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COMPARING LOCAL CONSTANTS OF ORDINARY ELLIPTIC
CURVES IN DIHEDRAL EXTENSIONS

Sunil Chetty

Abstract: We establish, for a substantial class of elliptic curves, that the arithmetic local
constants introduced by Mazur and Rubin agree with quotients of analytic root numbers.
Keywords: elliptic curves, rank, Selmer groups, parity conjecture.

1. Introduction

Let E/k be an elliptic curve over a number field k. Fix a rational prime p > 3 for
which E is ordinary1 and a quadratic extension K of k. Next, fix a character ρ
of Gal(k/K) of order pn and let τρ = indK/k ρ and τ1 = indK/k 1 be the induced

representations2 from Gal(k/K) to Gal(k/k). With ρ we define L = k
ker ρ

, a cyclic
extension L/K of degree pn, and we assume ρ is such that L/k is Galois and that
the non-trivial element c ∈ Gal(K/k) acts on g ∈ Gal(L/k) via conjugation as
cgc−1 = g−1. Following [9] we refer to such extensions L/k as dihedral.

Let v denote a prime of K, u the prime of k below v, w a prime of L above
v, and denote ku, Kv and Lw for the completions at u, v, and w. We consider
Gal(Lw/ku) 6 Gal(L/k), and we set τρ,u (resp. τ1,u) to be τρ (resp. τ1) restricted
to Gal(Lw/ku).

For a self-dual complex representation τ of Gal(L/k), one has a conjectural
functional equation for the completed L-function Λ(E/k, τ, s) (see [12, §21])

Λ(E/k, τ, s) =

(∏
u

W (E/ku, τu)

)
Λ(E/k, τ, 2− s), (1.1)

This material is based upon work supported by the National Science Foundation under grant
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1There is, to date and to our knowledge, only one result [9, Theorem 5.7] at supersingular

primes analogous to our considerations.
2Context will determine the field of values. See [7, §5] for a discussion of this.



242 Sunil Chetty

with W (E/ku, τu) ∈ {±1} and the product taken over places u of k. Even though
the functional equation is conjectural, theW (E/ku, τu) can often be made explicit.

In [9] Mazur and Rubin define constants δv, for each prime v of K, which relate
the ρ-part and 1-part of the pro-p-Selmer Gal(k̄/K)-module Sp(E/L) (see §2.2)

dimQp Sp(E/L)ρ − dimQp Sp(E/L)1 ≡
∑
v

δv mod 2. (1.2)

Defining γu by (−1)γu = W (E/ku, τρ,u)/W (E/ku, τ1,u), for each prime u of k, the
invariance of Λ(E/k, τ, s) under induction (see [12, §8]) and (1.1) give

ords=1 Λ(E/k, τρ, s)− ords=1 Λ(E/k, τ1, s) ≡
∑
u

γu mod 2. (1.3)

With the Shafarevic-Tate and Birch-Swinnerton-Dyer Conjectures in mind, the
left-hand sides of (1.2) and (1.3) are equal, and so we aim to show in as many
cases as possible that γu =

∑
v|u δv.

Our main new result is Theorem 4.1, and it yields a new proof of a case of
a relative version of the Parity Conjecture, Corollary 4.2. This Corollary is already
known by different methods via work by de la Rochefoucauld in [1], Dokchitser
and Dokchitser in [3] and [2], and can also be recovered from work by Greenberg
in [5, §13]. Our calculations of δv in bad reduction also provide a new extension
of the results of [9, §7-8] regarding growth in rank of Sp(E) over dihedral L/K,
for example by relaxing the conditions in Theorem 8.5 of [9].

2. Local constants of elliptic curves

In this section we recall the relevant parts of [13] and [9].

2.1. Analytic local constants

We denote ωu for the standard valuation on ku and c6 for the constant appearing in
a simplified Weierstrauss model for E/ku (see [17, §III.1]). For τ a representation
of Gal(ku/ku) with real-valued character, we call W (E/ku, τ) ∈ {±1} the analytic
local root number for the pair (E/ku, τ). We call the constants γu ∈ Z/2Z defined
as quotients of local root numbers in §1 the analytic local constants.

When τ has finite image, set c(τ) := det τ(−1) and for two representations τ
and τ ′ of Gal(ku/ku) with finite image define 〈τ, τ ′〉 := 〈tr(τ), tr(τ ′)〉, with the
right-hand side the usual inner product on characters.

