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COMPARING LOCAL CONSTANTS OF ORDINARY ELLIPTIC
CURVES IN DIHEDRAL EXTENSIONS

SuNIL CHETTY

Abstract: We establish, for a substantial class of elliptic curves, that the arithmetic local
constants introduced by Mazur and Rubin agree with quotients of analytic root numbers.
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1. Introduction

Let E/k be an elliptic curve over a number field k. Fix a rational prime p > 3 for
which E is ordinary! and a quadratic extension K of k. Next, fix a character p
of Gal(k/K) of order p™ and let 7, = indg/, p and 71 = indg ;1 be the induced

representations? from Gal(k/K) to Gal(k/k). With p we define L = "’ a cyclic
extension L/K of degree p”, and we assume p is such that L/k is Galois and that
the non-trivial element ¢ € Gal(K/k) acts on g € Gal(L/k) via conjugation as
cge~! = g1, Following [9] we refer to such extensions L/k as dihedral.

Let v denote a prime of K, u the prime of k below v, w a prime of L above
v, and denote k,, K, and L,, for the completions at u, v, and w. We consider
Gal(Ly/k,) < Gal(L/k), and we set 7, ,, (resp. T1,) to be 7, (resp. 71) restricted
to Gal(Ly/ky).

For a self-dual complex representation 7 of Gal(L/k), one has a conjectural
functional equation for the completed L-function A(E/k, T, s) (see [12, §21])

AE/k,T,5) = (H W (E/ky, Tu)) AE/k,7,2—s), (1.1)
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IThere is, to date and to our knowledge, only one result [9, Theorem 5.7| at supersingular
primes analogous to our considerations.
2Context will determine the field of values. See [7, §5] for a discussion of this.
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with W(E/ky,,) € {£1} and the product taken over places u of k. Even though

the functional equation is conjectural, the W (E/k,, 7,) can often be made explicit.
In [9] Mazur and Rubin define constants ¢, for each prime v of K, which relate

the p-part and 1-part of the pro-p-Selmer Gal(k/K)-module S,(E/L) (see §2.2)

dimg S,(E/L)" —dimg S,(E/L)" = > 6, mod 2. (1.2)

Defining v, by (=1)" = W(E/ky, Tpu)/W (E/ky, T1,u), for each prime u of k, the
invariance of A(E/k, 7, s) under induction (see [12, §8]) and (1.1) give

ords—1 A(E/k,7,,s) —ords=1 A(E/k,T1,s Z'yu mod 2. (1.3)

With the Shafarevic-Tate and Birch-Swinnerton-Dyer Conjectures in mind, the
left-hand sides of (1.2) and (1.3) are equal, and so we aim to show in as many
cases as possible that v, = Zv|u Oyp-

Our main new result is Theorem 4.1, and it yields a new proof of a case of
a relative version of the Parity Conjecture, Corollary 4.2. This Corollary is already
known by different methods via work by de la Rochefoucauld in [1], Dokchitser
and Dokchitser in [3] and [2], and can also be recovered from work by Greenberg
in [5, §13]. Our calculations of J, in bad reduction also provide a new extension
of the results of [9, §7-8] regarding growth in rank of S,(E) over dihedral L/K,
for example by relaxing the conditions in Theorem 8.5 of [9].

2. Local constants of elliptic curves

In this section we recall the relevant parts of [13] and [9)].

2.1. Analytic local constants

We denote w, for the standard valuation on &, and cg for the constant appearing in
a simplified Weierstrauss model for E/k, (see [17, §II1.1]). For 7 a representation
of Gal(k, /k,) with real-valued character, we call W (E/k,,7) € {1} the analytic
local root number for the pair (F/k,, 7). We call the constants v, € Z/2Z defined
as quotients of local root numbers in §1 the analytic local constants.

When 7 has finite image, set ¢(7) := det 7(—1) and for two representations 7
and 7' of Gal(k,/k,) with finite image define (r,7') := (tr(7),tr(7')), with the
right-hand side the usual inner product on characters.

Let H be the unramified quadratic extension of k, and 7 the unramified
quadratic character of Gal(k,/k,), i.e. the character of Gal(k,/k,) with ker-
nel Gal(k,/H). For e =3, 4, or 6 and ¢ = —1 mod e, where ¢ = #(k,/u), let ¢,
be a tamely ramified character of Gal(k,,/H) with ¢, |le1 of exact order e and such
that o, = ind gy ¢ is irreducible and symplectic. For # the unramified quadratic
character of Gal(k,/H) set &, := indp 4, (¢.0), which is a dihedral representation
of Gal(k,/ky,) (see p. 316-318 of [13]).
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Define a representation o/, by applying the results of [12, §4] to
Tp ket Gal(ky/ky) — GL(Vi(E)"),
where Vy(E)* is the dual of Vy(E) = Ty(E) ®z, Q. From
W(E/ky,7) =W (og/m, ®T),
Rohrlich proves the following formulae.

