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COUNTING LATTICE POINTS IN CERTAIN RATIONAL
POLYTOPES AND GENERALIZED DEDEKIND SUMS

Kazuhito Kozuka

Abstract: Let P ⊂ Rn be a rational convex polytope with vertices at the origin and on
each positive coordinate axes. On the basis of the study on counting lattice points in tP with
positive integer t, which is deeply connected with reciprocity laws for generalized Dedekind sums,
we study the number of lattice points in the shifted polytope of tP by a fixed rational point.
Certain generalized multiple Dedekind sums appear naturally in the main result.
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1. Introduction

Let P ⊂ Rn be a rational convex polytope and for t ∈ N, put

LP(t) = ] (tP ∩ Zn) ,

the number of lattice points in tP. It is known that LP(t) is expressed as

LP(t) = cn(t)tn + · · ·+ c1(t)t+ c0(t)

with periodic functions c0(t), · · · , cn(t) and is called the Ehrhart quasipolynomial
of P([15]). Further the problem of finding an explicit expression of LP(t) is deeply
connected with reciprocity laws for certain generalized Dedekind sums. Histor-
ically, the first example appeared in [16], where Mordell studied the number of
lattice points in the interior of the tetrahedron

P =
{

(x, y, z) ∈ R3
>0

∣∣∣ x
a

+
y

b
+
z

c
6 1
}

for a, b, c ∈ N and obtained a formula connected with a three-term relation of the
classical Dedekind sums.
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Generalizations for higher dimensional case are studied in [2], [3] and [4] etc.,
in which Dedekind-Rademacher sums or Fourier-Dedekind sums appear naturally.
Here, along the content of this paper, put

P(a) =
{

(x1, · · · , xn) ∈ Rn
>0

∣∣ a1x1 + · · · anxn 6 1
}

and
L(t : a) = LP(a)(t)

for a = (a1, · · · , an) ∈ Nn. Let us recall the result for this case. It is obvious that
L(t : a) is equal to the Taylor coefficient of zt of the function

F (z : a)
def
=

(
n∏
i=1

(1 + zai + z2ai + · · · )

)
(1 + z + z2 + · · · )

=

(
n∏
i=1

1

1− zai

)
1

1− z
.

Making use of this, Beck, Dias and Robins studied in [3] an explicit expression of
L(t : a) under the condition of gcd{ai, aj} = 1 for all i 6= j. In order to state the
result precisely, let us define the Fourier-Dedekind sum by

σl(c1, · · · , cn : c) =
1

c

∑
ζc=1
ζ 6=1

ζl

(ζc1 − 1) · · · (ζcn − 1)
(1.1)

for c, c1, · · · , cn ∈ N and l ∈ Z, and put

R−t(a) = −Res
(
z−t−1F (z : a) : z = 1

)
.

Then, it is shown in [3] that

L(t : a) = R−t(a) + (−1)n
n∑
i=1

σ−t(a1, · · · , âi, · · · , an, 1 : ai). (1.2)

Note that if we put

p(t : a) = ]{(m1, · · · ,mn) ∈ Zn>0 | a1m1 + · · · anmn = t},

then
L(t : a) = p(t : (a, 1)),

where (a, 1) = (a1, · · · , an, 1) ∈ Nn+1. In [4], Beck, Gessel and Komatsu studied a
formula for the polynomial part of p(t : a). From Theorem and Proposition of [4]
and Remark 1 of [3], we see that R−t(a) equals the polynomial part of p(t : (a, 1))
and is expressed as

R−t(a) =
1

a1 · · · an

n∑
m=0

(−1)m

(n−m)!

∑
p1,··· ,pn,q∈Z>0

p1+···+pn+q=m

ap11 · · · apnn
Bp1 · · ·BpnBq
p1! · · · pn!q!

tn−m,

(1.3)
where Bp is the pth Bernoulli number.
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As for the value at t = 0, it is known that if P is an integral polytope, LP(t)
is a polynomial of t of which the constant term equals the Euler characteristic
χ(P) of P. It is also known that χ(P) = 1 if P is convex. In our case, since
a1 · · · an · P(a) is integral and convex, we have L(0,a) = 1. We note that this can
also be interpreted as L(0,a) = ] (0 · P(a) ∩ Zn). In addition the formula (1.2)
also holds for t = 0.

