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SUBDIFFERENTIABILITY OF INFIMAL CONVOLUTION
ON BANACH COUPLES

Natan Kruglyak, Japhet Niyobuhungiro

Abstract: We use duality in convex analysis and particularly the famous Attouch-Brezis theo-
rem to prove subdifferentiability of infimal convolution on Banach couples.
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1. Introduction

Let (X0, X1) be a regular Banach couple, i.e. X0 ∩ X1 is dense in both X0 and
X1, and let ϕ0 : X0 −→ R ∪ {+∞} and ϕ1 : X1 −→ R ∪ {+∞} be convex and
proper functions (see Section 2 for used definitions from convex analysis) and let

ϕi (u) =

{
ϕi (u) if u ∈ Xi

+∞ if u ∈ (X0 +X1) \Xi

i = 0, 1 (1.1)

be functions defined on the sum X0 +X1. Then the K-, L- and E-functionals (see
[4, 5]) are particular cases of infimal convolution of functions ϕ0 and ϕ1 defined
as follows:

(ϕ0 ⊕ ϕ1)(x) = inf
x=x0+x1

(ϕ0(x0) + ϕ1(x1)). (1.2)

The infimal convolution (1.2) is called exact at a point x ∈ (X0 +X1) if the
infimum is achieved, i.e., (ϕ0⊕ϕ1)(x) = min

x=x0+x1

{ϕ0 (x0) + ϕ1 (x1)}. Suppose that
(ϕ0 ⊕ ϕ1)(x) is finite and exact. Then the decomposition x = x0 + x1, on which
the infimum is attained will be called optimal and denoted as x = x0,opt + x1,opt.

Usually, calculation of optimal decomposition is a difficult extremal problem
and only near-optimal decomposition can be constructed (see [8]). However for
applications, for example in image processing (see [9], [1] and [6]), exact optimal
decomposition is required.
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In [7] the following dual characterization of optimal decomposition was ob-
tained:

Theorem 1.1. Let ϕ0 : X0 −→ R ∪ {+∞} and ϕ1 : X1 −→ R ∪ {+∞} be convex
proper functions. Suppose also that ϕ0⊕ϕ1 is subdifferentiable for a given element
x ∈ dom(ϕ0⊕ϕ1). Then the decomposition x = x0,opt+x1,opt is optimal for ϕ0⊕ϕ1

if and only if there exists y∗ ∈ X∗0 ∩X∗1 such that it is dual to both x0,opt and x1,opt

with respect to ϕ0 and ϕ1, respectively, i.e.{
ϕ0 (x0,opt) = 〈y∗, x0,opt〉 − ϕ∗0 (y∗)

ϕ1 (x1,opt) = 〈y∗, x1,opt〉 − ϕ∗1(y∗).
(1.3)

Note that to use Theorem 1.1 we need to check subdifferentiability of the func-
tion ϕ0 ⊕ ϕ1 for a given x ∈ dom(ϕ0 ⊕ ϕ1), which is often not trivial problem. In
this paper we develop an approach based on Attouch-Brezis theorem that provides
sufficient conditions for subdifferentiability of infimal convolution defined on a Ba-
nach couple. Important feature of this result is that it works also for boundary
points of the set dom(ϕ0 ⊕ ϕ1). Moreover, we show how these conditions can be
verified for the K, L and E-functionals.

Remark 1.1. We would like to note that all the Banach spaces considered through-
out this paper are real.

2. Some definitions and results from convex analysis

Below we present some definitions and results from convex analysis that are needed
for the proofs of our main results. Throughout, E will denote a Banach space with
the norm ‖·‖E and E∗ will denote its dual space. In this section, by F : E →
R∪{+∞} we will denote a convex function on E. The effective domain or simply
domain of a function F is a convex set domF , defined by

domF = {x ∈ E : F (x) < +∞} .

A function F is said to be proper if domF 6= ∅. If the epigraph of F , i.e. the set

epiF = {(x, α) ∈ E × R : F (x) 6 α} ,

is closed then the function F is called lower semicontinuous (l.s.c.). Equivalently,
this can be expressed as

F (x) 6 lim inf
y→x

F (y),

i.e. for every x ∈ domF and for every ε > 0 there exists a neighborhood O of x
such that F (y) > F (x)− ε for all y ∈ O.

As we will see later on, the K-, Lp0,p1 - and E-functionals can be obtained as
infimal convolutions of two convex functions on X0 + X1. The definition of the
operation of infimal convolution is the following.
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Definition 2.1. The infimal convolution of two functions F0 and F1 from E into
R ∪ {+∞} is the function denoted by F0 ⊕ F1 that maps E into R ∪ {−∞,+∞}
and is defined by

(F0 ⊕ F1) (x) = inf
x=x0+x1

{F0 (x0) + F1 (x1)} , (2.1)

and it is exact at a point x ∈ E if the infimum is achieved, i.e., (F0 ⊕ F1) (x) =
min

x=x0+x1

{F0 (x0) + F1 (x1)}. Suppose that (F0 ⊕ F1) (x) is finite and exact. Then

the decomposition x = x0 + x1, on which the infimum is attained will be called
optimal and denoted as x = x0,opt + x1,opt.

