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A REMARK ON THE CONDITIONAL ESTIMATE FOR THE SUM
OF A PRIME AND A SQUARE

Yuta Suzuki

Abstract: Hardy and Littlewood conjectured that every sufficiently large integer is either
a square or the sum of a prime and a square. Let E(X) be the number of positive integers
up to X > 4 for which this property does not hold. We prove

E(X)� X1/2(logX)A(log logX)4

with A = 3/2 under the Generalized Riemann Hypothesis. This is a small improvement on
the previous remarks of Mikawa (1993) and Perelli-Zaccagnini (1995) which claim A = 4, 3
respectively.
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1. Introduction

In 1923, Hardy and Littlewood [2, Conjecture H] conjectured that every sufficiently
large integer is either a square or the sum of a prime and a square. For a given
real positive number X > 4, let E(X) be the number of positive integers up to X
which are neither a square nor the sum of a prime and a square. In the present
note, we consider the conditional estimate of E(X) under the Generalized Riemann
Hypothesis (GRH). We always assume GRH below.

In 1985, Vinogradov [11] remarked that his method can be used to prove

E(X)� X2/3+ε

under GRH where ε > 0 is an arbitrary positive constant and the implicit constant
depends only on ε. However he did not publish the details for this result, and from
today’s point of view, his assertion is rather weak for the conditional estimates
assuming GRH. The first detailed proof was published by Mikawa[6, Proposition]
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in 1993, and he obtained1

E(X)� X1/2(logX)4(log logX)4 (1.1)

by the circle method. If we assume GRH, then the factor X1/2 of this estimate
looks like the best-possible one which can be attained by our current technol-
ogy. However, as for the factor (logX)4, we can hope some improvements beyond
Mikawa’s result. Actually, in 1995, Perelli and Zaccagnini [8, p.191] asserted that
one can obtain

E(X)� X1/2(logX)3+ε (1.2)

by refining Mikawa’s calculations. However Perelli and Zaccagnini did not give the
detailed calculations for this assertion.

In this note, we improve these conditional estimates to the following:

Theorem 1. Assume GRH. Then we have

E(X)� X1/2(logX)3/2(log logX)4. (1.3)

For a positive integer n, we let

R(n) =
∑

k+m2=n

Λ(k),

where Λ(k) is the von Mangoldt function. We also define the singular series

S(n) =


∏
p>2

(
1− (n/p)

p− 1

)
(when n is not a square),

0 (when n is a square),

where (n/p) is the Legendre symbol. Then the main part of this note is dedicated
to the proof of the following estimate.

Theorem 2. Assume GRH. For X > 4, we have∑
n6X

∣∣R(n)−S(n)
√
n(1 +O(n−η))

∣∣2 � (X logX)3/2, (1.4)

where η is an absolute positive constant.

1In his paper, Mikawa only claimed that

E(X)� X1/2(logX)5,

but what he essentially proved is (1.1).
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We prove this mean square estimate from Section 4 to Section 8, and deduce
Theorem 1 from Theorem 2 in Section 9.

We generally follow Mikawa’s argument. However there are mainly three points
to refine his argument.

The first point is to use the technique of Languasco and Perelli [3]. According
to them, we shall use power series as the generating functions rather than trigono-
metric polynomials which Mikawa used. It enables us to use the explicit formula
directly, and to reduce the errors arising from the approximation of the generating
function of prime numbers. By this method, we can obtain the result (1.2) which
Perelli and Zaccagnini asserted. So it seems that they obtained (1.2) in this way.

The second point is to use the classical transformation formula of Jacobi. Once
we decide to follow the technique of Languasco and Perelli, it is natural to use the
power series

W (α) =

∞∑
n=1

e−n
2/Xe(n2α)

as the generating function of squares, where X is a positive real number, α is
a real number, and e(α) := exp(2πiα). However this series is just a simple variant
of Jacobi’s ϑ-function, so we can use Jacobi’s formula instead of the Weyl estimate
or the truncated Jacobi formula [10, Theorem 4.1]. This enables us to save some
more log powers.

The third point is a careful treatment on the extension of major arcs. Mikawa
estimated the errors arising from this extension by using the large sieve. However
in our case, where we are asking about log powers, his estimate is insufficient. So
we shall devide these extended arcs into two parts, and we use the Bessel inequality
besides the large sieve.