Now the classical Dedekind sum s(a, b) is defined by

s(a, b) =
∑

λ mod b

((λ
b

))((aλ
b

))
, (1.4)

where a ∈ Z, b ∈ N and

((x)) =

{
x− [x]− 1

2 if x /∈ Z

0 if x ∈ Z.

If a, b ∈ N with gcd{a, b} = 1, we have a well-known reciprocity law such as

s(a, b) + s(b, a) =
1

12

(
b

a
+
a

b
+

1

ab

)
− 1

4
. (1.5)

([14], [18]). In the special case of n = 2 and t = 0, we have

σ0(a, 1 : b) = −s(a, b) +
1

4
− 1

4ab

and the formula (1.2), together with (1.3), naturally reduces to (1.5).
In this paper, as a generalization of L(t : a), we study the formula for the

number of the lattice points in the shifted polytope of tP(a) by a fixed rational
point, namely the formula expressing ] ((−α+ tP(a)) ∩ Zn) for α ∈ Qn. The
special case of n = 2, in which P(a) is a rectangled triangle in R2, is studied
in [5]. In our main result, we enlarge the range of t as t ∈ Q>0 and multiple
versions of the Dedekind-Rademacher sums will appear naturally. Let us give
a description of each section.

In Section 2, we first recall the definition and basic properties of Bernoulli
functions and give a definition of generalized Dedekind sums which appear in our
main result.

In Section 3, as important tools for the study of lattice points in rational
polytopes, we describe the integer-point transforms of rational polytopes or cones
inRn and well-known Brion’s Theorem. Then we state the main result as a natural
application of Brion’s Theorem to the polytope −α + tP(a). As a Corollary of
the main result, we also show a generalized reciprocity law for multiple Dedekind-
Rademacher sums.

In order to prove the main result, we prepare two equations as Lemmas in
Section 4 and complete the proof in Section 5.
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2. Notations and definitions

Let Bp(X) be the pth Bernoulli polynomial defined by

tetX

et − 1
=

∞∑
p=0

Bp(X)
tp

p!
.

and let Bp = Bp(0), the pth Bernoulli number. For any x ∈ Q, write x = [x]+{x}
with [x] ∈ Z and 0 6 {x} < 1 and define B̃p(x) = Bp({x}), which is periodic of
period 1 and satisfies a distribution relation such as∑

λ mod k

B̃p

(
x+

λ

k

)
= k1−pB̃p(kx) (2.1)

for any k ∈ N and x ∈ Q. Let P = (p1, · · · , pn) ∈ Zn>0, q ∈ Z>0, a =
(a1, · · · , an) ∈ Zn, b ∈ Z, α = (α1, · · · , αn) ∈ Qn and β ∈ Q, and we define
the following multiple Dedekind sum:

S(P,q)

(
a b
α β

)
=

∑
λ1,··· ,λn mod b

 n∏
j=1

B̃pj

(
λj + αj

b

) B̃q

(∑n
j=1 aj(λj + αj)

b
+ β

)
. (2.2)

In the special case of n = 1, the sum is reduced to the classical Dedekind sum
(1.4) as

S(1,1)

(
a b
0 0

)
=

1

4
+ s(a, b).

In addition, we also have

S(p,q)

(
a b
α β

)
=

∑
λ mod b

B̃p

(
λ+ α

b

)
B̃q

(
a(λ+ α)

b
+ β

)
,

which essentially includes the sums defined by Apostol as (1.3) in [1], by Rademacher
as (1.3) in [17] and by Carlitz as (1.2) in [8], (1.7) in [10] and (1.12) in [12]. We
also note that in [10] and [13], Carlitz had already studied the sum (2.2) in the
case of P = (1, · · · , 1), α = (0, · · · , 0) and β = 0 with rather modified forms.