Let H be the unramified quadratic extension of ku and η the unramified
quadratic character of Gal(ku/ku), i.e. the character of Gal(ku/ku) with ker-
nel Gal(ku/H). For e = 3, 4, or 6 and q ≡ −1 mod e, where q = #(ku/u), let φe
be a tamely ramified character of Gal(ku/H) with φe|O×H of exact order e and such
that σe = indH/k φe is irreducible and symplectic. For θ the unramified quadratic
character of Gal(ku/H) set σ̂e := indH/ku(φeθ), which is a dihedral representation
of Gal(ku/ku) (see p. 316-318 of [13]).
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Define a representation σE/ku by applying the results of [12, §4] to

σE/ku,` : Gal(ku/ku)→ GL(V`(E)∗),

where V`(E)∗ is the dual of V`(E) = T`(E)⊗Z` Q`. From

W (E/ku, τ) = W (σE/ku ⊗ τ),

Rohrlich proves the following formulae.

Theorem 2.1 (Theorem 2 of [13]). Suppose τ = τ̄ is a 2-dimensional repre-
sentation of Gal(ku/ku) and denote ` for the residue characteristic of ku.

(i) If ` =∞ then W (E/ku, τ) = (−1)dim τ = 1.
(ii) If ` <∞ and E has good reduction over ku then W (E/ku, τ) = c(τ).
(iii) If ` <∞ and ωu(j) < 0 then

W (E/ku, τ) = c(τ)(−1)〈χ,τ〉

where χ is the character associated to the extension ku(
√
−c6).

(iv) If 5 6 ` <∞, ωu(j) > 0, and e = 12
gcd(ωu(∆E),12)

W (E/ku, τ) =

{
c(τ) if q ≡ 1 mod e

c(τ)(−1)〈1,τ〉+〈η,τ〉+〈σ̂e,τ〉 if e > 2, q ≡ −1 mod e.

Proposition 2.2 (Proposition 7 of [13]). If σE/ku = ψ ⊕ ψ−1 for some char-
acter ψ of k×u and τ is as in Theorem 2.1, then W (E/ku, τ) = c(τ).

2.2. Arithmetic local constants

Let Selp∞(E/K) be the p∞-Selmer group of E (see [9, §2] or [4, §2]). Define the
pro-p Selmer group of E over K as the Pontrjagin dual of Selp∞(E/K)

Sp(E/K) := Hom(Selp∞(E/K),Qp/Zp),

and consider it as a Q̄p-module by tensoring with Q̄p.
When Lw 6= Kv, let L′w be the unique subfield of Lw containing Kv with

[Lw : L′w] = p, and otherwise let L′w := Lw = Kv.

Definition 2.3 (Corollary 5.3 of [9]). For each prime v of K, define the arithmetic
local constant δv = δ(v,E, ρ) ∈ Z/2Z to be

δv := dimFp E(Kv)/(E(Kv) ∩NLw/L′w
E(Lw)) mod 2.

Theorem 2.4 (Theorem 6.4 of [9]). If S is a set of primes of K containing
all primes above p, all primes ramified in L/K, and all primes where E has bad
reduction, then

dimQp Sp(E/L)ρ − dimQp Sp(E/L)1 ≡
∑
v∈S

δv mod 2.
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Proof. Following the notation of [9, §3], let R be the maximal order in in the
cyclotomic field of pn-roots of unity, so R has a unique prime p above p. Define
I := pp

n−1

and define the I-twist of E by A := I ⊗ E (in the sense of [10] and
[9]), an abelian variety with R ⊂ EndK(A). We then have

dimQp Sp(E/L)ρ = corankR⊗Zp Selp∞(A/K),

dimQp Sp(E/L)1 = corankZp Selp∞(E/K).

Thus the conclusion above is equivalent to Theorem 6.4 of [9]

corankR⊗Zp Selp∞(A/K)− corankZp Selp∞(E/K) ≡
∑
v∈S

δv mod 2. �

3. Local computations

We keep the setting and notation of Theorem 2.1 and §1. Recall that c is the
non-trivial element of Gal(K/k).

3.1. Preliminary calculations

Proposition 3.1. If vc 6= v, then γu ≡ δv + δvc ≡ 0.

