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ON SOME FAMILIES OF INTEGRALS CONNECTED
TO THE HURWITZ ZETA FUNCTION

Alexander E. Patkowski

Abstract: Expressions for a family of integrals involving the Hurwitz zeta function are estab-
lished using standard properties of the Fourier transform.
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1. Introduction

The Hurwitz zeta function is defined by

ζ(s, a) =
∑
n>0

1

(a+ n)s

for s ∈ C, <(s) > 1, and a is chosen appropriately so there are no singularities in
the series. ζ(s, a) admits the integral representation

ζ(s, a) =
1

Γ(s)

∫ ∞
0

e−at

1− e−t
ts−1dt, (1.1)

where Γ(s) is Euler’s gamma function, which is valid for <(s) > 1 and <(a) > 0.
Hermite proved an interesting integral representation, which actually provides an
explicit realization of the analytic continuation to C− {1} and <(a) > 0 :

ζ(s, a) =
a−s

2
+
a1−s

s− 1
+ 2

∫ ∞
0

sin(s tan−1(t/a))dt

(a2 + t2)s/2(e2πt − 1)
. (1.2)
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The function ζ(s, a) is analytic for s 6= 1, and direct differentiation of (1.2)
yields

ζ ′(s, a) = −a
−s ln a

2
− a1−s ln a

s− 1
− a1−s

(s− 1)2

− 2a1−s ln a

∫ ∞
0

sin(s tan−1(t))dt

(1 + t2)s/2(e2aπt − 1)

+ 2a1−s
∫ ∞

0

cos(s tan−1(t)) tan−1(t)dt

(1 + t2)s/2(e2aπt − 1)

− a1−s
∫ ∞

0

sin(s tan−1(t)) ln(t2 + 1)dt

(1 + t2)s/2(e2aπt − 1)
,

where ζ ′(s, a) denotes ∂ζ(s, a)/∂s.
The work presently discussed is a continuation of [2, 4, 7] where these inte-

gral representations have been employed to evaluate interesting definite integrals.
General information about ζ(s, a) can be found in [1], [5] and [6].

The main result is presented next.

Theorem 1. Let n ∈ N0. For <(a) > 0 and 0 6 2n < <(s), define

Sn(a, s) :=

∫ ∞
0

t2n sin(s tan−1(t/a))dt

(a2 + t2)s/2(e2πt − 1)
.

Then

Sn(a, s) =
1

2

2n∑
m=0

(−1)m+n

(
2n

m

)
amP1(a,m+ s− 2n), (1.3)

where

P1(a, s) = ζ(s, a)− a−s

2
− a1−s

s− 1
.

Observe that (1.2) corresponds to the special case n = 0 in (1.3). Here we note
that Sn(a, s) is analytic in the set {n ∈ N0, 0 6 2n < <(s) : s− 2n 6= 1}.

The proof of Theorem 1 is based on identifying the Fourier sine transform of
two special functions and then apply the corresponding Parseval identity. Recall
that for a function defined on the half-line, the Fourier sine transform is

F(f)(w) :=

√
2

π

∫ ∞
0

f(t) sin(wt)dt,

provided the integral converges. The corresponding Parseval identity states that∫ ∞
0

F(f)(w)F(g)(w)dw =

∫ ∞
0

f(t)g(t)dt. (1.4)

Theorem 1 is a direct consequence of Parseval’s relation applied to the functions

f(t) = 1/(e2πt − 1) and g(t) =
t2n sin(s tan−1(t/a))

(a2 + t2)s/2
.
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The Fourier sine transform f(t) comes from entry 3.951.12 of [3]. It states an
equivalent form of the identity∫ ∞

0

sin(wt)dt

e2πt − 1
=

1

2

(
1

ew − 1
+

1

2
− 1

w

)
. (1.5)

The Fourier sine transform of g(t) is given in terms of the associated Laguerre
polynomials Lkn(x) defined by the Rodrigues representation

Lkn(x) =
exx−k

n!

dn

dxn
(
e−xxn+k

)
, (1.6)

for n ∈ N ∪ {0}.
Theorem 1 is extended in Section 3 to include integrals in which the kernel

1/(e2πt − 1) is replaced by

1/(eπt + 1), 1/ sinh(πt), 1/ cosh(πt).

