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REMARKS ON q-EXPONENTS OF GENERALIZED MODULAR
FUNCTIONS

Narasimha Kumar

Abstract: We prove several multiplicity one theorems for generalized modular functions (GMF),
in terms of their q-exponents, and make a precise statement about the nature of values that the
prime q-exponents of a GMF can take. We shall also study the integrality of general q-exponents
of a GMF and give an upper bound on the first sign change of these q-exponents.
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Determination of modular forms by their Fourier coefficients or by their Hecke
eigenvalues has been an interesting topic of research in the theory of modular
forms. For example, one can determine the Hecke eigenforms of integral weight
by the central critical values of the corresponding L-functions twisted by certain
Dirichlet characters [17] or by the central values of convolution of L-functions [7].
One can also determine the Hecke eigenforms by the eigenvalues of the Hecke
operators Tp (p prime). In the literature, the latter one’s are known as multiplicity
one theorems.

In the integral weight case there are several multiplicity one theorems available
in the literature, see [5], [19]. The case is similar for half-integral weight modular
forms and Siegel modular forms, see [12], [20], [21]. In this note, we are inter-
ested in obtaining multiplicity one theorems for a class of generalized modular
functions in terms of their q-exponents (for definition, see §1). Since there are
no L-functions attached to generalized modular functions (GMF), we have not
studied the analogous or the corresponding questions in this context.

In §2, after recalling the basic properties of GMF’s, we prove several multiplic-
ity one theorems for generalized modular functions, in terms of their q-exponents.
In fact, we show that the signs of primes q-exponents itself determine the gen-
eralized modular function (up to a non-zero scalar). We improve this version by
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assuming the Sato-Tate conjecture (Conj. 2.7 in the text) for a pair of distinct
non-CM Hecke eigenforms of integral weight, where CM means Complex Multipli-
cation.

In [15, Thm. 1], Kohnen-Meher show that c(p) (p prime) takes infinitely many
distinct values. In §3, we sharpen this result by showing that c(p) (p prime)
takes infinitely many (real) distinct positive values and also infinitely many (real)
distinct negative values, i.e., we provide more precise information about the nature
of values that the prime q-exponents of a GMF can take. In the same section, we
also show that the q-exponents c(n) (n ∈ N) are non-zero and integral only for
finitely many n’s, which generalizes [16, Thm. 5.1] to general q-exponents.

In the integral (or half-integral) weight modular forms, there are several results
on producing an explicit upper bound on the first sign change of their Fourier
coefficients (cf. [3], [4], [18]). In a similar flavor, in §4, we shall give an upper bound
on the first sign change of general q-exponents of generalized modular functions.

1. Preliminaries

In this section, we will recall the definition of generalized modular functions and
some basic results about them. We refer the reader to [11] for more details.

Definition 1.1. We say that f is a generalized modular function (GMF) of integral
weight k on Γ0(N), if f is a holomorphic function on the upper half-plane H and

f

(
az + b

cz + d

)
= χ(γ)(cz + d)kf(z) ∀γ =

(
a b
c d

)
∈ Γ0(N)

for some (not necessarily unitary) character χ : Γ0(N)→ C∗.

We will also suppose that χ(γ) = 1 for all parabolic γ ∈ Γ0(N) of trace 2. We
remark that in [11], a GMF in the above sense was called as a parabolic GMF
(PGMF).

Let f be a non-zero generalized modular function of weight k on Γ0(N). Then
f has an infinite product expansion

f(z) = c0q
h
∞∏
n=1

(1− qn)c(n), (1.1)

where the product on the right-hand side of (1.1) is convergent in a small neighbor-
hood of q = 0, where q = e2πiz. Here c0 is a non-zero constant, h is the order of f
at infinity, and the c(n) (n ∈ N) are uniquely determined complex numbers [2], [6].

The following theorem is due to Knopp and Mason.

Theorem 1.2 ([11, Theorem 2]). If f is a GMF of weight 0 on Γ0(N) with
div(f) = 0, then its logarithmic derivative

g :=
1

2πi

f ′

f
∈ S2(Γ0(N), χtriv). (1.2)



Remarks on q-exponents of generalized modular functions 179

Conversely, given any g ∈ S2(Γ0(N), χtriv), then there exists a GMF f of weight 0
on Γ0(N) with div(f) = 0 such that (1.2) is satisfied and f is uniquely determined
up to a non-zero scalar. Here, div(f) means the divisor of f as in [8, p. 131].