Theorem 2.1 (Theorem 2 of [13]). Suppose 7 = 7T is a 2-dimensional repre-
sentation of Gal(k,/k,) and denote ¢ for the residue characteristic of k..

(i) If £ = oo then W(E/k,,7) = (—1)¥™ ™ = 1.
(ii) If £ < 00 and E has good reduction over k,, then W (E /k,,T) = c(7).
(iii) If £ < 0o and wy(j) < O then

W(E/ky,) = e(7)(=1)x7

where x is the character associated to the extension k,(y/—cs).

(1) ifg=1 mode
W(E/ky,7) = )
(E/ku,7) {C(T)(—l)<177'>+<7777'>+<‘7€77> ife>2, g=-1 mode.

Proposition 2.2 (Proposition 7 of [13]). If og/,, = ¢¥ &Y~ for some char-
acter ¥ of k)X and T is as in Theorem 2.1, then W (E /k,, ) = (7).

2.2. Arithmetic local constants

Let Selp (E/K) be the p>-Selmer group of E (see [9, §2] or [4, §2]). Define the
pro-p Selmer group of E over K as the Pontrjagin dual of Sel,(E/K)

Sp(E/K) := Hom(Sely (E/K), Qp/Zy),

and consider it as a @p—module by tensoring with @p.
When L, # K,, let L/, be the unique subfield of L,, containing K, with
[Ly : L] = p, and otherwise let L], := L,, = K,.

Definition 2.3 (Corollary 5.3 of [9]). For each prime v of K, define the arithmetic
local constant §, = d(v, E, p) € Z/2Z to be

8, == dimg, E(K,)/(E(K,) "Ny, /1, E(L,)) mod 2.

Theorem 2.4 (Theorem 6.4 of [9]). If S is a set of primes of K containing
all primes above p, all primes ramified in L/K, and all primes where E has bad
reduction, then

dimg, S,(E/L)" —dimg S,(E/L)" = > 6, mod 2.
vES
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Proof. Following the notation of [9, §3|, let R be the maximal order in in the
cyclotomi(lz field of p"-roots of unity, so R has a unique prime p above p. Define
T := p?"" and define the Z-twist of E by A := T ® E (in the sense of [10] and
[9]), an abelian variety with R C Endg(A). We then have

dim@p Sp(E/L)? = corankggz, Selp~(A/K),

dim@P S,(E/L)" = corankz, Sel,~(E/K).

Thus the conclusion above is equivalent to Theorem 6.4 of [9]

corankrgz, Selp~ (A/K) — corankz, Selp~ (E/K) = Z 0, mod 2. |
veES

3. Local computations

We keep the setting and notation of Theorem 2.1 and §1. Recall that c is the
non-trivial element of Gal(K/k).

3.1. Preliminary calculations
Proposition 3.1. If v # v, then vy, = §, + dye = 0.

Proof. When v # v, we have Gal(L,,/k.) = Gal(L.,/K,). It follows that 7,, =
p®ptandr, =181, sodetT(—1)=1for7=7,, or 7 =71, Also (¢,7) =0
mod 2 for ¢ = 1, 0, x, or &, and by Theorem 2.1, we have W(E/k,,7) = 1.
Applying Lemma 5.1 of [9] for ¢, finishes the claim. |

Proposition 3.2. If v¢ = v, v is unramified in L/K then v, =5 . 6, = 0.

v|u

Proof. In this case, v splits completely in L/K by [9, 6.5(1)], i.e. for every prime
w of L lying above v, L,, = K,. Now, we have

o Tru  Gal(Ly /ky) = Gal(K, /ky) — GLy(C)

viewing Gal(K,/k,) as the v-decomposition subgroup of Gal(L/k). One sees by
direct calculation (see for example [14, §5.3]) that 7,, = 71 ,, and by applying
Corollary 5.3 of [9] for &, the claim follows. |

3.2. Good reduction

In the case of good reduction, the arithmetic local constant has been determined
by Mazur and Rubin in [9].

Theorem 3.3 (Theorem 5.6 and 6.6 of [9]). If v is a prime of K with v{p,
v =2 v is ramified in L/K, and E has good reduction at v, then 6, = 0.

