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AN EXPLICIT RESULT FOR PRIMES BETWEEN CUBES

Adrian W. Dudek

Abstract: We prove that there is a prime between n3 and (n+ 1)3 for all n > exp(exp(33.3)).
This is done by first deriving the Riemann–von Mangoldt explicit formula for the Riemann zeta-
function with explicit bounds on the error term. We use this along with other recent explicit
estimates regarding the zeroes of the Riemann zeta-function to obtain the result. Furthermore,
we show that there is a prime between any two consecutive mth powers for m > 5×109. Notably,
many of the explicit estimates developed in this paper can also find utility elsewhere in the theory
of numbers.
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1. Introduction

Legendre’s conjecture asserts that there is at least one prime between any two
consecutive squares. Proving this assertion is currently out of reach; even the
conditional sledgehammer of the Riemann hypothesis does not suffice in furnishing
a proof (see Cramér [3]). Therefore, the purpose of this paper is to consider the
weaker problem of primes between cubes, where some progress has already been
made.

Consider first the more general problem of showing the existence of at least
one prime in the interval (x, x+xθ) for some θ ∈ (0, 1) and for all sufficiently large
x. In 1930, Hoheisel [8] was able to furnish such a result for θ = 1− 1/33000, that
is, there is a prime in the interval

(x, x+ x32999/33000)

for all sufficiently large x. His proof made use of asymptotic estimates on the
distribution of zeroes of the Riemann zeta-function ζ(s), namely a zero-free region
and a zero-density estimate. Landau’s explicit formula for the Riemann zeta-
function then allows a connection to be made between the zeroes and the primes.
Using Hoheisel’s ideas, Ingham [9] was able to prove a more general theorem,
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specifically that if one has a bound of the form

ζ(1/2 + it)� tc

for some c > 0, then one can take

θ =
1 + 4c

2 + 4c
+ ε

for any ε > 0. Notably, Hardy and Littlewood were able to give a value of c =
1/6 + ε, which corresponds to θ = 5/8 + ε. From this, setting x = n3 gives

(x, x+ x5/8) = (n3, n3 + n15/8+ε) ⊂ (n3, (n+ 1)3),

that is, there is a prime between any two sufficiently large consecutive cubes.
Actually, the somewhat larger interval

(x, x+ 3x2/3)

is sufficient for primes between cubes and as such is the interval we use throughout
this paper.

The primary purpose of this paper is to combine explicit results on the Riemann
zeta-function to prove the following theorem.

Theorem 1.1. There is a prime between n3 and (n+1)3 for all n > exp(exp(33.3)).

We should note that Cheng [2] has purported to have proved the above theorem
for the range n > exp(exp(15)). We note, however, that he incorrectly infers that

n3 > exp(exp(45))

implies
n > exp(exp(15))

in establishing his result. There are some other errors also, notably in his proof
of Theorem 3 in his paper [2], the first inequality is incorrect and he has used
Chebyshev’s ψ-function instead of the θ-function.

Clearly, our method does not establish a complete result for the case of cubes,
and so we then determine the least integer m such that a complete result can be
established.

Theorem 1.2. Let m > 5 · 109. Then there is a prime between nm and (n+ 1)m

for all n > 1.

To prove Theorem 1.1 and Theorem 1.2, we require a version of the Riemann–
von Mangoldt explicit formula with explicit bounds on the error term. Such a for-
mula is proven in Section 2, and can be stated as follows. Note that the stipulation
that x > e60 is suitable as one can elicit results up to this point using the techniques
of Ramaré and Saouter [15].
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Theorem 1.3. Let x > e60 be half an odd integer and suppose that 50 < T < x.
Then

ψ(x) = x−
∑
|γ|<T

xρ

ρ
+O∗

(
2x log2 x

T

)
(1)

where the function on the left is Chebyshev’s ψ-function, ρ = β+ iγ denotes a zero
of ζ(s), and the notation f = g +O∗(h) is equivalent to |f − g| 6 h.

The reader should note that whilst this paper seemingly culminates in the proof
of Theorem 1.1, the various explicit results presented herein also find application
elsewhere in the theory of numbers. For example, one could use Theorem 1.3
to obtain an explicit bound on the error term in the Prime Number Theorem
that is asymptotically better than the result of Mossinghoff and Trudgian [12]. In
addition, Kerr [11] has used Lemma 2.5 to obtain lower bounds for the Riemann
zeta-function on short intervals of the critical line.

Finally, we should also mention the striking result of Baker, Harman and
Pintz [1], that the interval (x, x+ x0.525) contains a prime for all sufficiently large
x. This is tantalisingly close to θ = 1/2, which would furnish a proof of Legendre’s
conjecture with at most finitely many exceptions.