Proof. When v 6= vc, we have Gal(Lw/ku) = Gal(Lw/Kv). It follows that τρ,u =
ρ⊕ρ−1 and τ1,u = 1⊕1, so det τ(−1) = 1 for τ = τρ,u or τ = τ1,u. Also 〈ψ, τ〉 ≡ 0
mod 2 for ψ = 1, η, χ, or σ̂e, and by Theorem 2.1, we have W (E/ku, τ) = 1.
Applying Lemma 5.1 of [9] for δv finishes the claim. �

Proposition 3.2. If vc = v, v is unramified in L/K then γu ≡
∑
v|u δv ≡ 0.

Proof. In this case, v splits completely in L/K by [9, 6.5(i)], i.e. for every prime
w of L lying above v, Lw = Kv. Now, we have

τρ,u, τ1,u : Gal(Lw/ku) = Gal(Kv/ku)→ GL2(C)

viewing Gal(Kv/ku) as the v-decomposition subgroup of Gal(L/k). One sees by
direct calculation (see for example [14, §5.3]) that τρ,u ∼= τ1,u, and by applying
Corollary 5.3 of [9] for δv the claim follows. �

3.2. Good reduction

In the case of good reduction, the arithmetic local constant has been determined
by Mazur and Rubin in [9].

Theorem 3.3 (Theorem 5.6 and 6.6 of [9]). If v is a prime of K with v - p,
v = vc, v is ramified in L/K, and E has good reduction at v, then δv ≡ 0.

Theorem 3.4 (Theorem 6.7 of [9]). If v | p and E has good ordinary reduction
at v, then δv ≡ 0.
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For the corresponding situation on the analytic side:

Proposition 3.5. If E has good reduction over Kv then γu ≡ 0.

Proof. By Theorem 2.1(ii), it suffices to see det τρ,u ≡ det τ1,u mod p for some
p | p. Fixing a basis for the spaces of ρ and 1 respectively, we have ρ ≡ 1
mod p since L/K is a cyclic p-power extension. This implies τρ,u ≡ τ1,u mod p
(component-wise), viewed as matrices with function-valued entries, and det τρ,u ≡
det τ1,u mod p. �

3.3. Potential multiplicative reduction

Here, in view of Propositions 3.1-3.2, we assume vc = v and v ramifies in L/K,
i.e. Lw 6= Kv.

Analytic

Proposition 3.6. If E/ku has potential multiplicative reduction, then γu ≡ 0 if
and only if E does not have split multiplicative reduction over Kv.

Proof. Applying the arguments of Proposition 3.5, it remains to determine 〈χ, τ〉.
If E has split multiplicative reduction at u, χ = 1 and since Lw 6= Kv, dim τ = 2.
We have τ = τ1,u = 1⊕µ, with µ the character associated to the extension Kv/ku.
When E has split multiplicative reduction at u, χ = 1 6∼= µ and so 〈χ, τ〉 = 1. For
the other cases, χ ∼= µ if and only if Kv/ku is the quadratic extension over which
E acquires split multiplicative reduction. �

Arithmetic

Proposition 3.7. If E has potential multiplicative reduction over ku, then δv ≡ 0
if and only if E does not have split multiplicative reduction over Kv.

Proof. Let H be the quadratic extension over which E attains split multiplica-
tive reduction. If H = Kv, there is a q ∈ k×u such that E(Lw) ∼= L×w/q

Z as
Gal(Lw/Kv)-modules, and with the isomorphism defined over Kv (loc. cit. [17]).
This case is Lemma 8.4 of [9].

Suppose now that H 6= Kv. Define E′ to be the quadratic twist of E associated
to H/ku, so that E′ has split multiplicative reduction at u, and E

φ→ E′ is an
isomorphism over H. As before, we have a Gal(HLw/ku)-isomorphism

λ : E′(HLw)→ HL×w/q
Z,

with q ∈ k×. Let Gal(HLw/Lw) = 〈σ〉 and define the minus-part of HL×w to be

(HL×w)− := {z ∈ HL×w : zσ = z−1}
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and similarly for all other Gal(HLw/Lw)-modules3. The map obtained by pre-
composing λ with φ restricts to

E(Lw)
φ−→ E′(HLw)−

λ−→ ((HL×w)/qZ)−.

If q 6∈ NHLw/Lw then we also have ((HL×w)/qZ)− ∼= (HL×w)−. If q ∈ NHLw/Lw then
the projection of (HL×w)− has index 2 in ((HL×w)/qZ)−, hence prime to p. Both
cases will be similar, so we proceed with the former. One has a similar situation
with E(L′w)→ (HL′×w )−.