We also consider carefully the decay of the generating function of squares on
the major arcs.

2. Notation

Throughout the letters α, η denote real numbers, X,P,Q denote large positive real
numbers, m,n, k denote integers, p denotes a prime number, and z, w denote com-
plex numbers. For any real number α, e(α) = e2πiα. The arithmetic function ϕ(n)
denotes the Euler totient function, Λ(n) denotes the von Mangoldt function, µ(n)
denotes the Möbius function, τ(n) denotes the number of divisors of n, and (n/p)
denotes the Legendre symbol. The letters a, q denote positive integers satisfying
(a, q) = 1 and the expressions ∑∗

a (mod q)

,
∐∗

a (mod q)

denote a sum and a disjoint sum over all reduced residues a (mod q) respectively.
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3. Preliminary lemmas

Following Languasco and Perelli [3], we use the following power series for the
generating functions of prime numbers and squares:

S(α) =

∞∑
n=1

Λ(n)e−n/Xe(nα), W (α) =

∞∑
n=1

e−n
2/Xe(n2α).

In this section, we summarize some lemmas on these generating functions.
For S(α), we use the following variant of the estimate of Languasco and Perelli.

For the proof, see [3, 4]. Let z = 1/X − 2πiα.

Lemma 1. Assume GRH. For 1 6 q 6 X and 0 6 ξ 6 1/2, we have

∑∗

a (mod q)

∫ ξ

−ξ

∣∣∣∣S (aq + α

)
− µ(q)

ϕ(q)

1

z

∣∣∣∣2 dα� qξX(logX)2.

For W (α), we use Jacobi’s transformation formula in the following form:

Lemma 2. For any real number α and any complex number z with <z > 0, we
have

∞∑
n=−∞

exp
(
−π(n+ α)2z

)
=

1√
z

∞∑
n=−∞

exp
(
−πn2/z − 2πinα

)
,

where the branch of
√
z is chosen as its value at 1 equals 1.

This lemma is classical. For the proof, see [7, Theorem 10.1]. Before applying
Jacobi’s formula to W (α), we need to estimate the generalized Gaussian sum

G(a, n; q) =

q∑
k=1

e

(
ak2 + nk

q

)
, G(a, q) = G(a, 0; q).

The following estimate can be deduced immediately by Weyl differencing.

Lemma 3. If (a, q) = 1, then we have G(a, n; q)� q1/2.

We can now prove our approximation of W (α). The following estimate is also
classical. For example, see [9, Lecture 33]. However, we include its proof for
completeness.

Lemma 4. If (a, q) = 1 and |α| 6 1/2, then we have

W

(
a

q
+ α

)
=

√
π

2

G(a, q)

q

1√
z

+O
(
q1/2 + q1/2X1/2|α|1/2

)
,

where the branch of
√
z is chosen as its value at 1 equals 1.



A remark on the conditional estimate for the sum of a prime and a square 65

Proof. We first consider a kind of Jacobi’s theta function

Θ(α) =

∞∑
n=−∞

e−n
2/Xe(n2α)

instead of W (α). Then the original W (α) can be written as

W (α) =
1

2
Θ(α) +O(1).

Let w = z/π. Then we have

Θ

(
a

q
+ α

)
=

∞∑
n=−∞

e−πn
2we

(
an2

q

)
.

We now divide the above series according to the residue n (mod q). Then

Θ

(
a

q
+ α

)
=

q∑
k=1

e

(
ak2

q

) ∞∑
m=−∞

exp
(
−π(m+ k/q)2q2w

)
.

Applying Lemma 2 to the inner sum, we find

Θ

(
a

q
+ α

)
=

q∑
k=1

e

(
ak2

q

)
1

q
√
w

∞∑
n=−∞

exp

(
−πn

2

q2w
− 2πi

nk

q

)

=
1

q
√
w

∞∑
n=−∞

exp

(
−πn

2

q2w

) q∑
k=1

e

(
ak2 + nk

q

)
.