2. Proof of Theorem 1.3

Our considerations begin with the von Mangoldt function

Λ(n) =

{
log p, n = pm, p is prime, m ∈ N,
0, otherwise.

and the Chebyshev function ψ(x) =
∑
n6x Λ(n). The utility of this function

presents itself in the Riemann–von Mangoldt explicit formula

ψ(x) = x−
∑
ρ

xρ

ρ
− log 2π − 1

2
log(1− x−2) (2)

where x is any positive non-integer and the sum is over all nontrivial zeroes ρ of
ζ(s) (see Davenport [4, Ch. 17] for details). One can see that estimates on the
zeroes of ζ(s) can be used to resolve the structure of the prime numbers. However,
the explicit formula as seen above relies on estimates over all of the nontrivial
zeroes of ζ(s) and so is impractical for certain applications. We often find more
use in a truncated version of the explicit formula where the sum is over the zeroes
ρ = β + iγ that satisfy |γ| < T for some height T . It is the purpose of this section
to provide such a formula viz Theorem 1.3.

For the most part, we proceed as laid out in Davenport [4]. For c > 0, we
define the contour integral

δ(x) =
1

2πi

∫ c+i∞

c−i∞

xs

s
ds =


0 if 0 < x < 1,

1/2 if x = 1,

1 if x > 1.
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The importance of this integral becomes apparent when one wishes to study the
sum of an arithmetic function up to some value x, particularly when that function
is generated by a Dirichlet series. In our case we consider that, for a positive
non-integer x and c > 1, we have

ψ(x) =
∑
n6x

Λ(n) =

∞∑
n=1

Λ(n)δ

(
x

n

)

=

∞∑
n=1

Λ(n)

[
1

2πi

∫ c+i∞

c−i∞

(
x

n

)s
ds

s

]

=
1

2πi

∫ c+i∞

c−i∞

( ∞∑
n=1

Λ(n)

ns

)
xs

s
ds.

Notice that keeping c > 1 gives absolute convergence to the series in the above
equation, and thus justifies the interchange of integration and summation. The
Dirichlet series in the above equation is known to be equal to −ζ ′(s)/ζ(s), and so
we have that ∑

n6x

Λ(n) =
1

2πi

∫ c+i∞

c−i∞

(
− ζ ′(s)

ζ(s)

)
xs

s
ds.

In a more general form this is known as Perron’s formula. We may thus estimate
the sum of the von Mangoldt function through some knowledge of certain analytic
properties of ζ ′(s)/ζ(s). Our first step is to truncate the path of the integral to
a finite segment, namely (c−iT, c+iT ). We define for T > 0 the truncated integral

I(x, T ) =
1

2πi

∫ c+iT

c−iT

xs

s
ds.

The next lemma is a variant of the first lemma in Davenport [4, Ch.17], and
will bound the induced error term upon estimating δ(x) by I(x, T ). The proof
is omitted here, though one can see Theorem 15 of Estermann [7] for a complete
proof.

Lemma 2.1. For x > 0 with x 6= 1, c > 0, T > 0 we have

δ(x) = I(x, T ) +O∗
(

xc

πT | log x|

)
.

From the above lemma, we have that

ψ(x) =

∞∑
n=1

Λ(n)δ

(
x

n

)

=

∞∑
n=1

Λ(n)

[
I(
x

n
, T ) +O∗

(
1

πT

(
x

n

)c∣∣∣∣ log
x

n

∣∣∣∣−1)]

=
1

2πi

∫ c+iT

c−iT
−ζ
′(s)

ζ(s)

xs

s
ds+

1

πT
O∗
( ∞∑
n=1

Λ(n)

(
x

n

)c∣∣∣∣ log
x

n

∣∣∣∣−1)
.
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Our next lemma bounds the sum in the above formula. We keep x > e60 to make
the error terms small.

Lemma 2.2. Let x > e60 be half an odd integer and set c = 1 + 1/ log x. Then

∞∑
n=1

Λ(n)

(
x

n

)c∣∣∣∣ log
x

n

∣∣∣∣−1

< 3.1x log2 x. (3)

Proof. Some care needs to be taken here. When x and n are quite close, the
reciprocal log will become large. Thus, we introduce the parameter α ∈ (1, 2) and
break up the infinite sum:

∞∑
n=1

=

[x/α]∑
n=1

+

[x]−1∑
n=[x/α]+1

+

[x]+1∑
n=[x]

+

[αx]∑
n=[x]+2

+

∞∑
n=[αx]+1

On the right side of the above formula, denote the ith sum by Si. The reader should
be convinced by this division; S3 deals with the most inflated terms, namely when
n is either side of x. Then S2 and S4 measure the remainder of the region which
is close to x. We also note that S1 and S5 contribute little and can be estimated
almost trivially.

Considering the range of n in S1 and S5, we have∣∣∣∣ log
x

n

∣∣∣∣ > logα.