Since these maps commute with N := NHLw/HL′w
, the snake lemma gives

[E(L′w) : N(E(Lw))] = [(HL′×w )− : N((HL×w)−)].

We claim that this index is 1, implying E(Kv) ⊆ E(L′w) = N(E(Lw)) and hence

dimFp E(Kv)/(E(Kv) ∩NLw/L′w
E(Lw)) = 0.

To see that the index is 1, we note that local class field theory gives an injection

((HL′w)×)−/N((HL×w)−) ↪→ Gal(HLw/HL
′
w) = Gal(Lw/L

′
w)−.

Since we know that σ conjugates Gal(Lw/L
′
w) trivially, Gal(Lw/L

′
w)− is trivial.

�

3.4. Potential good reduction

Again, we assume vc = v and v ramifies in L/K, so Lw 6= Kv as before.

Analytic

Denote ` for the common residue characteristic of ku, Kv, Lw, and suppose E/ku
has additive and potential good reduction. Throughout we set H to be the unique
unramified quadratic extension of ku.

Proposition 3.8. Suppose v - 6. If v - p or Kv/ku is unramified then γu ≡ 0.

Proof. Here, we use the notation of Theorem 2.1, and from v - 6, we have ` > 5.
For τ = τρ,u or τ = τ1,u, we have 〈1, τ〉 + 〈η, τ〉 ≡ 0 mod 2, using that Kv/ku is
unramified for the latter.

In this setting σ̂e is the representation of Gal(k̄u/ku) induced from a char-
acter φ̂e of order e = 3, 4, or 6 (see [13, p. 332]). Hence, we may view σ̂e as
a representation of Gal(K1/ku) for some extension K1/Kv.

Consider τ = τρ,u. Lifting σ̂e and τ to some appropriate extension K2/ku,
since τ is irreducible, we see 〈σ̂e, τ〉 = 1 if and only if σ̂e ∼= τ . Restricting τ and σ̂e
to Gal(K2/Kv), these representations decompose as τ = ρ⊕ ρc and σ̂e = φe ⊕ φce.
The order of ρ is a power of p > 5 and the order of φe is 3, 4, or 6, so 〈σ̂e, τ〉 = 0.
For τ = τ1,u, we have τ = 1⊕ η and so 〈σ̂e, τ〉 = 0. �

3For example, restriction of σ gives Gal(HLw/Lw) ∼= Gal(HL′w/L
′
w), providing HL′w

a Gal(HLw/Lw)-module structure.
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Proposition 3.9. Suppose v - 6 and Kv/ku is ramified. If E acquires good reduc-
tion over an abelian extension of ku, then γu ≡ 0.

Proof. Here ` > 5, so we are in case (iii) of Theorem 2.1, and the condition that
E acquires good reduction over an abelian extension of ku is equivalent to (see
[11, Prop 2]) W(M/ku) being abelian, where M is the minimal extension of kuru
over which E acquires good reduction, and in turn to σE/ku = ψ ⊕ ψ−1 for some
character ψ of k×u . This gives

W (E/ku, τ) = c(τ) = det τ(−1).

Applying Proposition 3.5 then gives the result. �

Proposition 3.10. If v | 6 then γu ≡ 0.

Proof. This is case 2(b) of [1]. De la Rochefoucauld proves this in terms of ε-
factors as Rohrlich’s formula (Theorem 2.1 above) do not apply when E is wildly
ramified (see [6, §4]). We note that the dihedral setting is essential in his proof. �

Arithmetic

Proposition 3.11. If v - p and E has additive reduction over Kv then δv ≡ 0.

Proof. If E has additive reduction, then

E0(Kv)/E1(Kv) ∼= Ẽns(κ) ∼= κ+, (3.1)

with κ, the residue field of Kv, a finite field of characteristic ` 6= p. We recall two
facts (see §VII.3 and §VII.6 of [17]),

(1) E1(Kv) ∼= Zr` ⊕ T for some finite `-group T .
(2) |E(Kv)/E0(Kv)| 6 4.

Since p - 6` these two facts yield

E(Kv)/pE(Kv) ∼= E0(Kv)/pE0(Kv) ∼= E1(Kv)/pE1(Kv) = 0,

showing that E(Kv) has no p-subgroups and so δv ≡ 0. �

For K a finite extension of ku, denote Ẽ for the reduction of E at the prime
of K. If κ is the residue field of K and E has good ordinary reduction over K then
we say that E has anomalous reduction over K if Ẽ(κ)[p] 6= 0, and we say E has
non-anomalous reduction otherwise (see [9, App. B], also [8, §1.b]).