We now pick up the term with n = 0 as the main term. Then

Θ

(
a

q
+ α

)
=

1

q
√
w
{G(a, q) +R(a, q;α)} , (3.1)

where

R(a, q;α) =

∞∑
n=−∞
n 6=0

G(a, n; q) exp

(
−πn

2

q2w

)
.

By Lemma 3, we can estimate the error term R(a, q;α) as

R(a, q;α)� √q
∞∑
n=1

exp

(
−πn

2δ

q2

)
, (3.2)

where δ is given by

δ = <
(

1

w

)
� 1

X|w|2
.
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Then

R(a, q;α)� √q
∫ ∞

0

exp

(
−πt

2δ

q2

)
dt� q3/2X1/2|w|.

Substituting this estimate into (3.1), we get

Θ

(
a

q
+ α

)
=
G(a, q)

q
√
w

+O
(
q1/2X1/2|w|1/2

)
.

Returning to the original notation W (α) and z = πw, we have

W

(
a

q
+ α

)
=

√
π

2

G(a, q)

q

1√
z

+O
(

1 + q1/2X1/2|z|1/2
)
.

Since |z|1/2 � X−1/2 + |α|1/2, we obtain the lemma. �

4. The Farey dissection

We take Q = (X logX)1/2 as the order of the dissection, and let I be the unit
interval I = [1/Q, 1+1/Q]. For a pair of positive integers a, q such that a 6 q and
(a, q) = 1, we shall denote by Ma,q the Farey arc around a/q which is defined by

Ma,q =

[
a

q
− 1

qQ
,
a

q
+

1

qQ

]
.

Let P = X/Q. Then the Farey arcs Ma,q with q 6 P are pairwise disjoint for
sufficiently large X. So let us define the major arcs:

M =
∐
q6P

∐∗

a (mod q)

Ma,q

and define the minor arcs: m = I \M.
We introduce the following approximants for our generating functions

T (α) :=


µ(q)

ϕ(q)

1

(z + 2πia/q)
(when α ∈Ma,q, q 6 P ) ,

0 (when α ∈ m) ,

(4.1)

U(α) :=


√
π

2

G(a, q)

q

1

(z + 2πia/q)1/2
(when α ∈Ma,q, q 6 P ) ,

0 (when α ∈ m) .

(4.2)

Consider the Fourier coefficients T̂U(n) of T (α)U(α) which is defined by

e−n/X T̂U(n) =

∫ 1

0

T (α)U(α)e(−nα) dα. (4.3)
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Then we get by the Parseval identity that

∞∑
n=1

e−2n/X
∣∣∣R(n)− T̂U(n)

∣∣∣2 =

∫ 1

0

|S(α)W (α)− T (α)U(α)|2 dα. (4.4)

We devide this last integral as∫ 1

0

|S(α)W (α)− T (α)U(α)|2 dα =

∫
M

+

∫
m

, (4.5)

and then we shall estimate these integrals separately.

5. The minor arcs

On the minor arcs, the variable α can be approximated as∣∣∣∣α− a

q

∣∣∣∣ 6 1

qQ

by some Farey fraction a/q with P < q 6 Q. Since

|z| � max
(
X−1, |α|

)
, (5.1)

Lemmas 3 and 4 give the estimate

W (α)2 � XP−1 +Q+XQ−1 � Q.

Hence by the Parseval identity, we find that∫
m

|S(α)W (α)|2 dα� sup
α∈m
|W (α)|2

∫ 1

0

|S(α)|2 dα

� Q

∞∑
n=1

Λ(n)2e−2n/X .

Using the prime number theorem, we have∫
m

� QX logX = (X logX)3/2. (5.2)

6. The major arcs

We divide the integrand as

S(α)W (α)− T (α)U(α) = (S(α)W (α)− T (α)W (α))

+ (T (α)W (α)− T (α)U(α))

= E1 + E2, say.
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And we separate the integral over the major arcs as∫
M

�
∫
M

|E1|2 dα+

∫
M

|E2|2 dα = I1 + I2.

We first dissect these integrals into the integrals over small arcs:∫
M

=
∑
q6P

∑∗

a (mod q)

∫
Ma,q

.

We first treat I1. By Lemmas 3 and 4, we have

W

(
a

q
+ α

)2

� 1

q|z|
+ q + qX|α|.