Inserting this into these sums, pulling out terms which are independent of n, and
extending the range of summation to N we arrive at

S1 + S5 <
xc

logα

∞∑
n=1

Λ(n)

nc
=

xc

logα

(
− ζ ′(c)

ζ(c)

)
.

We then use the main theorem from Delange [5] to obtain

S1 + S5 <
ex log x

logα
. (4)

We now turn our attention to S3, which is the sum of only two things. It
follows, using the fact that [x] = x− 1/2 and the trivial bound Λ(n) 6 log n, that

S3 =

(
x

x− 1
2

)c
Λ(x− 1/2)

∣∣∣∣ log
x

x− 1
2

∣∣∣∣−1

+

(
x

x+ 1
2

)c
Λ(x+ 1/2)

∣∣∣∣ log
x

x+ 1
2

∣∣∣∣−1

< 2

(
x

x− 1
2

)c
log(x+ 1/2)

(
log x− log(x− 1/2)

)−1

We can estimate trivially with

log x− log(x− 1/2) =

∫ x

x−1/2

dt

t
>

1

2(x− 1/2)
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and the bound (
x

x− 1
2

)c
< 1.1

for x > exp(60) to get that

S3 < 4.4 log(x+ 1/2).

This will actually be of little consequence to the final sum (as we will soon see),
and so we feel no remorse in collecting here the weaker but tidier bound

S3 < 5x log x. (5)

For S2, we estimate x/n < α and Λ(n) 6 log n to get

S2 < αc log x

[x]−1∑
n=[x/α]+1

∣∣∣∣ log
x

n

∣∣∣∣−1

.

If we let n = [x] − v, then the problem becomes that of summing over v =
1, 2, . . . , [x]− [x/α]− 1. We have∣∣∣∣ log

x

n

∣∣∣∣ = log
x

n
> log

[x]

n
= − log

(
1− v

[x]

)
>

v

[x]

and thus

S2 < αcx log x

[x]−[x/α]−1∑
v=1

1

v
.

One can estimate this by the known bound
∑
n6x 1/n 6 log x + γ + 1/x where

γ ≈ 0.5772 . . . is Euler’s constant to get:

S2 < αcx log x

(
log(x− x/α) + γ +

1

x− x/α

)
. (6)

The sum S4 is similar to this; we use Λ(n) 6 log(αx) and x/n < 1 to get the
bound

S4 < log(αx)

[αx]∑
n=[x]+2

1

log(n/x)
.
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As 1 < α < 2, we have upon setting n = [x] + 1 + v that

S4 < log(αx)

[x]∑
v=1

1

log
(

[x]+1+v
x

)
< log(αx)

[x]∑
v=1

1

log
(

[x]+1+v
[x]+1

)
< log(αx)

[x]∑
v=1

1

log
(

1 + v
[x]+1

) .

Using the estimate log(1 + x) > 2x/3 for 0 < x < 1 we have that

S4 <
3

2
log(αx)([x] + 1)

∑
v6x

1

v

<
3

2
log(αx)([x] + 1)

(
log x+ γ +

1

x

)
(7)

Finally, one may combine (4), (5), (6), (7) to get an inequality of the form

∞∑
n=1

Λ(n)

(
x

n

)c∣∣∣∣ log
x

n

∣∣∣∣−1

< f(α, x). (8)

The result follows now from choosing α = 1.2 and letting x > e60.
�

The immediate result of Lemma 2.2 is that

ψ(x) =
1

2πi

∫ c+iT

c−iT
−ζ
′(s)

ζ(s)

xs

s
ds+O∗

(
3.1x log2 x

πT

)
for x > e60, c = 1 + 1/ log x and T > 0. We now look to shifting the line of
integration so that we might involve the residues of the integrand. In doing so, we
incur errors which only slightly increase the above error term. That is, the bulk
of the error has already been obtained, and so we can be excused for not pursuing
the best possible bounds in the remainder of this section. Let U > 2 be an even
number and define the line segments

C1 = [c− iT, c+ iT ] C2 = [c+ iT,−U + iT ]

C3 = [−U + iT,−U − iT ] C4 = [−U − iT, c− iT ]

and their union C along with the corresponding integrals

Ii =
1

2πi

∫
Ci

−ζ
′(s)

ζ(s)

xs

s
ds.
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One can note that I4 is the conjugate of I3, and we will later use this fact to bound
both at once. We also denote by I the integral around the rectangle C. Note that
we need to account for the fact that while T is stipulated not to be the ordinate of
a zero of ζ(s), it might be undesirably close to such. We show in Lemma 2.7 that
there is always some good choice of T nearby, and so some work will be required
later to shift our horizontal paths. Also note that any work we do in bounding I2
will also hold for I4 and so it follows that

|ψ(x)− I| < 2|I2|+ |I3|+ 3.1
x log2 x

πT
. (9)