Let f, g be as in the above theorem. Suppose that the Fourier expansion of
g(z) is given by

g(z) =

∞∑
n=1

b(n)qn.

Let Kf (resp., Kg) be the field generated by the q-exponents c(n) (resp., b(n)) of
f (resp., of g) over Q. Then, Kf = Kg, since for n > 1,

b(n) = −
∑

d|n
dc(d), (1.3)

nc(n) = −
∑

d|n
µ(d)b(n/d). (1.4)

We finish this section with an observation which points out an extra feature that
generalized modular forms have when compared with classical modular forms.
The character that comes with the modular forms has to be unitary whereas for
GMF’s its not necessary. This feature allows us to have more modular forms. For
example, there are no modular forms of weight 0 or with div(f) = 0, whereas there
are GMF’s of weight 0 and with div(f) = 0, which is clear from the Theorem 1.2
above.

2. Multiplicity one theorems

In this section, we state several multiplicity one theorems for generalized modular
functions, in terms of their q-exponents. The basic idea of these proofs is motivated
from the work of Inam and Wiese [9]. Now, we let us recall the notion of natural
density/analytic density for subsets of P and the Sato-Tate measure.

Definition 2.1. Let S be a subset of P. The set S has natural density d(S) (resp.,
analytic density dan(S)), if the limit

lim
x→∞

#{p 6 x : p ∈ S}
π(x)

(
resp., lim

s→1+

∑
p∈S

1
ps

log( 1
s−1 )

)
(2.1)

exists and is equal to d(S) (resp., is equal to dan(S)), where π(x) := #{p 6 x :
p ∈ P}.

Remark 2.2. If a subset S ⊆ P has a natural density, then it also has an analytic
density, and the two densities are the same. Observe, if |S| < ∞, then d(S) = 0
and hence dan(S) = 0.

Definition 2.3. The Sato-Tate measure µST is the probability measure on [−1, 1]
given by 2

π

√
1− t2dt.
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The following multiplicity one theorem (Theorem 2.5 in the text) is an ap-
plication of the Sato-Tate equidistribution theorem for Hecke eigenforms without
complex multiplication (CM) [1] together with [18, Thm. 2]. For the reader’s
convenience, let us recall the Theorem in [loc. cit.]

Theorem 2.4 (Matomäki). Let k1, k2 > 2 be even integers and let N1, N2 > 1
be integers. Let f1 =

∑∞
n=1 af1(n)qn (resp., f2 =

∑∞
n=1 af2(n)qn) be a normalized

Hecke eigenform without CM of weight k1 and level N1 (resp., of weight k2 and
level N2). If af1(p) and af2(p) have same sign for every prime p except those in
a set E with analytic density dan(E) 6 6/25, then f1 = f2.

Let f be a non-constant GMF of weight 0 on Γ0(N) with div(f) = 0 and
q-exponents {c(n)}n∈N and g =

∑∞
n=1 b(n)qn be the corresponding cuspform of

weight 2 on Γ0(N) with trivial character (as in Theorem 1.2). We further assume
that g is a normalized Hecke eigenform without CM. We know that b(p) = 1−pc(p).
Hence, for p ∈ P, we have

c(p) > 0⇐⇒ −1 6 B(p) <
1

2
√
p
, c(p) < 0⇐⇒ 1

2
√
p
< B(p) 6 1,

where B(p) = b(p)
2
√
p . We see that, if c(p) (resp., b(p)) is positive, then it does

not mean that b(p) (resp., c(p)) is negative. So, the following theorem is not an
immediate consequence of Theorem 2.4. However, we can still deduce our Theorem
from there by a trick.

Theorem 2.5 (Multiplicity one theorem-I). For i = 1, 2, let fi be a non-
constant GMF of weight 0 on Γ0(Ni) with div(fi) = 0, q-exponents {ci(n)}n∈N.
Let gi’s be the corresponding cuspforms in S2(Γ0(Ni)) (as in Theorem 1.2), resp.
We assume that gi’s are normalized Hecke eigenforms without CM. If c1(p) and
c2(p) have the same sign ∀p 6∈ E where E ⊆ P with dan(E) 6 6/25, then f1 = f2

(up to a non-zero scalar).