By the estimate (5.1), we obtain the following estimates:

W

(
a

q
+ α

)2

� X

q
, (6.1)

W

(
a

q
+ α

)2

� 1

q|α|
, (6.2)

on each small arc Ma,q with q 6 P . We have to estimate

I1 =
∑
q6P

∑∗

a (mod q)

∫ 1/qQ

−1/qQ

∣∣∣∣S (aq + α

)
− µ(q)

ϕ(q)

1

z

∣∣∣∣2 ∣∣∣∣W (
a

q
+ α

)∣∣∣∣2 dα.
We divide these integrals into two parts as∫ 1/qQ

−1/qQ

=

∫ 1/X

−1/X

+

∫
1/X<|α|61/qQ

= J1(a, q) + J2(a, q).

For J1(a, q), we use the estimate (6.1) and Lemma 1. Then we have

∑
q6P

∑∗

a (mod q)

J1(a, q)�
∑
q6P

X

q

∑∗

a (mod q)

∫ 1/X

−1/X

∣∣∣∣S (aq + α

)
− µ(q)

ϕ(q)

1

z

∣∣∣∣2 dα
� PX(logX)2. (6.3)

For J2(a, q), we use (6.2) and Lemma 1. Then integration by parts gives

∑∗

a (mod q)

J2(a, q)�
∑∗

a (mod q)

∫
1/X<|α|61/qQ

∣∣∣∣S (aq + α

)
− µ(q)

ϕ(q)

1

z

∣∣∣∣2 dα

q|α|

� X(logX)2

(
log

2X

qQ

)
.
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Therefore∑
q6P

∑∗

a (mod q)

J2(a, q)� X(logX)2
∑
q6P

log
2X

qQ
� PX(logX)2. (6.4)

Here we used the following estimate:∑
q6P

log
2X

qQ
=
∑
q6P

log
2P

q
=
∑
q6P

∫ 2P

q

du

u
� P.

By (6.3) and (6.4), we have

I1 � PX(logX)2 = (X logX)3/2. (6.5)

We now estimate I2. On each small arc Ma,q, Lemma 4 gives that

|W (α)− U(α)|2 � P.

And since∫
Ma,q

|T (α)|2 dα� 1

ϕ(q)2

∫ 1/qQ

−1/qQ

dα

|z|2

� 1

ϕ(q)2

(∫
|α|61/X

dα

|z|2
+

∫
1/X<|α|61/qQ

dα

|z|2

)

� 1

ϕ(q)2

(
X +

∫ 1/qQ

1/X

dα

α2

)
� X

ϕ(q)2
,

we can estimate I2 as

I2 � P
∑
q6P

∑∗

a (mod q)

∫
Ma,q

|T (α)|2 dα

� PX
∑
q6P

1

ϕ(q)
� PX logX = X3/2(logX)1/2. (6.6)

The above estimates (6.5), (6.6) for I1, I2 give∫
M

� (X logX)3/2

for the integral over the major arcs. Now, we combine (5.2) with this inequality
and recall (4.4) and (4.5) to get

∞∑
n=1

e−2n/X
∣∣∣R(n)− T̂U(n)

∣∣∣2 � (X logX)3/2.

In particular, we have∑
n6X

∣∣∣R(n)− T̂U(n)
∣∣∣2 � (X logX)3/2 (6.7)

since e−2n/X � 1 for n 6 X.
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7. Extension of the major arcs

The next task is to extend each of the small arcs in (4.3) to the whole arc
[−1/2, 1/2]. Since T (α) and U(α) are zero on the minor arcs, we can divide
(4.3) into the integrals over the major arcs:

=

√
π

2

∑
q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)

∫
Ma,q

e(−nα)

(z + 2πia/q)3/2
dα

=

√
π

2

∑
q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∫ 1/qQ

−1/qQ

e(−nα)

z3/2
dα.

Here we have to extend the range of the integral∫ 1/qQ

−1/qQ

e(−nα)

z3/2
dα

to the whole arc [−1/2, 1/2]. The error arising from this extension is

rn =

√
π

2

∑
q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∫
1/qQ<|α|61/2

e(−nα)

z3/2
dα,

and we shall estimate its squared mean value∑
n6X

|rn|2.