In the case of P = (1, · · · , 1), q = 1, α = 0 = (0, · · · , 0) and β = t/b, the sum
(2.2) is reduced to the Fourier-Dedekind sum (1.1) in such a way that

S(1,··· ,1,1)

(
a b
0 t/b

)
= σ−t(−a, 1 : b) +

Bn1
b
. (2.3)

In the case of (P, q) = (p1, · · · , pn, q) ∈ Zn+1
>0 − Nn+1 and gcd(b, aj) = 1 for

1 6 j 6 n, we can derive by (2.1) that

S(P,q)

(
a b
α β

)
= bn−(p1+···+pn+q)

 n∏
j=1

B̃pj (αj)

 B̃q(a ·α+ bβ), (2.4)

where a ·α = a1α1 + · · ·+ anαn, the inner product of a and α.
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3. Integer-point transforms

Let S ⊂ Rn be a rational cone or polytope, The integer-point transform of S is
defined by

σ(u1, · · · , un : S) =
∑

(m1,··· ,mn)∈S∩Zn
um1

1 · · ·umnn . (3.1)

If S is a polytope, the right-hand side of (3.1) is a finite sum. If S is a cone, the
right-hand side of (3.1) is a Laurent series of uε11 , · · · , uεnn , where εj = 1 or −1
for 1 6 j 6 n and can also be expressed as a rational function of u1, · · · , un (cf.
Chapter 3.2 of [6]).

Let a = (a1, · · · , an) ∈ Nn, b ∈ N, α = (α1, · · · , αn) ∈ Qn and β ∈ Q. In
what follows, we consider the range of t as t ∈ Q>0.

Proposition 3.1. Let t ∈ Q>0 and let K(t) denote the cone in Rn+1 defined by

K(t) =
{

(x1, · · · , xn, y) ∈ Rn+1
∣∣∣ n∑
j=1

aj(xj + αj) + b(y + β) 6 t,

xj + αj > 0 (1 6 j 6 n)
}
.

Then we have

σ(u1, · · · , un, v : K(t))

=
∑

06λ1,··· ,λn6b−1

 n∏
j=1

u
λj−[αj ]
j

1− ubjv−aj

 v[− 1
b

∑n
j=1 aj(λj+{αj})−β+ t

b ]

1− v−1
(3.2)

= u−α1
1 · · ·u−αnn v−β+ t

b

∑
06λ1,··· ,λn6b−1

 n∏
j=1

(ubjv
−aj )

λj+{αj}
b

1− ubjv−aj


× v−{−

1
b

∑n
j=1 aj(λj+{αj})−β+ t

b}

1− v−1
. (3.3)

Proof. If (m1, · · · ,mn,m) ∈ K(t) ∩ Zn+1, then we have mj + αj > 0 for each
1 6 j 6 n and

m 6 −1

b

n∑
j=1

aj(mj + αj)− β +
t

b
.

This implies mj + [αj ] ∈ Z>0 and we can express

mj = −[αj ] + λj + blj with 0 6 λj 6 b− 1 and lj ∈ Z>0
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and

m =

−1

b

n∑
j=1

aj(mj + αj)− β +
t

b

− l with l ∈ Z>0

=

−1

b

n∑
j=1

aj(λj + {αj})− β +
t

b

− n∑
j=1

aj lj − l.

Hence

σ(u1, · · · , un, v : K(t))

=
∑

l1,··· ,ln,l>0

∑
06λ1,··· ,λn6b−1

 n∏
j=1

u
−[αj ]+λj
j

 v[− 1
b

∑n
j=1 aj(λj+{αj})−β+ t

b ]

×

 n∏
j=1

(ubjv
−aj )lj

 · v−l
=

∑
06λ1,··· ,λn6b−1

 n∏
j=1

u
λj−[αj ]
j

1− ubjv−aj

 v[− 1
b

∑n
j=1 aj(λj+{αj})−β+ t

b ]

1− v−1
.

Thus, we obtain (3.2) and equation (3.3) is directly derived from (3.2) by making
use of [x] = x− {x} for any x ∈ Q. �

Now suppose that a = (a1, · · · , an) ∈ Nn with gcd{ai, aj} = 1 for all i 6= j
and as in the introduction, put

P(a) = {(x1, · · · , xn) ∈ Rn
>0 | a1x1 + · · ·+ anxn 6 1}.

