(y;P (q), a)| 6 1

ϕ(P (q))

∑
χ(P (q))

|ψ′(y;P (q), a)|.

If χ is induced by the primitive character χ1 modulo d with d | P (q), then ψ(y, χ)−
ψ′(y, χ1)� (log(yP (q)))2. Thus

max
a mod P (q)

gcd(a,P (q))=1

|E(y;P (q), a)| � 1

ϕ(P (q))

∑
χ(P (q))
ind. of χ1

mod d|P (q)

|ψ′(y, χ1)|+ (log x)2,

and so∑
q∼Q

Gq
ϕ(P (q))

Q`
sup
y6x

max
a mod P (q)

gcd(a,P (q))=1

|E(y;P (q), a)|

�
∑
q∼Q

Gq

Q`

∑
χ(P (q))
ind. of χ1

mod d|P (q)

sup
y6x
|ψ′(y, χ1)|+Q2k(log x)2+k,

where the term Q2k(log x)2+k is clearly admissible in the considered Q-range, since
there, Q� x1/4k.

Now due to the assigned weight Gq, each P (q) is squarefree, so q is so that
each q2

u(i) +q2
v(i) = pi is a prime, 1 6 i 6 k, and these primes are pairwise different.

Hence, for a divisor d of P (q), we have d = 1 or d = P̃ (q) for a polynomial P̃
that divides P which is of a similar shape as P itself. We split the sum over χ
according to these two cases.

In the first case, when d = 1, we have χ1 ≡ 1 (the constant 1 character) and
χ = χ0 mod P (q) is unique, hence∑

q∼Q

Gq

Q`
sup
y6x
|ψ(y, χ0)− y| � x(log x)−A

for any A > 0 by the prime number theorem.



88 Karin Halupczok

In the second case, we obtain the expression∑
1<d6P (q)

∑
q∼Q
d|P (q)

Gq

Q`

∑∗

χ1(d)

sup
y6x
|ψ′(y, χ1)| �

∑
P̃ |P

∑
q∼Q

Gq

Q`

∑∗

χ1(P̃ (q))

sup
y6x
|ψ′(y, χ1)|.

Now for every P̃ , we apply Lemma 5.1 and together with the trivial observation
#{q ∼ Q} � Q`, we bound this expression by

�
∑
P̃ |P

x1−δ(log x)k+1,

which holds for xε/σ � Q � x(1/3−2ε)/(2k−σ) and ε > δ > 0. We used that the
exponents (1/3−2ε)/(2k(P̃ )−σ(P̃ )) are all > (1/3−2ε)/(2k−σ), since for P̃ | P
with P̃ 6= P , we have deg P̃ 6 degP − 2. This yields the desired estimate of the
theorem since there are only �k 1 many divisor polynomials of P in Z[x]. �

6. Proof of Theorem 1.4

The proof depends on the following result of Fouvry and Iwaniec in [6].

Theorem 6.1 (Fouvry and Iwaniec). Let (λ`) be a complex sequence with
|λ`| 6 1. Then, if A, x > 1, we have∑

`2+m26x

λ`Λ(`2 +m2) =
∑

`2+m26x

λ`
4c

π
θ(`) +OA

( x

(log x)A

)
with θ(`) :=

∏
p|`(1− χ(p)/(p− 1))−1 and c :=

∏
p(1−

χ(p)
(p−1)(p−χ(p)) ).

Note that θ(`) > ϕ(`)/`� 1/(log log `) holds.
Using this theorem, the proof of Theorem 1.4 can be worked out by induction

on k.