We divide each of the above integrals into two parts as∫
1/qQ<|α|61/2

=

∫
1/qQ<|α|61/4qP

+

∫
1/4qP<|α|61/2

.

Then the former short extended arcs

Mo
a,q :=

[
a

q
− 1

4qP
,
a

q
− 1

qQ

]
t
[
a

q
+

1

qQ
,
a

q
+

1

4qP

]
for q 6 P are pairwise disjoint since for two distinct Farey fraction a/q, a′/q′ with
q, q′ 6 P , we have ∣∣∣∣aq − a′

q′

∣∣∣∣ > 1

qq′
>

1

2qP
+

1

2q′P
.

Thus we introduce
n =

∐
q6P

∐∗

a (mod q)

Mo
a,q.

Then we find that
rn = r(1)

n + r(2)
n ,
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where
r(1)
n =

∫
n

T1(α)U1(α)e(−nα)dα,

T1(α) :=
µ(q)

ϕ(q)

1

(z + 2πia/q)

(
when α ∈Mo

a,q, q 6 P
)
,

U1(α) :=

√
π

2

G(a, q)

q

1

(z + 2πia/q)1/2

(
when α ∈Mo

a,q, q 6 P
)
,

and

r(2)
n =

√
π

2

∑
q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∫
1/4qP<|α|61/2

e(−nα)

z3/2
dα.

We first treat r(1)
n . For this integral, we use the Bessel inequality. Then∑

n6X

∣∣∣r(1)
n

∣∣∣2 � ∫
n

|T1(α)U1(α)|2 dα.

Dissecting into small arcs, we have

�
∑
q6P

µ2(q)

q2ϕ(q)2

∑∗

a (mod q)

|G(a, q)|2
∫

1/qQ<|α|61/4qP

1

|z|3
dα

=
∑
q6P

µ2(q)

qϕ(q)

∫
1/qQ<|α|61/4qP

1

|α|3
dα� Q2

∑
q6P

q

ϕ(q)
� Q2P = QX.

Thus we have ∑
n6X

∣∣∣r(1)
n

∣∣∣2 � X3/2(logX)1/2. (7.1)

We now deal with r(2)
n . Following Mikawa [6], we use the large sieve for these

integrals. Our mean square error ∑
n6X

∣∣∣r(2)
n

∣∣∣2
is a constant multiple of

∑
n6X

∣∣∣∣∣∣
∑
q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∫
1/4qP<|α|61/2

e(−nα)

z3/2
dα

∣∣∣∣∣∣
2

.

In the absolute sign of each above term, we first change the order of summation
and integration:∑

q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∫
1/4qP<|α|61/2

e(−nα)

z3/2
dα

=

∫
1/X<|α|61/2

e(−nα)

z3/2

∑
1/4|α|P<q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)
dα.
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Then by the Cauchy-Schwarz inequality, we get∣∣∣∣∣∣
∑
q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∫
1/4qP<|α|61/2

e(−nα)

z3/2
dα

∣∣∣∣∣∣
2

�

(∫
1/X<|α|61/2

1

|z|
dα

)

×

∫
1/X<|α|61/2

1

|z|2

∣∣∣∣∣∣
∑

1/4|α|P<q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∣∣∣∣∣∣
2

dα

 .

The first integral can be estimated as∫
1/X<|α|61/2

1

|z|
dα�

∫
1/X<|α|61/2

1

|α|
dα� logX.

And for the second integral, after taking the summation over n, we use the follow-
ing estimate obtained via the large sieve:

∑
n6X

∣∣∣∣∣∣
∑

1/4|α|P<q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∣∣∣∣∣∣
2

�
(
X + P 2

) ∑
1/4|α|P<q6P

∑∗

a (mod q)

µ2(q) |G(a, q)|2

q2ϕ(q)2

� X
∑

1/|α|P<q6P

µ2(q)

qϕ(q)
.