Proof. Suppose that gi =
∑∞
i=1 bi(n)qn, for i = 1, 2. Let Bi(p) denote bi(p)

2
√
p . By

Deligne’s bound, we know that |Bi(p)| 6 1. As explained above, we see that if
c1(p) (resp., b1(p)) is positive, then it does not mean that b1(p) (resp., c1(p)) is
negative. We now show that, except possibly for a natural density zero set of
primes, the signs of c1(p) and b1(p) are exactly the opposite, i.e., the density of
primes p for which c1(p) and b1(p) have the same sign is zero. To prove this, it is
enough to show that

d

({
p prime : p - N1, 0 6 B1(p) <

1

2
√
p

})
= 0.

For any fixed (but small) ε > 0, we have the following inclusion of sets

{p 6 x : p - N1, B1(p) ∈ [0, ε]} ⊇
{
p 6 x : p - N1, p >

1

4ε2
, 0 6 B1(p) <

1

2
√
p

}
.
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Hence, we have

#{p 6 x : p - N1, B1(p) ∈ [0, ε]}+ π

(
1

4ε2

)
> #

{
p 6 x : p - N1, 0 6 B1(p) <

1

2
√
p

}
.

Now divide the above inequality by π(x)

#{p 6 x : p - N1, B1(p) ∈ [0, ε]}
π(x)

+
π
(

1
4ε2

)
π(x)

>
#
{
p 6 x : p - N1, 0 6 B1(p) < 1

2
√
p

}
π(x)

.

The term
π( 1

4ε2
)

π(x) tends to zero as x → ∞ as π( 1
4ε2 ) is finite. By the Sato-Tate

equidistribution theorem ([1, Thm. B.]), we have

#{p 6 x : p - N1, B1(p) ∈ [0, ε]}
π(x)

−→ µST([0, ε]) as x→∞.

This implies that

lim sup
x→∞

{p 6 x : p - N1, 0 6 B1(p) < 1
2
√
p}

π(x)
6 µST([0, ε]). (2.2)

Since the inequality (2.2) holds for all ε > 0, we have that

lim
x→∞

{p 6 x : p - N1, 0 6 B1(p) < 1
2
√
p}

π(x)
= 0.

Now, if c1(p) and c2(p) have same sign for every prime p 6∈ E with dan(E) 6
6/25, then b1(p) and b2(p) also have same sign for every prime p 6∈ E, since the
signs of b1(p) and c1(p) (resp., b2(p) and c2(p) ) are exactly the opposite for a
natural density zero set of primes. This implies that, b1(p) and b2(p) have same
sign for every prime p 6∈ E with dan(E) 6 6/25, hence N1 = N2 and g1 = g2 (by
Theorem 2.4). Since gi’s determine fi, up to a non-zero scalar, we are done with
the proof. �

In particular, we have:

Corollary 2.6. Let f1, f2, g1, g2 be as in the above Theorem. Suppose that c1(p)
and c2(p) have the same sign for every prime p, then f1 = f2, up to a non-zero
scalar, i.e., signs of the prime q-exponents determine the GMF, up to a non-zero
scalar.
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2.1. Stronger version

Now, we shall state a stronger version of the multiplicity one theorem for GMF’s,
by assuming the pair Sato-Tate equidistribution conjecture for two distinct non-
CM Hecke eigenforms of integral weight (Conjecture 2.7). Now, we let us recall
the pair Sato-Tate equidistribution conjecture.

Let g1 =
∑∞
n=1 b1(n)qn (resp., g2 =

∑∞
n=1 b2(n)qn) be a normalized cuspidal

eigenform of weight 2k on Γ0(N). By Deligne’s bound, for i = 1, 2, one has

|bi(p)| 6 2pk−
1
2 ,

and we let
Bi(p) :=

bi(p)

2pk−
1
2

∈ [−1, 1]. (2.3)

We have the following pair Sato-Tate equidistribution conjecture for distinct cus-
pidal eigenforms g1, g2 without CM.

Conjecture 2.7. Let k > 1 and let g1, g2 be distinct normalized cuspidal eigen-
forms of weight 2k on Γ0(N) without CM. For any two subintervals I1, I2 ⊆ [−1, 1],
we have

d(S(I1, I2)) = lim
x→∞

#S(I1, I2)(x)

π(x)
= µST(I1)µST(I2)

=
4

π2

∫
I1

√
1− s2ds

∫
I2

√
1− t2dt,

where

S(I1, I2) := {p ∈ P : p - N,B1(p) ∈ I1, B2(p) ∈ I2}

and

S(I1, I2)(x) := {p 6 x : p ∈ S(I1, I2)} .