One can use Cauchy’s theorem (see Davenport [4] for full details) to show that

I = x−
∑
|γ|<T

xρ

ρ
− ζ ′(0)

ζ(0)
+

∑
0<2m<U

x−2m

2m

where ρ = β + iγ denotes a zero of ζ(s). Noting that the rightmost summation is
a partial sum of the series for log(1− x−2)/2, we can write that

ψ(x) = x−
∑
|γ|<T

xρ

ρ
+ E(x, T, U)

where

|E(x, T, U)| < ζ ′(0)

ζ(0)
+

1

2
log(1− x−2) + 2|I2|+ |I3|+ 2.8

x log2 x

πT
. (10)

It remains to bound |I2| and |I3| by deriving and making use of explicit estimates
for |ζ ′(s)/ζ(s)| in appropriate regions.

We first establish a bound on the lengths of the rectangle C that intersect with
the half-plane σ 6 −1. Our contour, or rather U , is chosen so that we might avoid
the poles of tanπs/2 which occur at the odd integers.

Lemma 2.3. We have that ∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ < 9 + log |s|

on the intersection of C with σ 6 −1.

Proof. Consider the logarithmic derivative of the functional equation:

−ζ
′(1− s)
ζ(1− s)

= − log 2π − 1

2
π tan

πs

2
+

Γ′(s)

Γ(s)
+
ζ ′(s)

ζ(s)
.

Let σ > 2 (so that 1 − σ 6 −1) and notice that | 12π tan πs
2 | < 2 so long as s is

distanced by at least 1 from odd integers on the real axis (this justifies our choice
of U). We can then use
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Γ′(s)

Γ(s)
= log s− 1

2s
−
∫ ∞

0

[u]− u+ 1/2

(u+ s)2
du (11)

to bound |Γ′(s)/Γ(s)| trivially. The result then follows by observing that∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ 6 −ζ ′(2)

ζ(2)
<

3

5
(12)

and putting it all together.
�

We now look to the harder task of establishing a bound over the region that
includes the critical strip, as is essential for the estimation of I2.

Lemma 2.4. Let s = σ + it where σ > −1 and t > 50. Then

ζ ′(s)

ζ(s)
=
∑
ρ

(
1

s− ρ
− 1

2 + it− ρ

)
+O∗(2 log t), (13)

Proof. We start with the equation (see 12.8 of Davenport [4])

−ζ
′(s)

ζ(s)
=

1

s− 1
−B − 1

2
log π +

Γ′( s2 + 1)

2Γ( s2 + 1)
−
∑
ρ

(
1

s− ρ
+

1

ρ

)
(14)

where B = γ/2 − 1 + 1
2 log 4π. Successively, we set s0 = 2 + it and s = σ + it

and then find the difference between the two expressions. The terms involving the
Γ-function are dealt with using (11), whereas the rest are estimated either trivially
or with (12) to arrive at the result. �

We can estimate the sum in Lemma 2.4 by breaking it into two smaller sums
S1 and S2, where S1 ranges over the zeroes ρ = β + iγ with |γ − t| > 1 and S2 is
over the remaining zeroes.

Lemma 2.5. Let s = σ + it, where σ > −1 and t > 50. Then

S1 =
∑
|t−γ|>1

(
1

s− ρ
− 1

2 + it− ρ

)
= O∗(16 log t).

Proof. We can estimate the summand as follows (see Davenport [4, Ch. 15]):∣∣∣∣ 1

s− ρ
− 1

2 + it− ρ

∣∣∣∣ < 3

(t− γ)2
. (15)

We then have that

S1 <
∑
|t−γ|>1

3

(t− γ)2
6
∑
ρ

6

1 + (t− γ)2
.
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By letting σ = 2, taking real parts in (14) and estimating as in the proof of
Lemma 2.4 we have ∑

ρ

<
(

1

s− ρ
+

1

ρ

)
<

2

3
log t

for t > 50. We then use the two simple facts

<
(

1

s− ρ

)
=

2− β
(2− β)2 + (t− γ)2

>
1

4 + (t− γ)2

and
<
(

1

ρ

)
=

β

|ρ|2
> 0

to get ∑
ρ

1

4 + (t− γ)2
<

2

3
log t.

Putting it all together we have

S1 <
∑
ρ

6

1 + (t− γ)2

< 24
∑
ρ

1

4 + (t− γ)2

< 16 log t. �

We now wish to estimate the remaining sum

S2 =
∑
|γ−t|<1

(
1

s− ρ
− 1

2 + it− ρ

)
.

To do this, we first note that as |2 + it − ρ| > 1, the contribution of the second
term to the sum can be estimated trivially by

N(t+ 1)−N(t− 1)

where N(T ) denotes the number of zeroes of ζ(s) in the critical strip up to height
T . Now we prove the following result.