Let A1,A2, · · · ,An denote the points
(

1

a1
, 0, · · · , 0

)
,

(
0,

1

a2
, 0, · · · , 0

)
, · · · ,(

0, · · · , 0, 1

an

)
, respectively. Then for t > 0, the vertices of tP(a) are the origin

and tA1, · · · , tAn. For each 1 6 i 6 n, let Ki(t) denote the tangent cone of tAi.
Then

Ki(t) = {(t− µi)
−−→
OAi +

∑
j 6=i

µj
−−−→
AiAj |µ1, · · · , µn > 0} (3.4)

= {(x1, · · · , xn) ∈ Rn | a1x1 + · · ·+ anxn 6 t,

xj > 0 for 1 6 j 6 n with j 6= i}. (3.5)

In addition , we put
K0(t) = Rn

>0, (3.6)
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which is the tangent cone of the origin for tP(a). Let α = (α1, · · · , αn) ∈ Qn and
let us consider the shifted polytope

−α+ tP(a) = {(x1, · · · , xn) ∈ Rn | a1(x1 + α1) + · · ·+ an(xn + αn) 6 t,

xj + αi > 0 (1 6 j 6 n)}

and put
L(t : a,α) = ] ((−α+ tP(a)) ∩ Zn) .

Then the vertices of −α + tP(a) are the points −α and −α + tAi for 1 6 i 6 n
and their tangent cones are −α+K0(t) = −α+ Rn

>0 and

−α+Ki(t) = {(x1, · · · , xn) ∈ Rn | a1(x1 + α1) + · · ·+ an(xn + αn) 6 t,

xj + αj > 0 for 1 6 j 6 n with j 6= i},

respectively. Applying (3.3), we see that

σ(u1, · · · , un, : −α+Ki(t))

= u−α1
1 · · ·u−αnn u

t
ai
i

∑
06λ1,··· ,λ̂i,··· ,λn6ai−1

∏
j 6=i

(uaij u
−aj
i )

λj+{αj}
ai

1− uaij u
−aj
i


× u

−{− 1
ai

∑
j 6=i aj(λj+{αj})−αi+

t
ai
}

i

1− u−1
i

(3.7)

for 1 6 i 6 n. For i = 0, we have

σ(u1, · · · , un, : −α+K0(t)) =
∑

(m1,··· ,mn)∈(−α+Rn
>0

)∩Zn
um1

1 · · ·umnn

=

n∏
i=1

∑
mi>−[αi]

umii =

n∏
i=1

u
−[αi]
i

1− ui

= u−α1
1 · · ·u−αnn

n∏
i=1

u
{αi}
i

1− ui
. (3.8)

Now we have the following theorem due to Brion ([7] or Theorem 9.7 of [6]).

Theorem 3.2 (Brion). Suppose P ⊂ Rn is a rational convex polytope. For each
vertix v of P, let Kv denote the tangent cone of v. Then we have

σ(u1, · · · , un : P) =
∑

v:a vertix of P

σ(u1, · · · , un : Kv).
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Applying Brion’s Theorem to P = −α+ tP(a), we deduce that

σ(u1, · · · , un : −α+ tP(a)) =

n∑
i=0

σ(u1, · · · , un : −α+Ki(t)). (3.9)

For each P = (p1, · · · , pn) ∈ Zn>0, we put Pi = (p1, · · · , p̂i, · · · , pn) for 1 6 i 6 n.
Similarly we put ai = (a1, · · · , âi, · · · , an) and αi = (α1, · · · , α̂i, · · · , αn). Then
taking ui = eaixi for 1 6 i 6 n and combining equations (3.7), (3.8), (3.9) and the
definition (2.2), we obtain

ea1α1x1+···+anαnxn
∑

(m1,··· ,mn)∈(−α+tP(a))∩Zn
ea1m1x1+···+anmnxn

= (−1)n
n∑
i=1

etxi
∑

P=(p1,··· ,pn)∈Zn>0

S(Pi,pi)

(−ai ai

αi −αi +
t

ai

)

×

∏
j 6=i

(aiaj(xj − xi))pj−1

pj !