In other words, the Fourier coefficients at primes are independently Sato-Tate
distributed with respect to the measure µST.

For the notational convenience, we let P<0 denote the set {p ∈ P : p - N,
c1(p)c2(p) < 0}, and similarly P>0, P60, P>0, and P=0.

Theorem 2.8. For i = 1, 2, let fi be a non-constant GMF of weight 0 on Γ0(N)
with div(fi) = 0 and q-exponents {ci(n)}n∈N. Let gi’s be the corresponding cusp-
forms in S2(Γ0(N)) (as in Theorem 1.2), resp. We assume that gi’s are two
distinct normalized non-CM Hecke eigenforms. If the pair Sato-Tate equidistribu-
tion conjecture holds for (g1, g2) (Conjecture 2.7), then the product of q-exponents
c1(p)c2(p)(p prime), change signs infinitely often. Moreover, the sets

P>0,P<0,P>0,P60

have natural density 1/2, and d(P=0) = 0.



Remarks on q-exponents of generalized modular functions 183

We let π<0(x) denote #{p 6 x : p - N, p ∈ P<0}, and similarly for π>0(x),
π60(x), π>0(x), and π=0(x).

Proof of Theorem 2.8. Since bi(p) = 1− pci(p), we have

ci(p) > 0⇐⇒ −1 6 Bi(p) <
1

2
√
p
, ci(p) < 0⇐⇒ 1

2
√
p
< Bi(p) 6 1,

where Bi(p) = bi(p)
2
√
p , by definition, for i = 1, 2. First, we shall show that

lim inf
x→∞

π<0(x)

π(x)
> µST([0, 1]) =

1

2
.

For any fixed (but small) ε > 0, we have the following inclusion of sets

{p 6 x : p - N, c1(p)c2(p) < 0} ⊇ S 1
4ε2

([ε, 1], [−1, 0])(x) ∪ S 1
4ε2

([−1, 0], [ε, 1])(x),

where Sa(I1, I2)(x) := {p ∈ S(I1, I2)(x) : p > a}, for any a ∈ R+. Hence, we have

#{p 6 x : p - N, c1(p)c2(p) < 0}+ π

(
1

4ε2

)
> #S([ε, 1], [−1, 0])(x) + #S([−1, 0], [ε, 1])(x).

Now divide the above inequality by π(x)

#{p 6 x : p - N, c1(p)c2(p) < 0}
π(x)

+
π
(

1
4ε2

)
π(x)

>
#S([ε, 1], [−1, 0])(x) + #S([−1, 0], [ε, 1])(x)

π(x)
.

The term
π( 1

4ε2
)

π(x) tends to zero as x→∞ as π( 1
4ε2 ) is finite. By Conjecture 2.7, we

have

#S([ε, 1], [−1, 0])(x) + #S([−1, 0], [ε, 1])(x)

π(x)
−→ 2.µST([ε, 1])µST([−1, 0])

as x→∞. This implies that

lim inf
x→∞

π<0(x)

π(x)
> 2.µST([ε, 1])µST([−1, 0]) = µST([ε, 1]), (2.4)

where π<0(x) = #{p 6 x : p - N, c1(p)c2(p) < 0} by definition. Since the
inequality (2.4) holds for all ε > 0, we have that

lim inf
x→∞

π<0(x)

π(x)
> µST([0, 1]) =

1

2
.
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A similarly proof shows that lim inf
x→∞

π60(x)

π(x) >
1
2 . Since π>0(x) = π(x) − π60(x),

we have that lim sup
x→∞

π>0(x)
π(x) 6

1
2 . Hence, the limit lim

x→∞
π<0(x)
π(x) exists and is equal

to 1
2 . Therefore, the natural density of the set P<0 is 1

2 .
Similarly, one can also argue for the sets P>0, P60, and P>0, and show that the

natural densities of these sets are 1
2 . The claim for P=0 follows from the former

statements. �

Finally, we state a stronger version of Theorem 2.5 by assuming the Conjec-
ture 2.7.

Corollary 2.9 (Multiplicity one theorem-II). For i = 1, 2, let fi be a non-
constant GMF of weight 0 on Γ0(N) with div(fi) = 0 and q-exponents {ci(n)}n∈N.
Let gi’s be the corresponding cuspforms in S2(Γ0(N)) (as in Theorem 1.2), resp.
We assume that gi’s are two normalized non-CM Hecke eigenforms. We further
assume that the Conjecture 2.7 holds for the pair (g1, g2), if g1 6= g2. If c1(p) and
c2(p) have the same sign ∀ p 6∈ E ⊆ P with dan(E) < 1/2, then f1 = f2 (up to
a non-zero scalar).