Lemma 2.6. We have that

N(t+ 1)−N(t− 1) < log t (16)

for all t > 50.

Proof. We can use Corollary 1 of Trudgian [17] with T0 = 50 to verify that the
bound holds as long as t > 250000. To prove it for the remaining range, we can
use Odlyzko’s tables [13] of the zeroes of the Riemann zeta-function. A short
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algorithm written in Python reads in zeroes from the table and checks that the
bound (16) holds in the remaining range. Specifically, the algorithm runs a check
on the values of t from 50 to 250000 in increments of 0.01. To verify that the
lemma is true for all values of t, we check the sharper inequality

N(t+ 1.01)−N(t− 1) < log t

at these discrete values and from this it follows that the result is true for all
t > 50. �

It follows from the above lemma that

ζ ′(s)

ζ(s)
=

∑
|t−γ|<1

1

s− ρ
+O∗(19 log t).

Thus, finally, we are concerned with bounding the magnitude of

S′2 =
∑
|γ−t|<1

1

s− ρ
.

Of course, the problem here is that s might be close to a zero ρ, and this will give
us trouble when we attempt to bound the line integrals. We search instead for
a better value of t, say t0 ∈ (t− 1, t+ 1), which will give a better bound. We will
use this in the next section to shift our horizontal line of integration to a better
height.

Lemma 2.7. Let t > 50. There exists t0 ∈ (t− 1, t+ 1) that does not depend on
σ and such that ∣∣∣∣ ∑

|γ−t|<1

1

(σ + it0)− ρ

∣∣∣∣ < log2 t+ log t. (17)

Proof. By (16), there are at most log t terms in S′2. The imaginary ordinates of
these zeroes partition the region of the strip into no more than log t+ 1 zero-free
sections. Trivially, there will always be such a section of height

2

log t+ 1

and choosing the midpoint, say t0, of this region will guarantee a distance of

1

log t+ 1

from any zero. As such, we have, letting s = σ + it0, that∑
|γ−t|<1

1

|s− ρ|
6

∑
|γ−t|<1

1

|γ − t|
6

∑
|γ−t|<1

(log t+ 1) 6 log2 t+ log t. �
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Finally, we can put the previous three lemmas together to get the following.

Lemma 2.8. Let σ > −1, t > 50. Then there exists t0 ∈ (t − 1, t + 1) such that
for every σ > −1 we have∣∣∣∣ζ ′(σ + it0)

ζ(σ + it0)

∣∣∣∣ < log2 t+ 20 log t.

That is, if our contour is somewhat close to a zero, we can shift it slightly to a
line where we have good bounds.

2.1. Integral Estimates

We now bound the error term E(x, T, U) in (10), by estimating each integral
trivially. Using Lemma 2.3, we have

|I3| =
1

2π

∣∣∣∣ ∫ −U+iT

−U−iT
−ζ
′(s)

ζ(s)

xs

s
ds

∣∣∣∣
<

∫ T

−T

9 + log
√
U2 + T 2

2πxUT
dt

=
18 + 2 log

√
U2 + T 2

2πxU
.

We save this, for soon we will combine our estimates and bound them in unison
upon an appropriate choice for U . Consider now the problem of estimating I2,
and the issue that T might be close to the ordinate of a zero. From Lemma 2.7,
there exists some T0 ∈ (T − 1, T + 1) that we should integrate over instead. We
thus aim to shift the line of integration from C2 to

C ′2 = [−U + iT0, c+ iT0].

It follows from Cauchy’s theorem that

|I2| <
∑

T−1<ρ<T+1

∣∣∣∣xρρ
∣∣∣∣+ |I5|+ |I6|+ |I7|+ |I8|

where

I5 =
1

2πi

∫ −U+iT0

−U+iT

−ζ
′(s)

ζ(s)

xs

s
ds I6 =

1

2πi

∫ −1+iT0

−U+iT0

−ζ
′(s)

ζ(s)

xs

s
ds

I7 =
1

2πi

∫ c+iT0

−1+iT0

−ζ
′(s)

ζ(s)

xs

s
ds I8 =

1

2πi

∫ c+iT0

c+iT

−ζ
′(s)

ζ(s)

xs

s
ds.
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From (16), we can estimate the sum by

∑
T−1<=ρ<T+1

∣∣∣∣xρρ
∣∣∣∣ < ∑

T−1<=ρ<T+1

x

T − 1
<

2x log T

T − 1
.

We can bound I5 in the same way as I3 to obtain

|I5| <
18 + 2 log

√
U2 + (T + 1)2

2πxUT
.