 (−aixi)pi−1

pi!

+ (−1)n
∑

P=(p1,··· ,pn)∈Zn>0

n∏
i=1

B̃pi(αi)

pi!
(aixi)

pi−1 (3.10)

Here we give a supplementary explanation for the case of t = 0. We define Ki(0)
by (3.4) or equivalently by (3.5) if i > 1 and by (3.6) if i = 0. Then (3.7) and
(3.8) are also valid for t = 0. Further we have −α + 0 · P(a) = {−α} and we
define L(0 : a,α) = ] ({−α} ∩ Zn), which is 1 or 0 according as α ∈ Zn or
α /∈ Zn. In the same way we can define σ(u1, · · · , un : {−α}) = u−α1 · · ·u−αn or
0 according as α ∈ Zn or α /∈ Zn. Since Zn is discrete in Rn, L(t0 + ε : a,α) and
σ(u1, · · · , un : −α + (t0 + ε)P(a)) remain invariant for any fixed t0 ∈ Q>0 and
sufficiently small ε > 0. By considering the case of t0 = 0, (3.10) also holds for
t = 0.

Now for t ∈ Q>0, we have

L(t : a,α) = σ(1, · · · , 1 : −α+ tP(a)),

which also equals the left-hand side of (3.10) at (x1, · · · , xn) = (0, · · · , 0). In the
rest of this paper, we shall study the right-hand side of (3.10) and deduce the
following main result.

Theorem 3.3. For any t ∈ Q>0, we have

L(t : a,α) = P (t : a,α) + (−1)n
n∑
i=1

Qi(t : a,α), (3.11)
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where

P (t : a,α)

=
1

a1 · · · an

n∑
m=0

∑
p1,··· ,pn,p∈Z>0

p1+···+pn+p=m

(−1)m

(
n∏
i=1

apii B̃pi(αi)

pi!

)
B̃p(−a ·α+ t)

p!
· tn−m

(n−m)!

symbolically

=
1

a1 · · · an

(
t−
(
a1B̃(α1) + · · ·+ anB̃(αn) + B̃(−a ·α+ t)

))n 1

n!
(3.12)

and

Qi(t : a,α) = S(1,··· ,1)

(−ai ai

αi −αi +
t

ai

)
− 1

ai

∏
j 6=i

B̃1(αj)

 B̃1(−a ·α+ t).

Taking t = 0 and making use of the symbolical expression as in (3.12), we can
easily dedeuce a generalized reciprocity law for multiple Dedekind-Rademacher
sums, which we show as the following.

Corollary 3.4. We have

a1 · · · an
n∑
i=1

S(1,··· ,1)

(
−ai ai
αi −αi

)
= − 1

n!

(
a1B̃(α1) + · · ·+ anB̃(αn) + B̃(−a ·α)

)n
+

n∑
i=1

∏
j 6=i

ajB̃1(αj)

 B̃1(−a ·α) + ε, (3.13)

where ε = (−1)na1 · · · an or 0 according as α ∈ Zn or α /∈ Zn.

4. Preliminary results

Let x = (x1, · · · , xn) and4(x) = 4(x1, · · · , xn) =
∏

16i<j6n

(xi−xj), the difference

product of x1, · · · , xn. Then as is well known for the Vandermonde determinant,
we have ∣∣∣∣∣∣∣

xn−1
1 xn−2

1 · · · x1 1
...

...
...

...
xn−1
n xn−2

n · · · xn 1

∣∣∣∣∣∣∣ = 4(x).

For the proof of Theorem 3.3, we shall need the following two lemmas.
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Lemma 4.1. Let n > 2 and N ∈ Z>0. Then we have∣∣∣∣∣∣∣
xN1 xn−2

1 · · · x1 1
...

...
...