Combining the above estimates, we get the estimate

∑
n6X

∣∣∣∣∣∣
∑
q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)∫
1/4qP<|α|61/2

e(−nα)

z3/2
dα

∣∣∣∣∣∣
2

� X logX

∫
1/X<|α|61/2

1

|α|2
∑

1/4|α|P<q6P

µ2(q)

qϕ(q)
dα

� X logX
∑
q6P

µ2(q)

qϕ(q)

∫
1/4qP<|α|61/2

dα

|α|2

� PX logX
∑
q6P

µ2(q)

ϕ(q)
� PX(logX)2,

i.e. ∑
n6X

∣∣∣r(2)
n

∣∣∣2 � (X logX)3/2. (7.2)
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Combining (7.1) and (7.2), we have∑
n6X

|rn|2 �
∑
n6X

∣∣∣r(1)
n

∣∣∣2 +
∑
n6X

∣∣∣r(2)
n

∣∣∣2 � (X logX)3/2. (7.3)

8. Completion of the proof of Theorem 2

We next calculate explicitly the extended integral

V (n, P ) =


√
π

2

∑
q6P

µ(q)

qϕ(q)

∑∗

a (mod q)

G(a, q)e

(
−an
q

)
∫ 1/2

−1/2

e(−nα)

z3/2
dα.

We use the following integral formula∫ 1/2

−1/2

e(−nα)

z3/2
dα = e−n/N

2
√
n

Γ(1/2)
+O

(
1

n

)
. (8.1)

This is a simple corollary of the Hankel integral formula. For the proof, see
[5, Lemma 4]. Since it holds that [1, Lemma 3, 4]∑∗

a (mod q)

G(a, q)e

(
−an
q

)
� q

for any square-free number q, the contribution of the error term of (8.1) is

� 1

n

∑
q6P

1

ϕ(q)
� logX

n
.

Thus V (n, P ) is calculated explicitly as

V (n, P ) =e−n/NS(n, P )
√
n+O

(
logX

n

)
(8.2)

where
S(n, P ) :=

∑
q6P

∑∗

a (mod q)

µ(q)

qϕ(q)
G(a, q)e

(
−an
q

)
.

By (6.7) and (7.3), we get∑
n6X

∣∣R(n)−S(n, P )
√
n
∣∣2 � (X logX)3/2.

Assuming GRH, we can show [1, Lemma 21] that there exists a positive absolute
constant η such that

S(n, P ) = S(n)(1 +O(n−η))

for n 6= m2. Therefore Theorem 2 follows.
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9. Proof of Theorem 1

First we shall modify Theorem 2 to

∑
n6X

∣∣∣∣∣∣
∑

p+m2=n

(log p)−S(n)
√
n(1 +O(n−η))

∣∣∣∣∣∣
2

� (X logX)3/2. (9.1)

In order to justify this modification, we proceed as follows. We remove the restric-
tion that p is a prime. Then we have to estimate:

∑
n6X

 ∑
pk+m2=n

k>2

(log p)


2

� (logX)2

∑
n6X

 ∑
m2

1+m2
2=n

1

2

+
∑
n6X

 ∑
mk1+m2

2=n
36k�logX

1


2 .

Let us denote these sums by

= (logX)2
(∑

1
+
∑

2

)
.

For
∑

1, we use Jacobi’s two-square theorem to get∑
1
�
∑
n6X

τ(n)2 � X(logX)3.

For
∑

2, we first notice that for k > 3 and n 6 X∑
mk1+m2

2=n

1�
∑
mk6n

1�
∑
m36n

1� X1/3.

Hence we have∑
2
� X1/3

∑
n6X

∑
mk1+m2

2=n
36k�logX

1� X1/3
∑
mk6X

36k�logX

∑
m26X

1� X7/6(logX).

These estimates gives

∑
n6X

 ∑
pk+m2=n

k>2

(log p)


2

� X7/6(logX)3 � (X logX)3/2.

This justifies (9.1).
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Now assuming GRH, we know that

S(n)� (log log n)−2

holds for n 6= m2 and n > 4 [6, p. 304]. Hence (9.1) gives

X(log logX)−4
∑

X/2<n6X
n 6=m2, p+m2

1� (X logX)3/2

or
E(X)− E(X/2)� X1/2(logX)3/2(log logX)4.

Therefore we finally obtain that

E(X)� X1/2 +

O(logX)∑
k=1

(
E(X/2k−1)− E(X/2k)

)
� X1/2(logX)3/2(log logX)4.

This completes the proof of Theorem 1.
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