Bounding I6 is done using Lemma 2.3:

|I6| <
9 + log

√
U2 + (T + 1)2

2πx(T − 1)

We also use Lemma 2.7 to get

|I7| <
e

2π(T − 1)
(log2(T + 1) + log(T + 1)).

To get an upper bound for I8, we notice that <s = 1 + 1/ log x and so following
the line of working which led to (4) gives∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ < log x.

This is by the working involved in (4). Following through we get the bound

|I8| <
ex log x

π(T − 1)
.

Now, throwing all of our estimates for the terms in (10) together, implanting
the information that T 6 x, x > e60 and letting U be equal to the even integer
closest to x we obtain Theorem 1.3. It now remains to apply this result to the
problem of primes between powers.

3. Proof of Theorems 1.1 and 1.2

3.1. An indicator function for intervals

We define the Chebyshev θ-function as

θ(x) =
∑
p6x

log p

and consider that θ(x + h) − θ(x) is positive if and only if there is at least one
prime in the interval (x, x + h]. Clearly, one removes the contribution of prime
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powers to ψ(x) to get θ(x). We let h > 0 and substitute x + h and then x into
Theorem 1.3. Taking the difference then gives us that

ψ(x+ h)− ψ(x) > h−
∣∣∣∣ ∑
|γ|<T

(x+ h)ρ − xρ

ρ

∣∣∣∣− 4(x+ h) log2(x+ h)

T
. (18)

Whilst the above will tell us information about prime powers, we are actually
interested in primes. We thus require the following lemma; a combination of
Proposition 3.1 and 3.2 of Dusart [6].

Lemma 3.1. Let x > 121. Then

0.9999x1/2 < ψ(x)− θ(x) < 1.00007x1/2 + 1.78x1/3.

It follows from (9) and the above lemma that

θ(x+ h)− θ(x) > h−
∣∣∣∣ ∑
|γ|<T

(x+ h)ρ − xρ

ρ

∣∣∣∣− 4(x+ h) log2(x+ h)

T

− 1.00007(x+ h)1/2 − 1.78(x+ h)1/3 + 0.9999x1/2. (19)

Given that we are interested in the case where h = 3x2/3, it remains to choose
T = T (x) and find x0 such that the above is positive for all x > x0.

3.2. Estimating the sum over the zeroes

In consideration of (19), we let

S =

∣∣∣∣ ∑
|γ|<T

(x+ h)ρ − xρ

ρ

∣∣∣∣. (20)

We then have that

S =

∣∣∣∣ ∑
|γ|<T

∫ x+h

x

tρ−1

∣∣∣∣ 6 ∑
|γ|<T

∫ x+h

x

tβ−1 6 h
∑
|γ|<T

xβ−1. (21)

From the identity∑
|γ|<T

(xβ−1 − x−1) =
∑
|γ|<T

∫ β

0

xσ−1 log x dσ

=

∫ 1

0

∑
β>σ,|γ|<T

xσ−1 log x dσ,

it follows that ∑
|γ|<T

xβ−1 = 2x−1N(T ) + 2

∫ 1

0

N(σ, T )xσ−1 log x dσ, (22)

where N(σ, T ) denotes the number of zeroes ρ of the Riemann zeta-function with
0 < γ < T and β > σ.
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We can estimate the above sum, and thus S, with the assistance of some explicit
bounds. Firstly note, that by Corollary 1 of Trudgian [16] we have that

N(T ) <
T log T

2π

for all T > 15, say. Explicit estimates for N(σ, T ) are rare, though have come to
light recently through the likes of Kadiri [10] and Ramaré [14], who have produced
zero-density estimates of rather different shape to each other. Ramaré’s estimate,
which is an explicit and asymptotically better version of Ingham’s [9] original
density estimate, is required for the problem of primes between cubes. We give
the result here, which is a corollary of Theorem 1.1 of [14].

Lemma 3.2. Let T > 2000 and σ > 0.52. Then

N(σ, T ) 6 9.7(3T )8(1−σ)/3 log5−2σ T + 103 log2 T.

The following zero-free region, given by Ford, will also be required.

Lemma 3.3. Let T > 3. Then there are no zeroes of ζ(s) in the region given by
σ > 1− ν(T ) where

ν(T ) =
1

57.54 log2/3 T (log log T )1/3
.

It is useful to carry out the bulk of the calculations with A in place of the
constant 9.7 in Lemma 3.2 and c in place of the 57.54 in Lemma 3.3. Doing so
allows us later on to see the importance of improvements of these constants, and
thus gives direction to future efforts on this problem.