...
xNn xn−2

n · · · xn 1

∣∣∣∣∣∣∣ = 4(x)
∑

p1,··· ,pn∈Z>0

p1+···+pn=N−n+1

xp11 · · ·xpnn . (4.1)

Lemma 4.2. Let n,N ∈ Z>0 and l ∈ Z. Then we have

N∑
j=0

(−1)j
(
N

j

)(
l + j

n

)
=

(−1)N
(

l

n−N

)
if N 6 n

0 otherwise.

Concerning Lemma 4.1, let us recall the Schur polynomial, which is defined by

s(x : (λj)) =
det(x

λj+n−j
i )

4(x)

for (λj) = (λ1, · · · , λn) ∈ Z>0 with λ1 > · · · > λn and expressed by making use
of the corresponding Young diagrams for (λj). If N > n − 1, (4.1) is a direct
consequence of the special case of (λj) = (N −n+ 1, 0, · · · , 0), in which the Schur
polynomial becomes the complete symmetric polynomial of degree N − n+ 1 in n
variables x1, · · · , xn. Direct proof for this case is also possible by making use of
induction on N . Note that in the case of 0 6 N < n − 1, (4.1) is also valid since
both sides become 0.

As for Lemma 4.2, consider the following equation

T l(1 + T )N =

N∑
j=0

(
N

j

)
T l+j .

Differentiating both sides ntimes, we obtain

N∑
j=0

(
n

j

)
dn−jT l

dTn−j
· d

j

dT j
(1 + T )N =

N∑
j=0

(
N

j

)
dnT l+j

dTn
,

namely

N∑
j=0

(
n

j

)(
l

n− j

)
(n− j)!T l−n+j ·

(
N

j

)
j!(1 + T )N−j

=

N∑
j=0

(
N

j

)(
l + j

n

)
n!T l+j−n.

By taking T = −1, the result follows immediately.
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5. Proof of Theorem 3.3

In order to study the right-hand side of (3.10), we put Z0 = Zn>0 and Z1 =
Nn, and introduce the following functions Gk(x) = Gk(x1, · · · , xn) and Hk(x) =
Hk(x1, · · · , xn) for k = 0, 1:

Gk(x) =

n∑
i=1

etxi
∑

P=(p1,··· ,pn)∈Zk

S(Pi,pi)

(−ai ai

αi −αi +
t

ai

)

×

∏
j 6=i

(aiaj(xj − xi))pj−1

pj !

 (−aixi)pi−1

pi!

Hk(x) =
1

a1 · · · an

n∑
i=1

etxi
∑

P=(p1,··· ,pn)∈Zk

∏
j 6=i

a
pj
j B̃pj (αj)

 B̃pi(−a ·α+ t)

×

∏
j 6=i

(xj − xi)pj−1

pj !

 (−xi)pi−1

pi!
.

Then by (2.4), we see that

G0(x)−G1(x) = H0(x)−H1(x). (5.1)

Taking x = (x, · · · , x), we have

G1(x, · · · , x) = etx
n∑
i=1

∞∑
p=1

S(1,··· ,1,p)

(−ai ai

αi −αi +
t

ai

)
(−aix)p−1

p!

and

H1(x, · · · , x) = etx
n∑
i=1

1

ai

∞∑
p=1

∏
j 6=i

B̃1(αj)

 B̃p(−a ·α+ t)
(−x)p−1

p!
.

Especially for x = (0, · · · , 0), we have

G1(0, · · · , 0) =

n∑
i=1

S(1,··· ,1,1)

(−ai ai

αi −αi +
t

ai

)
(5.2)

and

H1(0, · · · , 0) =

n∑
i=1

1

ai

∏
j 6=i

B̃1(αj)

 B̃1(−a ·α+ t). (5.3)

As for H0(x), we first note that

xpi−1
i

∏
j 6=i

(xj −X)pj

 (xi −X)p

∣∣∣∣∣
X=xi

=

x
pi−1
i

∏
j 6=i

(xj − xi)pj if p = 0

0 if p > 1.
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for 1 6 i 6 n. Changing the roles of pi and p, we can express

H0(x) =
1

a1 · · · an

n∑
i=1

etxi
∑

P=(p1,··· ,pn)∈Zn>0

∞∑
p=0

 n∏
j=1

a
pj
j B̃pj (αj)

pj !