Theorem 3.4 (Theorem 6.7 of [9]). Ifv | p and E has good ordinary reduction
at v, then 6, = 0.
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For the corresponding situation on the analytic side:
Proposition 3.5. If E has good reduction over K, then -, = 0.

Proof. By Theorem 2.1(ii), it suffices to see det,, = detr, mod p for some
p | p. Fixing a basis for the spaces of p and 1 respectively, we have p = 1
mod p since L/K is a cyclic p-power extension. This implies 7,, = 71, mod p
(component-wise), viewed as matrices with function-valued entries, and det 7, , =
det 7y, mod p. | |

3.3. Potential multiplicative reduction

Here, in view of Propositions 3.1-3.2, we assume v¢ = v and v ramifies in L/K,
ie. Ly # K,.

Analytic

Proposition 3.6. If E/k, has potential multiplicative reduction, then v, = 0 if
and only if E does not have split multiplicative reduction over K,,.

Proof. Applying the arguments of Proposition 3.5, it remains to determine (x, 7).
If E has split multiplicative reduction at u, x = 1 and since L,, # K,, dim7 = 2.
We have 7 = 1y, = 1® i, with p the character associated to the extension K, /k,,.
When FE has split multiplicative reduction at u, x =12 p and so (x,7) = 1. For
the other cases, x = p if and only if K, /k, is the quadratic extension over which
FE acquires split multiplicative reduction. |

Arithmetic

Proposition 3.7. If E has potential multiplicative reduction over k., then §, =0
if and only if E does not have split multiplicative reduction over K,.

Proof. Let H be the quadratic extension over which F attains split multiplica-
tive reduction. If H = K, there is a ¢ € kX such that E(L,) = LX/q" as
Gal(L,,/K,)-modules, and with the isomorphism defined over K, (loc. cit. [17]).
This case is Lemma 8.4 of [9].

Suppose now that H # K,. Define E’ to be the quadratic twist of F associated
to H/ky, so that E’ has split multiplicative reduction at u, and F % B s an
isomorphism over H. As before, we have a Gal(H L., /k,, )-isomorphism

\:E'(HL,) — HLY /4",
with ¢ € k*. Let Gal(HL,,/L,) = (o) and define the minus-part of HL) to be

(HLY)” :={2 € HLY : 27 =27'}
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and similarly for all other Gal(H L.,/L,,)-modules®. The map obtained by pre-
composing A with ¢ restricts to

E(Ly) % E'(HL,)™ 2 (HLY)/4")™.

If ¢ ¢ Npyr, /L, then we also have (HLY)/q®)~ = (HLY) . Ifq € Nyr, /L, then
the projection of (HLX)™ has index 2 in ((HL})/q*)~, hence prime to p. Both
cases will be similar, so we proceed with the former. One has a similar situation
with E(L!,)) — (HL))~.
Since these maps commute with N := Ny /g L1, the snake lemma gives
[E(Ly,) : N(E(Lw))] = [(HL, )™ « N((HLj) ™))

We claim that this index is 1, implying E(K,) C E(L],) = N(E(L,,)) and hence
dimg, E(K,)/(E(Ky) NNy, /1, E(Lw)) = 0.
To see that the index is 1, we note that local class field theory gives an injection
(HL.)*)"/N((HL})") < Gal(HL,,/HL!,)) = Gal(L,,/L.,)".

Since we know that o conjugates Gal(L,,/L!,) trivially, Gal(L,,/L,)~ is trivial.
|

3.4. Potential good reduction

Again, we assume v° = v and v ramifies in L/K, so L,, # K, as before.

Analytic

Denote ¢ for the common residue characteristic of ky, K., Ly, and suppose E/k,
has additive and potential good reduction. Throughout we set H to be the unique
unramified quadratic extension of k.

Proposition 3.8. Suppose v16. If vt p or K,/k, is unramified then ~, = 0.

Proof. Here, we use the notation of Theorem 2.1, and from v { 6, we have ¢ > 5.
For 7 = 7,, or T = 71,4, we have (1,7) + (n,7) = 0 mod 2, using that K,/k, is
unramified for the latter.

In this setting 6. is the representation of Gal(k,/k,) induced from a char-
acter ¢, of order e = 3, 4, or 6 (see [13, p. 332]). Hence, we may view &, as
a representation of Gal(K7/k,) for some extension K;/K,.