Proof. If f1 6= cf2 for all c ∈ C∗, then g1 6= g2. Then the corollary follows
immediately from the above theorem. �

3. Nature of values taken by c(p) (p prime)

Before we describe the results of this section, first let us a recall the product
expansion of Ramanujan’s ∆-function:

∆(z) = q
∏
n>1

(1− qn)24,

where q = e2πiz with Im(z) > 0. It is known that the function ∆(z) is a holomor-
phic cusp form of weight 12 and level 1. Observe that the q-exponents c(n)(= 24)
of ∆(z) are non-zero, integral, and positive for all n ∈ N. However, the behavior
of q-exponents of GMF’s differs quite drastically in every aspect from that of ∆.

Recall that Kohnen and Meher showed that q-exponents c(p) (p prime) take
infinitely many distinct values [15]. However, they did not mention anything
about the nature of values that these exponents can take. By using the recent
results of [16], one can have a precise information about the nature of values that
c(p) (p prime) can take.

Proposition 3.1. Let f, g be modular forms as in Theorem 1.2. If g is a normal-
ized Hecke eigenform, then c(p) (p prime) take infinitely many (distinct) positive
values. Moreover, almost all these positive values have to be non-integral, i.e.,
c(p) 6∈ OKf .
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Proof. Since the character of g is trivial, Kg is totally real and all c(p) (p prime)
are real numbers. If g =

∑∞
n=1 b(n)qn, with b(1) = 1, has CM, then b(p) = 0 for

infinitely many primes p. Hence, c(p) = 1
p for those primes p and this proves the

proposition. Therefore, WLOG, we can assume that g is non-CM.
Now, suppose that the proposition is not true. Let a1, . . . , ar be the only

positive real numbers taken by c(p) (p prime). Observe that

{p ∈ P| c(p) > 0} = ∪ri=1Sai ,

where Sai = {p ∈ P| c(p) = ai}. It follows that the set Sai is finite, since

1

p
− 2
√
p
6 c(p) = ai 6

1

p
+

2
√
p
.

This implies that the natural density of {p ∈ P| p - N, c(p) > 0}) is zero, which
is a contradiction, by [16, Thm. 2.6]. Moreover, all these values have to be non-
integral, i.e., they don’t belong to OKf , by [16, Thm. 5.1]. �

Remark 3.2. By the same argument, one can also show that c(p) (p prime) take
infinitely many (distinct) negative values, which are almost all non-integral, if g
does not have CM.

The above proposition answers the integrality of c(p) (p prime). Even from
this much of information, one may not be able to deduce the integrality or non-
integrality of c(n) (n ∈ N). In this direction we have a weaker result. We show:

Theorem 3.3. Let f be a non-constant GMF of weight 0 on Γ0(N) with
div(f) = 0 with rational q-exponents c(n) (n ∈ N). Suppose g is the corre-
sponding cuspform in S2(Γ0(N)) (as in Theorem 1.2). If g is a normalized Hecke
eigenform, then c(n)’s are non-zero and integral for only finitely many n, i.e., there
exists a N0(f) ∈ N such that c(n) is non-integral, if non-zero, for all n > N0(f).

Proof. By (1.3), we know that nc(n)’s are integral for all n ∈ N. However, it may
not be that c(n)’s are itself integral. We confirm this by showing that c(n)’s are
integral only finitely many times, unless they are zero.

Suppose that the proposition is not true. Let S be an infinite subset of N such
that c(n) ∈ Z− {0}, for all n ∈ S. Recall that g(z) =

∑∞
n=1 b(n)qn with b(1) = 1.

Therefore, n divides b(n) +
∑
d|n,d<n dc(d) in Z, for all n in S. Now, we show that

this cannot happen. Let σ0(n) denote the number of divisors of n.
Since |b(n)| 6 σ0(n)

√
n and nc(n) = −

∑
d|n µ(d)b(n/d), we have

|nc(n)| 6
∑
d|n

|b(n/d)| 6
∑
d|n

σ0(n/d)
√
n/d 6

√
n
∑
d|n

σ0(n/d) 6
√
nσ0(n)2. (3.1)

If c(n) ∈ Z− {0}, then n divides b(n) +
∑
d|n,d<n dc(d) in Z, then

n 6 |b(n) +
∑

d|n,d<n

dc(d)| 6 σ0(n)
√
n+

∑
d|n,d<n

√
dσ0(d)2 6 2

√
nσ0(n)3.