Proof of Theorem 1.4. It suffices to prove Theorem 1.4 without the factor
µ2(P (q)), that is∑

q∼Q
Λ(q2

u(1) + q2
v(1)) · · ·Λ(q2

u(k) + q2
v(k))�

Q`

(logQ)C
(5)

for some constant C > 0, what can be seen as follows: In the difference of the left
hand sides, at least one of the Λ-arguments must be a prime power, say, that this
is in the i-th Λ-factor. Let q′ denote the (`− 2)-tuple obtained from q by deleting
the coordinates with u(i) and v(i). Then the deviation can be bounded by

∑
m68Q2

m=pk

k>2

Λ(m)
∑

qu(i),qv(i)∼Q
q2u(i)+q

2
v(i)=m

∑
q′∼Q

k∏
j=1
j 6=i

Λ(q2
u(j) + q2

v(j))� Q logQ ·Q`−2(logQ)k−1,

what is admissible for the desired lower bound of the theorem.
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Now we give the proof of (5) by induction. Let k = 1: then we have to show
that ∑

q1,q2∼Q
Λ(q2

1 + q2
2)� Q2

(logQ)C

holds for a constant C > 0. A simple geometric argument shows that∑
q1,q2∼Q

Λ(q2
1 + q2

2) =
∑

2Q2<q21+q2268Q2

Λ(q2
1 + q2

2)− 2
∑

2Q2<q21+q2268Q2

q1>2Q

Λ(q2
1 + q2

2)

− 2

 ∑
2Q2<q21+q2265Q2

q16Q

Λ(q2
1 + q2

2)−
∑

2Q2<q21+q2265Q2

q1>2Q

Λ(q2
1 + q2

2)

 .

Each sum is of the form
∑
y<q21+q226x

λq1Λ(q2
1 + q2

2) where λq1 is the character-
istic function of the conditions on q1. Hence, to each sum, Theorem 6.1 applies
giving

∑
y<q21+q226x

λq1
4c

π
θ(q1) +OA

( Q2

(logQ)A

)
,

and the main terms combine again. In such a way, we obtain

∑
q1,q2∼Q

Λ(q2
1 + q2

2) =
∑

q1,q2∼Q

4c

π
θ(q1) +OA

( Q2

(logQ)A

)
�

∑
q1,q2∼Q

1

log log q1
+OA

( Q2

(logQ)A

)
� Q2

logQ
,

fixing A > 1 in the last step.
Now let k > 2 and assume that estimate (5) holds for k−1: we proceed to show

it for k. Surely, ` > 2, and we divide the left hand side in (5) by (logQ)k−1Q`−2

and obtain

∑
q∼Q

(logQ)1−kQ2−`
( k∏
i=2

Λ(q2
u(i) + q2

v(i))
)

Λ(q2
u(1) + q2

v(1)).

Let q′ be obtained from q by deleting the coordinates with index u(1) and v(1).
By assumption, one of the indices u(1) and v(1) does not occur in {u(2), . . . , u(k),
v(2), . . . , v(k)}, assume w.l.o.g. that this is u(1). Then the considered sum trans-
forms into ∑

qu(1),qv(1)∼Q
λqv(1)Λ(q2

u(1) + q2
v(1))
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with

λqv(1) := (log(8Q2))1−kQ2−`
∑
q′∼Q

k∏
i=2

Λ(q2
u(i) + q2

v(i)) 6 1,

which does not depend on u(1). By induction hypothesis, we have

∑
qv(1)∼Q

λqv(1) � (logQ)1−kQ2−` Q`−1

(logQ)C
= Q(logQ)1−k−C (6)

for some constant C > 0.
We apply Theorem 6.1 similarly to the case k = 1, which yields∑
qu(1),qv(1)∼Q

λqv(1)Λ(q2
u(1) + q2

v(1))

>
∑

13Q2/4<q2u(1)+q
2
v(1)65Q2

Q<qv(1)63Q/2

λqv(1)Λ(q2
u(1) + q2

v(1))

=
∑

13Q2/4<q2u(1)+q
2
v(1)65Q2

Q<qv(1)63Q/2

λqv(1)
4c

π
θ(qv(1)) +OA

( Q2

(logQ)A

)

�
∑

13Q2/4<q2u(1)+q
2
v(1)65Q2

Q<qv(1)63Q/2

λqv(1)
log log qv(1)

+OA

( Q2

(logQ)A

)

� Q2

(logQ)C′

for a constant C ′ > 0 and a A > 1 chosen large enough, where we used (6) in
the last estimate (adjusted to an appropriate scaled box that is contained in the
considered region). This concludes the proof of (5) and therefore of Theorem 1.4.

�
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