Consider the families of integrals

Ik(q) =

∫ ∞
0

tdt

(1 + t2)k+1(e2πqt − 1)
,

Tk(q) =

∫ ∞
0

tk tan−1 tdt

(e2πqt − 1)
,

Lk(q) =

∫ ∞
0

tk ln(1 + t2)dt

(e2πqt − 1)
.

The reader will find in [2] explicit expression for Ik(q) in terms of the derivatives
of the polygamma function and for T2k(q) and L2k+1(q) remains an open problem.
It would be of interest to analyze the evaluations discussed here in relation to this
open problem.

2. The proof

The proof of Theorem 1 is based on the computation of two Fourier sine transforms.
Formula 3.951.12 in [3] states an equivalent form of the identity (1.5), which gives
the sine transform of

f(t) =
1

e2πt − 1
,

as
F(f)(w) =

1√
2π

(
1

ew − 1
+

1

2
− 1

w

)
.

The second Fourier sine transform is that of the associated Laguerre polyno-
mials (1.6). The explicitly formula

Lkn(x) =

n∑
j=0

(−1)j(n+ k)!

(n− j)!(k + j)!j!
xj (2.1)

is employed in the derivation.
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Formula 3.769.4 of [3] contains the integral representation∫ ∞
0

t2n
(
(a− it)−s − (a+ it)−s

)
sin(wt)dt =

(−1)niπ(2n)!

Γ(s)eaww2n+1−sL
s−2n−1
2n (aw),

(2.2)
for w > 0, <(a) > 0 and 0 6 2n < <(s). The integrand can be simplified using

(a− it)−s − (a+ it)−s =
2i sin(s tan−1(t/a))

(a2 + t2)s/2
.

Therefore (2.2) can be written as∫ ∞
0

t2n
sin(s tan−1(t/a))

(a2 + t2)s/2
sin(wt)dt =

(−1)nπ(2n)!

2Γ(s)eaww2n+1−sL
s−2n−1
2n (aw). (2.3)

Or equivalently we may state that the Fourier sine transform of

g(t) =
t2n sin(s tan−1(t/a))

(a2 + t2)s/2
,

is given by

F(g)(w) =
(−1)nπ(2n)!

2Γ(s)eaww2n+1−sL
s−2n−1
2n (aw).

Parseval’s identity (1.4) gives the next result.

Lemma 2. For <(a),<(s) > 0,∫ ∞
0

t2n sin(s tan−1(t/a))dt

(a2 + t2)s/2(e2πt − 1)

=
(−1)n(2n)!

2Γ(s)

∫ ∞
0

e−aww−2n−1+sLs−2n−1
2n (aw)

(
1

ew − 1
+

1

2
− 1

w

)
dw.

The explicit formula (2.1) for the Laguerre polynomials is now employed to
evaluate the integral on the right side of Lemma 2.∫ ∞

0

e−aww−2n−1+sLs−2n−1
2n (aw)

ew − 1
dw

=

2n∑
j=0

(−1)j(s− 1)!aj

(2n− j)!(s− 2n− 1 + j)!j!

∫ ∞
0

ws−2n−1+je−(a+1)wdw

1− e−w

=

2n∑
j=0

(−1)j(s− 1)!aj

(2n− j)!j!
ζ(s− 2n+ j, a+ 1).

In the last step we have employed the integral representation for the Hurwitz zeta
function (1.1). For the desired formula we must write 1/(ew−1) = ew/(ew−1)−1.
The remaining integrals corresponding to the terms 1/2 and 1/w are elementary,
and so are omitted.
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3. Related integrals

In this section we produce results similar to Theorem 1 for a family of integrals of
the form ∫ ∞

0

f(t)K(t)dt,

where the kernel 1/(e2πt − 1) in Theorem 1 is replaced by

1/(eπt + 1), 1/ sinh(πt), or 1/ cosh(πt).

The next lemma will be needed for future computations corresponding to these
kernels.

Lemma 3. Assume <(s) > 1 and <(a) > 0. Then∫ ∞
0

ts−1e−at

sinh(t)
dt = Γ(s)

(
ζ(s, a)− 2−sζ(s, a/2)

)
.

If <(a) > 0, then∫ ∞
0

ts−1e−at

1 + e−t
dt = Γ(s)

(
−ζ(s, a) + 21−sζ(s, a/2)

)
,

and ∫ ∞
0

ts−1e−at

cosh(t)
dt = Γ(s)2−2s

(
ζ(s,

1 + a

4
)− ζ(s,

a+ 3

4
)

)
.