We split the integral in (22) into two parts, one over the interval 0 6 σ 6 5/8,
where N(σ, T ) may as well be bounded by N(T ), and another over 5/8 6 σ 6
1− ν(T ). By inserting the relevant estimates, we get

∑
|γ|<T

xβ−1 < 2x−1N(T ) + 2x−1N(T ) log x

∫ 5/8

0

xσdx

+ 2Ax−1(3T )8/3 log x log5 T

∫ 1−ν(T )

5/8

(
x

(3T )8/3 log2 T

)σ
dσ

+ 103x−1 log x log2 T

∫ 1−ν(T )

5/8

xσdσ. (23)

The working out is routine, yet tedious. We give the details to the extent that
the reader can follow the process. We introduce the parameter k ∈ ( 2

3 , 1), which
will play a part in the relationship between T and x. The reasons for the range
of values of k will become clear soon. Now let T = T (x) be the solution to the
equation

x

(3T )8/3 log2 T
= exp(logk x).
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Upon performing the integration in (23), we directly substitute in the above
relationship, along with the bound for N(T ) and the fact that log T < (3/8) log x,
to get∑
|γ|<T

xβ−1 <
e−

3
8 logk x log1/4 x

33/481/4π
+

27A

256
log4−k x(e−ν(T ) logk x − e−(3/8) logk x)

+
927A

32
log2 x(e−ν(T ) log x − x−3/8). (24)

There is some cancellation in the above. First, we need to estimate one of the
exponential terms involving ν(T ). We have that

e−v(T ) log x = exp

(
− log x

c log2/3 T (log log T )1/3

)
< exp

(
− 4

32/3c

(
log x

log log x

)1/3)
.

Now, upon expansion of (24) and using the above we can notice that

−27A

256
(log x)4−ke−(3/8) logk x +

927A

32
log2 x(e−ν(T ) log x − x−3/8) < 0.

This is clear if one looks at the dominant terms. It follows that∑
|γ|<T

xβ−1 <
e−

3
8 logk x log1/4 x

33/481/4π
+

27A

256
(log x)4−ke−ν(T ) logk x. (25)

The remaining exponential term involving ν(T ) is dealt with as before; this is then
coupled with (20) and (21) to get

S <
he−

3
8 logk x log1/4 x

33/481/4π
+

27Ah

256
(log x)4−k exp

(
− 4

32/3c

logk−2/3 x

(log log x)1/3

)
.

3.3. Estimates for inequalities

It is now clear that we may write (19) as

θ(x+ h)− θ(x) > h− f(x, h, k,A, c)− g(x, h, k)− E(x, h, k)

where

f(x, h, k,A, c) =
27Ah

256
(log x)4−k exp

(
− 4

32/3c

logk−2/3 x

(log log x)1/3

)
,

g(x, h, k) = 12

(
3

8

)3/4
(x+ h) log11/4(x+ h)

x3/8
exp(

3

8
logk x),

E(x, h, k) = −
h(log x)1/4 exp(− 3

8 logk x)

63/4π
− 1.00007(x+ h)1/2

− 1.78(x+ h)1/3 + 0.9999x1/2.
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First, we look to bound the error. Noting that x > e60, we set h = 3x2/3 and
use the fact that k = 2/3 will give us the worst possible error to get

E(x, 3x2/3, 2/3)

3x2/3
< 10−3.

Thus, one can show that positivity holds if the following two inequalities are
simultaneously satisfied:
1. f(x, h, k,A, c) < 1

2 (1− 10−3)h,
2. g(x, h, k) < 1

2 (1− 10−3)h.

This splitting simplifies our working greatly whilst perturbing the solution negli-
gibly. To be convinced of this, one could consider the right hand side of each of
the above inequalities as being equal to h, in some better-than-possible scenario.
It turns out that the improvements would hardly be noticeable. We will, however,
mention at the end of this paper some direction for future attempts at improving
the work on primes between cubes.

Now, in the first inequality, we take the logarithm of both sides and set x = ey

to get

log

(
27A

256

)
+ (4− k) log y − 4

32/3c

yk−2/3

log1/3 y
< log(

1

2
(1− 10−3)) (26)

This is easy to solve for y given knowledge of A, k and c. There are some notes
to make here first. We can see that A, the constant in front of Ramaré’s zero-
density estimate has little contribution, for being in the argument of the logarithm.
However, c plays a much larger part from where it is positioned. We can also see
the reason for k > 2/3, in that it guarantees a solution.

We deal with the second inequality in the same way, but first we notice that

g(x, h, k)

h
<

2 log11/4 x

x1/24
exp(

3

8
logk x).

This is obtained using the main result of Ramaré and Saouter [15] to bound

x+ h <
x

1−∆−1

where ∆ = 28314000 as given in their paper. Thus, using the same approach as
before we get

11

4
log y +

3

8
yk − 1

24
y < log(

1

4
(1− 10−3)). (27)

We notice here our reason for having k < 1. One can also see the reason for
leaving k free to vary in (2/3, 1). There should be an optimal value of k, where
the solution range of the above two inequalities are equal and their intersection is
minimised.