Proposition 3.12. If v | p, E has additive reduction over Kv, and E attains good,
ordinary, non-anomalous reduction over a Galois extension M/Kv, then δv ≡ 0.
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Proof. Since E has potential good reduction,M can be chosen so that [M : Kv] is
prime to p (see [15, §2] and [16, p.2]). Let Ek denote a model for E defined over ku,
and let EM denote a model of E defined over M for which E has good, ordinary,
non-anomalous reduction. We have an isomorphism Ek → EM defined over M ,
giving Ek(M) ∼= EM (M), whereM = MLw, and similarly forM′ = ML′w. We
denote Γ = Gal(M/Kv) and H = Gal(Lw/L

′
w), and note that

Gal(M/Kv) ∼= Gal(M′/L′w) ∼= Gal(M/Lw), Gal(Lw/L
′
w) ∼= Gal(M/M′).

By Propositions B.2 and B.3 of [9], we have that NH : EM (M) → EM (M′) is
surjective, and hence NH : Ek(M) → Ek(M′) is surjective also. From this and
NΓ ◦NH = NH ◦NΓ we have

[Ek(L′w) : NΓ(Ek(M′))] = [Ek(L′w) : NΓ ◦NH(Ek(M))]

= [Ek(L′w) : NH ◦NΓ(Ek(M))].
(3.2)

Since Γ has order prime to p and

|Γ| · Ek(L′w) ⊂ NΓ(Ek(M′)) ⊂ Ek(L′w),

the first term in (3.2) is prime to p. Since H has order p and

NH ◦NΓ(Ek(M)) ⊂ NH(Ek(Lw)) ⊂ Ek(L′w),

the last term in (3.2) is divisible by some power of p when NH(Ek(Lw)) 6= Ek(L′w).
Since this is impossible, we must have NH(Ek(Lw)) ⊃ Ek(Kv) and δv ≡ 0. �

4. Main result

Recall E/k is an elliptic curve ordinary at p. Also recall that γu is defined by

(−1)γu = W (E/ku, τρ,u)/W (E/ku, τ1,u).

Define S = {primes v of K : vc = v, v ramifies in L/K, and v | 6p}.

Theorem 4.1. Fix primes u of k and v of K with v | u. If v ∈ S suppose that
one of the following holds:

(a) E has good reduction at v.
(b) E has potential multiplicative reduction at v,
(c) E has additive, potential good reduction at v, and acquires good, non-ano-

malous reduction over an abelian extension of ku when v | p.
Then γu ≡

∑
v|u δv mod 2.

Corollary 4.2. If E/k satisfies the hypothesis of Theorem 4.1, then mod 2

dimQp Sp(E/L)ρ − dimQp Sp(E/L)1 ≡ ords=1 Λ(E/k, ρ, s)− ords=1 Λ(E/k, 1, s).
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Proof of 4.1. Let v, vc the primes of K above u. If v 6∈ S then vc 6= v, v is
unramified in L/K, or v - 6p. If vc 6= v then we use Proposition 3.1, and if vc = v
is unramified in L/K, Proposition 3.2 gives the claim. For the remainder we may
assume vc = v.

In the case v - 6p, we have v - 6 and v - p. If E has good reduction at v then
Theorem 3.3 shows δv ≡ 0, and Proposition 3.5 gives γu ≡ 0. If E has potential
multiplicative reduction then Proposition 3.7 and Proposition 3.6, for δv and γu,
respectively, give the result. Lastly, if E has potential good reduction, then we
apply Proposition 3.11 and Proposition 3.8.

For v ∈ S, case (a) follows from Theorem 3.4 for δv and Proposition 3.5 for γu.
Case (b) is covered by Proposition 3.7 for δv and Proposition 3.6 for γu.

For case (c), first consider v | 6. We apply Proposition 3.10 for γu, and since
v - p, we can apply Proposition 3.11 for δv. When v | p the condition that E
acquries ordinary, non-anomalous reduction allows us to apply Proposition 3.12 for
δv. In this case, v - 6 and so for γu we use Proposition 3.8 whenKv/ku is unramified
or the ‘abelian’ condition and Proposition 3.9 when Kv/ku is ramified. �
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