These integrals are well-known variations of (1.1). Details are in [2].

Theorem 4. Let n ∈ N0. For <(a) > 0 and 0 6 2n < <(s), define

SHn(a, s) :=

∫ ∞
0

t2n sin(s tan−1(t/a))dt

(a2 + t2)s/2 sinh(πt)
.

Then

SHn(a, s) =
1

2

2n∑
m=0

(−1)m+n

(
2n

m

)
amP2(a,m+ s− 2n),

where
P1(a, s) = 22−sζ(s, a/2)− 2ζ(s, a)− a−s.

Proof. The identity ∫ ∞
0

sin(wt)

sinh(βt)
=

π

2β
tanh

πw

2β
(3.1)

appears as entry 3.981.1 in [3].
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The value β = π in (3.1) shows that the Fourier sine transform of 1/ sinh(πt)
is 1

2 tanh(w/2). Then (1.4) and (2.3) give∫ ∞
0

t2n sin(s tan−1(t/a))dt

(a2 + t2)s/2 sinh(πt)

=
(−1)nπ(2n)!

4Γ(s)

∫ ∞
0

tanh(
w

2
)e−aww−2n−1+sLs−2n−1

2n (aw)

(
1

ew − 1
+

1

2
− 1

w

)
dw.

Now use
tanh(w/2) =

2

1 + e−w
− 1

and proceed as in the proof of Theorem 1. �

The next results are established along similar lines of the proof presented above.
The details are omitted. Entries 3.911.1 and 3.981.3 in [3] are∫ ∞

0

sin(wt)

eβt + 1
=

1

2w
− π

2β sinh πw
β

,

and ∫ ∞
0

cos(wt)

cosh(βt)
=

π

2β cosh πw
2β

,

respectively. These are used instead of (3.1) in the proofs.

Theorem 5. Let n ∈ N0. For <(a) > 0 and 0 6 2n < <(s), define

EPn(a, s) :=

∫ ∞
0

t2n sin(s tan−1(t/a))dt

(a2 + t2)s/2(e2πt + 1)
.

Then

EPn(a, s) =
1

2

2n∑
m=0

(−1)m+n

(
2n

m

)
amP1(a,m+ s− 2n),

where

P3(a, s) =
a1−s

s− 1
− ζ(s, a)− 2−sζ(s, a/2).

Theorem 6. Let n ∈ N0. For <(a) > 0 and 0 6 2n < <(s), define

CHn(a, s) :=

∫ ∞
0

t2n sin(s tan−1(t/a))dt

(a2 + t2)s/2 cosh(πt/2)
.

Then

CHn(a, s) =
1

2

2n∑
m=0

(−1)m+n

(
2n

m

)
amP1(a,m+ s− 2n),

where
P4(a, s) =

1

22s

(
ζ(s,

a+ 1

4
)− ζ(s,

a+ 3

4
)

)
.



On some families of integrals connected to the Hurwitz zeta function 311

The final result describes integrals containing odd powers of t in the integrand.
As before, the proofs are similar to that of Theorem 1, so they are omitted.

Theorem 7. Let n ∈ N0. For <(a) > 0 and −1 6 2n+ 1 < <(s), then∫ ∞
0

t2n+1 cos(s tan−1(t/a))dt

(a2 + t2)s/2(e2πt − 1)
=

1

2

2n+1∑
m=0

(−1)m+n

(
2n+ 1

m

)
amP1(a,m+s−2n−1),

∫ ∞
0

t2n+1 cos(s tan−1(t/a))dt

(a2 + t2)s/2 sinh(πt)
=

1

2

2n+1∑
m=0

(−1)m+n

(
2n+ 1

m

)
amP2(a,m+s−2n−1),

∫ ∞
0

t2n+1 cos(s tan−1(t/a))dt

(a2 + t2)s/2(eπt + 1)
=

1

2

2n+1∑
m=0

(−1)m+n

(
2n+ 1

m

)
amP3(a,m+s−2n−1),

and if <(a) > 0 and 0 6 2n < <(s)− 1,∫ ∞
0

t2n+1 sin(s tan−1(t/a))dt

(a2 + t2)s/2 cosh(πt/2)
=

1

2

2n+1∑
m=0

(−1)m+n

(
2n+ 1

m

)
amP4(a,m+s−2n−1).
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