 B̃p(−a ·α+ t)

p!

×

(−xi)p−1
n∏
j=1

(xj −X)pj
∣∣∣
X=xi∏

j 6=i

(xj − xi)
.

For each P = (p1, · · · , pn) ∈ Zn>0 and p ∈ Z>0, we put

B(P, p) =

 n∏
j=1

a
pj
j B̃pj (αj)

pj !

 B̃p(−a ·α+ t)

p!

and
s(P ) = p1 + · · ·+ pn,

and express
n∏
j=1

(xi −X)pj =

s(P )∑
k=0

ck(x : P )Xk

with ck(x : P ) ∈ Z[x1, · · · , xn]. Then

4(x)H0(x)

=
1

a1 · · · an

∞∑
p=0

∑
P∈Zn>0

B(P, p)

n∑
i=1

etxi4(x1, · · · , x̂i, · · · , xn)(−1)p+n−i−1xp−1
i

×
s(P )∑
k=0

ck(x : P )xki

=
(−1)n

a1 · · · an

∞∑
p=0

∑
P∈Zn>0

(−1)pB(P, p)

s(P )∑
k=0

ck(x : P )

∣∣∣∣∣∣∣
etx1xp+k−1

1 xn−2
1 · · · x1 1

...
...

...
...

etxnxp+k−1
n xn−2

n · · · xn 1

∣∣∣∣∣∣∣
=

(−1)n

a1 · · · an

∞∑
p=0

∑
P∈Zn>0

(−1)pB(P, p)

s(P )∑
k=0

ck(x : P )

×
∞∑
m=0

tm

m!

∣∣∣∣∣∣∣
xm+p+k−1

1 xn−2
1 · · · x1 1

...
...

...
...

xm+p+k−1
n xn−2

n · · · xn 1

∣∣∣∣∣∣∣ .
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Applying Lemma 4.1, we have∣∣∣∣∣∣∣
xm+p+k−1

1 xn−2
1 · · · x1 1

...
...

...
...

xm+p+k−1
n xn−2

n · · · xn 1

∣∣∣∣∣∣∣ = 4(x)
∑

Q=(q1,··· ,qn)∈Zn>0

s(Q)=m+p+k−n

xq11 · · ·xqnn

except for the case of m = p = k = 0. If m = p = k = 0, the determinant above
becomes ∣∣∣∣∣∣∣

x−1
1 xn−2

1 · · · x1 1
...

...
...

...
x−1
n xn−2

n · · · xn 1

∣∣∣∣∣∣∣ =
(−1)n−1

x1 · · ·xn
4(x).

Hence we deduce that

H0(x)

=
(−1)n

a1 · · · an

∞∑
p=0

∑
P∈Zn>0

(−1)pB(P, p)

s(P )∑
k=0

ck(x : P )

∞∑
m=0

tm

m!

∑
Q=(q1,··· ,qn)∈Zn>0

s(Q)=m+p+k−n

xq11 · · ·xqnn

− 1

a1 · · · an

∑
P∈Zn>0

B(P, 0)c0(x : P )

x1 · · ·xn
.

Now taking x = (x, · · · , x), we have

n∏
j=1

(xj −X)pj = (x−X)s(P ) =

s(P )∑
k=0

(
s(P )

k

)
xs(P )−k(−1)kXk,

which implies

ck(x, · · · , x : P ) =

(
s(P )

k

)
(−1)kxs(P )−k.

Hence

H0(x, · · · , x) =
(−1)n

a1 · · · an

∞∑
p=0

∑
P∈Zn>0

B(P, p)

s(P )∑
k=0

(
s(P )

k

)
(−1)p+k

×
∞∑
m=0

tm

m!