Consider 7 = 7,,. Lifting 6. and 7 to some appropriate extension K /k,,
since 7 is irreducible, we see (6., 7) = 1 if and ouly if 6. = 7. Restricting 7 and 7,
to Gal(K3/K,), these representations decompose as 7 = p @ p° and 6. = ¢, ® ¢S.
The order of p is a power of p > 5 and the order of ¢, is 3, 4, or 6, so (6., 7) = 0.
For 7 = 11,4, we have 7 = 1 ® n and so (6., 7) = 0. [ ]

3For example, restriction of o gives Gal(HLy/Ly) = Gal(HL!,/L.,), providing HL!,
a Gal(H L/ Lw)-module structure.
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Proposition 3.9. Suppose v16 and K, /k, is ramified. If E acquires good reduc-
tion over an abelian extension of k,, then ~, = 0.

Proof. Here ¢ > 5, so we are in case (iii) of Theorem 2.1, and the condition that
E acquires good reduction over an abelian extension of k, is equivalent to (see
[11, Prop 2|) W(M/k,) being abelian, where M is the minimal extension of k%"
over which E acquires good reduction, and in turn to og/i, = ¢ @ 1 for some
character i of k.. This gives

W(E/ky,7) = c(7) = det 7(—1).
Applying Proposition 3.5 then gives the result. |

Proposition 3.10. Ifv |6 then v, = 0.

Proof. This is case 2(b) of [1]. De la Rochefoucauld proves this in terms of e-
factors as Rohrlich’s formula (Theorem 2.1 above) do not apply when E is wildly
ramified (see [6, §4]). We note that the dihedral setting is essential in his proof. W

Arithmetic

Proposition 3.11. Ifv{p and E has additive reduction over K, then 6, = 0.

Proof. If F has additive reduction, then
Eo(K,)/Er(K,) = Ens(r) = &7, (3.1)
with &, the residue field of K, a finite field of characteristic £ # p. We recall two

facts (see §VII.3 and §VIL6 of [17]),

(1) Ey(Ky) =2 Zj; ®T for some finite ¢-group T
(2) |E(Ky)/Eo(Ky)| < 4.

Since p 1 6¢ these two facts yield
E(K,)/pE(Ky) = Eo(Ky)/pEo(Ky) = E1(Ky) /pEr(K,y) =0,
showing that E(K,) has no p-subgroups and so J,, = 0. |

For K a finite extension of k,, denote E for the reduction of E at the prime
of K. If k is the residue field of K and E has good ordinary reduction over X then
we say that E has anomalous reduction over K if E(r)[p] # 0, and we say E has
non-anomalous reduction otherwise (see [9, App. BJ, also [8, §1.b]).

Proposition 3.12. Ifv | p, E has additive reduction over K,, and E attains good,
ordinary, non-anomalous reduction over a Galois extension M/K,, then 6, = 0.
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Proof. Since E has potential good reduction, M can be chosen so that [M : K,] is
prime to p (see [15, §2] and [16, p.2]). Let E* denote a model for E defined over k,,,
and let EM denote a model of E defined over M for which E has good, ordinary,
non-anomalous reduction. We have an isomorphism E¥ — EM defined over M,
giving E¥(M) =2 EM(M), where M = ML,,, and similarly for M’ = ML/ . We
denote I' = Gal(M/K,) and H = Gal(L,,/L,,), and note that

Gal(M/K,) = Gal(M'/L.,) = Gal(M/L,), Gal(L,/L.,) = Gal(M/M').

By Propositions B.2 and B.3 of [9], we have that Ng : EM(M) — EM(M’) is
surjective, and hence Ny : E¥(M) — E¥(M') is surjective also. From this and
NFONH = NH ONF we have

[E*(L,,) : Np(E*(M"))] = [E*(L,,) : Nr o Ny (E*(M))] (3.2)
= [E*(L)) : Ny o Np(E*(M))]. '

Since I" has order prime to p and

IT|- B*(L,,) € Np(EF(M")) € B¥(L,),

w
the first term in (3.2) is prime to p. Since H has order p and
Nit o Ne(E*(M)) € Ny (B*(Ly,)) © E*(L),
the last term in (3.2) is divisible by some power of p when Ny (E*(L,,)) # E*(L.).
Since this is impossible, we must have Ny (E*(L,,)) D E*(K,) and §, = 0. |

4. Main result

Recall E/k is an elliptic curve ordinary at p. Also recall that -, is defined by
(=17 = W(E/ku, Tp,u) /W (E [k, T1,0)-

Define & = {primes v of K : v° = v, v ramifies in L/K, and v | 6p}.

Theorem 4.1. Fiz primes u of k and v of K with v | u. If v € & suppose that
one of the following holds:

(a) E has good reduction at v.

(b) E has potential multiplicative reduction at v,

(¢) E has additive, potential good reduction at v, and acquires good, non-ano-
malous reduction over an abelian extension of k, when v | p.