186 Narasimha Kumar

This implies that
n 6 2

√
nσ0(n)3. (3.2)

Since σ0(n) = o(nε) for all ε > 0, the above inequality can only hold for finitely
many n’s, therefore S is a finite set. Hence, c(n) is non-zero and integral for only
finitely many n’s. �

This above result can also be thought of as a generalization of Theorem 5.1
in [16]. The following corollary gives an another proof of [13, Thm. 1].

Corollary 3.4 (Kohnen-Mason). Let f =
∑∞
n=0 a(n)qn be a non-constant GMF

of weight 0 on Γ0(N) with div(f) = 0, q-exponents c(n) (n ∈ N) and g be the
modular form as in Theorem 1.2. Assume that g is a normalized Hecke eigenform.
If a(0) = 1 and a(n) ∈ Z for n ∈ N then f = 1 is constant.

Proof. Assume that f 6= 1. Since Kf = Q, one can show if a(0) = 1 and a(n) ∈ Z
for all n ∈ N, then c(n) ∈ Z for all n ∈ N (cf. the proof of [13, Thm. 1]).
By [16, Theorems 2.6, 2.7], we see that c(n) cannot be equal to 0, for all n � 0.
Therefore, by Proposition 3.3, there exists n ∈ N such that c(n) is non-integral,
which is a contradiction. �

Remark 3.5. In the above proof, we could have also used Proposition 3.1 to get
the contradiction.

4. Remarks on q-exponents c(n) (n ∈ N) of GMF’s

In spite of knowing the sign change results for c(p) (p prime) in [16], we cannot
give an upper bound on the first sign change of prime q-exponents. However, we
can give an upper bound on the first sign change of general q-exponents of a GMF.
Similar results have been considered in [4] for half-integral weight modular forms,
in [3] for integral weight modular forms.

Proposition 4.1. Let N ∈ N be a square-free integer and f be a non-constant
GMF of weight 0 on Γ0(N) with div(f) = 0 such that its q-exponents c(n) (n ∈ N)
are real. Then there exists d1, d2 ∈ N with

d1, d2 � N0 := N5 log10(N)exp

(
c

log(N + 1)

log log(N + 2)

)
max{ψ2(N), 4

√
N log16(2N)}

such that c(d1) > 0, c(d2) < 0. Here, c > 0 is an absolute constant and ψ2(N) :=∏
p|N

log(2N)
log p .

Proof. Let g be the corresponding cuspform as in Theorem 1.2. Suppose the
Fourier expansion of g is given by

∑∞
n=1 b(n)qn. The Fourier coefficients of g and

q-exponents of f are related by:

b(n) = −
∑

d|n
dc(d). (4.1)
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The main theorem of [3] implies that there exists n1, n2 ∈ N with n1, n2 � N0

such that such that b(n1) < 0, b(n2) > 0. Hence, there exists a divisor d1 (resp.,
d2) of n1 (resp., of n2) such that c(d1) > 0 (resp., c(d2) < 0) by (4.1). Since,
di 6 ni and ni � N0, we have that di � N0 for i = 1, 2. �

When the logarithmic derivative of f (as in (1.2)) is a normalized Hecke eigen-
form, the above bound can be improved.

Proposition 4.2. Let f be a non-constant GMF of weight 0 on Γ0(N) with
div(f) = 0 and with q-exponents c(n) (n ∈ N) and g be the cuspform as in The-
orem 1.2. Then there exists 1 < d0 with d0 � (4N)

3
8 and (d0, N) = 1 such that

c(d0) > 0, where the implied constant is absolute.

Proof. By [11], we know that g =
∑∞
n=1 b(n)qn ∈ S2(Γ0(N)). The Fourier coef-

ficients of g and q-exponents of f are related by:

b(n) = −
∑

d|n
dc(d). (4.2)

Observe c(1) = −b(1) = −1 < 0. By [18, Thm. 1], there exists n0 ∈ N with
n0 � (4N)

3
8 such that b(n0) < 0. Hence, there exists a divisor d0 (> 1) of n0

such that c(d0) > 0, by (4.2). Since, d0 6 n0 and n0 � (4N)
3
8 , we have that

d0 � (4N)
3
8 . �
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