∑
Q∈Zn>0

s(Q)=m+p+k−n

xs(P )+s(Q)−k

− 1

a1 · · · an

∑
P∈Zn>0

B(P, 0)xs(P )−n.
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Note that for any l ∈ Z>0, the number of Q ∈ Zn>0 satisfying s(Q) = l is what

is called the number of repeated combination and equals
(
l + n− 1

n− 1

)
. It follows

that

H0(x, · · · , x) =
(−1)n

a1 · · · an

∞∑
p=0

∑
P∈Zn>0

B(P, p)

s(P )∑
k=0

(
s(P )

k

)
(−1)p+k

×
∞∑
m=0

tm

m!

(
m+ p+ k − 1

n− 1

)
xm+p+s(P )−n

− (−1)n

a1 · · · an

∑
P∈Zn>0

B(P, 0)

(
−1

n− 1

)
xs(P )−n

− 1

a1 · · · an

∑
P∈Zn>0

B(P, 0)xs(P )−n.

Note that the last two summations in the right-hand side of this equation are

canceled since
(
−1

n− 1

)
= (−1)n−1. Then applying Lemma 4.2, we see that

H0(x, · · · , x)

=
(−1)n

a1 · · · an

∞∑
p=0

∑
P∈Zn>0

s(P )6n−1

B(P, p)

∞∑
m=0

tm

m!
(−1)p+s(P )

(
m+ p− 1

n− 1− s(P )

)
xm+p+s(P )−n.

(5.4)

Now we see from (3.10) that

L(t : a,α) = constant term of

(−1)n

G0(x, · · · , x) +
∑

P=(p1,··· ,pn)∈Zn>0

(
n∏
i=1

api−1
i B̃pi(αi)

pi!

)
xs(P )−n

 .

From (5.1), (5.2) and (5.3), we also see that the constant term of
G0(x, · · · , x)−H0(x, · · · , x) equals

G1(0, · · · , 0)−H1(0, · · · , 0)

=

n∑
i=1

S(1,··· ,1,1)

(−ai ai

αi −αi +
t

ai

)
− 1

ai

(∏
j 6=i

B̃1(αj)
)
B̃1(−a ·α+ t)

 .
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It follows from (5.4) that

L(t : a,α)

= (−1)n
n∑
i=1

S(1,··· ,1)

(−ai ai

αi −αi +
t

ai

)
− 1

ai

(∏
j 6=i

B̃1(αj)
)
B̃1(−a ·α+ t)


+

1

a1 · · · an

∑
P∈Zn>0

s(P )6n−1

∑
p,m>0

s(P )+m+p=n

(−1)p+s(P )B(P, p)
tm

m!

+
(−1)n

a1 · · · an

∑
P=(p1,··· ,pn)∈Zn>0

s(P )=n

n∏
i=1

apii B̃pi(αi)

pi!

=
1

a1 · · · an

∑
P=(p1,··· ,pn)∈Zn>0

s(P )6n

∑
p,m>0

s(P )+m+p=n

(−1)s(P )+pB(P, p)
tm

m!

+ (−1)n
n∑
i=1

S(1,··· ,1)

(−ai ai

αi −αi +
t

ai

)
− 1

ai

(∏
j 6=i

B̃1(αj)
)
B̃1(−a ·α+ t)

 ,

which is easily transformed into the right-hand side of (3.11). This completes the
proof of Theorem 3.3. �

As for relations to preceding results mainly by Beck, Carlitz and Rademacher,
we note the following.

Remark 5.1. In the case of α = (0, · · · , 0) and t ∈ Z>0, P (t : a,α) reduces
to the right-hand side of (1.3) and Qi(t : a,α) to σ−t(a1, · · · , âi, · · · , an : ai) by
virtue of (2.3). Hence (3.11) reduces to the formula (1.2).

Remark 5.2. In the case of n = 2 and t = 0, some calculations show that (3.13)
reduces to the reciprocity law for Dedekind-Rademacher sums (Theorem 2 of [17]
or the formula in the case p = 1 for (4.4) of [11]). In addition, multiplying both
sides of (3.10) by (x1−x2)x1x2 and examining the coefficient of xr1xs2 carefully for
each r, s ∈ Z>0, we can also derive the formula (2.15) of [12], which also reduces
to (3.2) of [8] and (4.1) of [9] if α ∈ Z2.
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