Then v, = Zv|u 0, mod 2.
Corollary 4.2. If E/k satisfies the hypothesis of Theorem 4.1, then mod 2

dim@p Sp(E/L)P — dim@p Sp(E/L)! = ords—1 A(E/k, p,s) — ords—1 A(E/k, 1, s).
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Proof of 4.1. Let v, v¢ the primes of K above u. If v ¢ & then v¢ # v, v is
unramified in L/K, or v { 6p. If v¢ # v then we use Proposition 3.1, and if v® = v
is unramified in L/K, Proposition 3.2 gives the claim. For the remainder we may
assume v° = v.

In the case v t 6p, we have v {6 and v { p. If E has good reduction at v then
Theorem 3.3 shows §, = 0, and Proposition 3.5 gives v, = 0. If E has potential
multiplicative reduction then Proposition 3.7 and Proposition 3.6, for d,, and .,
respectively, give the result. Lastly, if F has potential good reduction, then we
apply Proposition 3.11 and Proposition 3.8.

For v € G, case (a) follows from Theorem 3.4 for §,, and Proposition 3.5 for +,.
Case (b) is covered by Proposition 3.7 for §, and Proposition 3.6 for .

For case (c), first consider v | 6. We apply Proposition 3.10 for ,, and since
v { p, we can apply Proposition 3.11 for §,. When v | p the condition that F
acquries ordinary, non-anomalous reduction allows us to apply Proposition 3.12 for
d,. In this case, v 1 6 and so for 7, we use Proposition 3.8 when K, /k,, is unramified
or the ‘abelian’ condition and Proposition 3.9 when K, /k, is ramified. |

References

[1] T. De la Rochefoucauld, Invariance of the parity conjecture for p-Selmer
groups of elliptic curves in a Dayn-extension, arXiv:1002.0554v1 [math.NT],
preprint.

[2] T. Dokchitser and V. Dokchitser, Regulator constants and the parity conjec-
ture, Invent. Math. 178(1) (2009), 23-71.

[3] T. Dokchitser and V. Dokchitser, On the Birch-Swinnerton-Dyer quotients
modulo squares, Annals of Mathematics 172(1) (2010), 567-596.

[4] R. Greenberg, Introduction to Iwasawa theory, in B. Conrad and K. Rubin,
editors, Arithmetic Algebraic Geometry, volume 9 of Park City Mathematics
Series, American Mathematical Society, 2001.

[5] R. Greenberg, Twasawa theory, projective modules, and modular representa-
tions, http: //www.math.washington.edu/ greenber /personal.html, preprint.

[6] S. Kobayashi, The local root number of elliptic curves with wild ramification,
Mathematische Annalen 323 (2002), 609-623.

[7] B. Mazur, An Arithmetic Theory of Local Constants, http://www.cirm.univ-
mrs.fr/videos/2006 /exposes/17w2/Mazur.pdf.

[8] B. Mazur, Rational points of abelian varieties with values in towers of number
fields, Inventiones Math. 18 (1972), 183-266.

[9] B. Mazur and K. Rubin, Finding large Selmer rank via an arithmetic theory
of local constants, Annals of Mathematics 166(2) (2007), 581-614.

[10] B. Mazur, K. Rubin, and A. Silverberg, Twisting commutative algebraic
groups, Journal of Algebra 314(1) (2007), 419-438.

[11] D. Rohrlich, Variation of the root number in families of elliptic curves, Com-
posito Mathematica 87 (1993), 119-151.

[12] D. Rohrlich, Elliptic Curves and the Weil-Deligne Group, in Elliptic Curves
and Related Topics, volume 4 of CRM Proceedings and Lecture Notes, pages
125-157, Amer. Math. Soc. 1994.



250  Sunil Chetty

[13] D. Rohrlich, Galois theory, elliptic curves, and root numbers, Composito
Mathematica 100 (1996), 311-349.

[14] J-P. Serre, Linear Representations of Finite Groups, volume 67 of Graduate
Texts in Mathematics, Springer, 1979.

[15] J-P. Serre and J. Tate, Good Reduction of Abelian Varieties, Annals of Math-
ematics 88(3) (1968), 492-517.

[16] J. Silverman, The Néron fiber of abelian varieties with potential good reduc-
tion, Math. Ann. 264 (1983), 1-3.

[17] J. Silverman, Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in
Mathematics, Springer, 1986.

Address: Sunil Chetty: Mathematics Department, College of St. Benedict and St. John’s
University.

E-mail: schetty@csbsju.edu
Received: 10 October 2010; revised: 4 January 2016