Here, we set A = 9.7, c = 57.54 and use the Manipulate function of Mathe-
matica to “hunt” for a good value of k. It turns out that upon choosing k = 0.9359,
we have that both inequalities are satisfied (we check this using Python) for
y > 8× 1014, or x1/3 > exp(exp(33.217)), which proves our main result.
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3.4. Notes for future improvements

Using the explicit methods of this paper, better estimates for zero-densities, zero-
free regions and the error term of Landau’s explicit formula could effectively be
implemented to furnish a new estimate. The following preemptive discussion might
be useful for one looking to do such a thing.

Let’s consider first improving the zero-density estimate given by Ramaré. Say,
for the sake of discussion, one could obtain a value of A = 10−4. Then we would
obtain our result instead with n > exp(exp(32.7)), an improvement which would
probably not be worth the efforts required to obtain such a value of A.

Ramaré has communicated that one could use the Brun-Titchmarsh theorem to
remove a power from the logarithm in the error term of (1.3). This does not seem
to improve the overall result; a shortcoming, perhaps, of the numerical methods
used by the author.

There are other parameters where one might wish to direct future efforts.
In Ramaré’s zero density estimate, one might consider the power 5 − 2σ of the
logarithm to be L− 2σ. The main difference in our working would be (L− 1− k)
in place of (4 − k) in the reduced form of our second inequality. The following
table summarises the improvements which would follow; a prime between n3 and
(n+ 1)3 for all n > n0.

L log log n0

5 33.217
4 31.8
3 29.8
2 22.19

Turning now to the error term of Theorem 1.3 one could also consider a smaller
constant in place of 2. This constant, however, would appear in the logarithm of
the right hand side of (27), and thus make little difference.

Wolke has derived the explicit formula with an error term which is

O

(
x log x

T log(x/T )

)
= O

(
x

T

)
for the choice of T (x) used in this paper. One may propose all sorts of “good”
explicit constants for the above error term and try them via the methods of this
paper, but there will be no major improvements.

Changes in the constant c are more effective, though seemingly much more
difficult to obtain. A value of c = 40 would yield only n > exp(exp(31.88)), and
c = 20 would give n > exp(exp(29.6)). The removal of the (log log T )1/3 would
give a similar result.

Thus one expects a major result, or perhaps many minor ones, to make signif-
icant progress on this problem.
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3.5. Higher powers

In lieu of a complete result on the problem of primes between cubes, we consider
instead primes between mth powers, where m is some positive integer. Appropri-
ately, we choose h = mx1−1/m, and we are able to prove the following result.

Theorem 3.4. Let m > 4.971 × 109. Then there is a prime between nm and
(n+ 1)m for all n > 1.

The result seems absurd on a first glance as the value of m is quite large. We
shall leave it to others to attempt to bring the value down.

We now prove the above theorem as follows; for our choice of h, it follows that
inequality (27) becomes

11

4
log y −

(
3

8
− 1

m

)
y +

3

8
yk < log

(
m

12
(1− 10−3)

)
(28)

whereas inequality (26) remains the same. As before, we can, for some given m,
choose k and find n0 such that there is a prime between nm and (n+ 1)m for all
n > n0 by solving both inequalities. Some results are given in the following table.

m k log log n0

4 0.9635 29.240
5 0.9741 27.820
6 0.9796 27.230
7 0.983 26.427

1000 0.9998 19.807

One can see that this method has its limitations, even in the case of higher
powers. Nonetheless, we have that there is a prime in (n1000, (n + 1)1000) for all
n > exp(exp(19.807)). It follows that, for m > 1000, there is a prime between nm
and (n+ 1)m for all

n > exp

(
1000 exp(19.807)

m

)
. (29)

We could choose m = 1000 exp(19.807) ≈ 4× 1011 to get primes between nm and
(n+ 1)m for all n > e. Bertrand’s postulate improves this to all n > 1.

However, we can use Corollary 2 of Trudgian [17] to improve on this value of
m. This states that for all x > 2898239 there exists a prime in the interval[

x, x

(
1 +

1

111 log2 x

)]
.

If we set x = nm, we might ask when the above interval falls into [nm, nm+mnm−1].
One can rearrange the inequality

nm
(

1 +
1

111 log2(nm)

)
< nm +mnm−1
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to get
n

log2 n
< 111m3. (30)

We wish to choose the lowest value ofm for which the solution sets of (29) and (30)
first coincide. It is not to hard to see that this equates to solving simultaneously
the equations

n = exp

(
1000 exp(19.807)

m

)
and

n

log2 n
= 111m3.

We do this by substituting the first equation directly into the second to get

exp

(
1000 exp(19.807)

m

)
= 111(1000 exp(19.807))2m

which can easily be solved with Mathematica to prove Theorem 3.4.
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