The notion of conjugate function will be important for us:

Definition 2.2. The conjugate function of F is the function F ∗ : E∗ → R∪{+∞}
defined by

F ∗ (y) = sup
x∈E
{〈y, x〉 − F (x)} . (2.2)

Moreover, we will say that y is dual to x with respect to F if F ∗ (y) = 〈y, x〉−F (x)
or, in symmetric form,

F (x) + F ∗ (y) = 〈y, x〉 .

Definition 2.3. A dual element y ∈ E∗ to x ∈ E is also called a subgradient of
the convex function F at the point x. The set of all dual elements to x is denoted
by ∂F (x) and the function F is called subdifferentiable at the point x ∈ E if the
set ∂F (x) is nonempty.

The next proposition (see [3]) contains examples of functions that will be often
used below.

Proposition 2.1. Consider the following cases:

a) Let F (x) = 1
p ‖x‖

p
E, where 1 < p < ∞. Then F ∗ (y) = 1

p′ ‖y‖
p′

E∗ , where
1
p + 1

p′ = 1.
b) Let F (x) = ‖x‖E. Then

F ∗ (y) =

{
0 if ‖y‖E∗ 6 1

+∞ if ‖y‖E∗ > 1.

c) Let

F (x) =

{
0 if ‖x‖E 6 1

+∞ if ‖x‖E > 1
.

Then F ∗ (y) = ‖y‖E∗ .

For convenience of the reader we will give the proof of a) (the proofs of b) and
c) are simpler).
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Proof. Let us define the function ϕ : R −→ R+ as

ϕ(t) =
1

p
|t|p .

It is clear that this function is convex, lower semicontinuous, proper, and even.
The dual ϕ∗ of ϕ is by definition

ϕ∗(t∗) = sup
t∈R

(
t∗ · t− 1

p
|t|p
)
.

The supremum is attained at t ∈ R satisfying t∗ = |t|p−1 sgn(t) and we obtain

ϕ∗(t∗) =
1

p′
|t∗|p

′
.

Then the conjugate to the function F (x) = 1
p ‖x‖

p
E is equal to

F ∗(y) = sup
x∈E
{〈y, x〉 − ϕ(‖x‖E)} .

This can be rewritten as follows

F ∗(y) = sup
t>0

sup
‖x‖E=t

{〈y, x〉 − ϕ(t)} = sup
t>0

{
t sup
‖x‖E=1

〈y, x〉 − ϕ(t)

}

= sup
t>0
{t ‖y‖E∗ − ϕ(t)} = ϕ∗(‖y‖E∗) =

1

p′
‖y‖p

′

E∗ ,

where we used the fact that ϕ is an even function. �

The following simple observation will also be useful.

Proposition 2.2. Consider the following cases:
a) Let a ∈ E and F : E → R∪ {+∞}. Then for the function Fa(x) = F (x+ a)

we have

(Fa)∗(y) = sup
x∈E
{〈y, x〉 − F (x+ a)}

= sup
u∈E
{〈y, u− a〉 − F (u)} = F ∗(y)− 〈y, a〉 .

b) If λ ∈ R\ {0} then

(λF )∗(y) = sup
x∈E
{〈y, x〉 − λF (x)} = λF ∗

( y
λ

)
.

The following two results show that the operations of addition and infimal
convolution of convex functions are dual to each other. The property that the
conjugate of infimal convolution of convex functions is equal to the sum of their
conjugates holds without any additional requirements. However, the property
that the conjugate of the sum is equal to the infimal convolution of the conjugates
requires some additional qualification conditions.
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Theorem 2.1 (Conjugate of infimal convolution). Let F0 and F1 be convex
functions from E into R ∪ {+∞}. Then

(F0 ⊕ F1)
∗

= F ∗0 + F ∗1 .

The following theorem by H. Attouch and H. Brezis (see [2]) provides a sufficient
condition for the conjugate of the sum of two convex, lower semicontinuous and
proper functions to be equal to the exact infimal convolution of their conjugates.

Theorem 2.2 (Conjugate of a sum). Assume ϕ, ψ : E −→ R ∪ {+∞} are
convex, lower semicontinuous, and proper functions such that⋃

λ>0

λ (domϕ− domψ)

is a closed vector subspace of E. Then

(ϕ+ ψ)
∗

= ϕ∗ ⊕ ψ∗ on E∗

and, moreover, the infimal convolution ϕ∗ ⊕ ψ∗ is exact.

The following corollary will be very useful. It follows immediately from the
Attouch-Brezis theorem and it provides a connection between minimization prob-
lem on E and infimal convolution on E∗.

Corollary 2.1. Let ϕ, ψ : E −→ R ∪ {+∞} be functions satisfying conditions of
the Attouch-Brezis theorem. Then

inf
x∈E

(ϕ (x) + ψ (x)) = − (ϕ∗ ⊕ ψ∗) (0) ,

where the infimal convolution on the right-hand side is exact.

Proof. From Theorem 2.2 we have that

(ϕ+ ψ)
∗

(z) = (ϕ∗ ⊕ ψ∗) (z) ∀z ∈ E∗ (2.3)

and (ϕ∗ ⊕ ψ∗) (z) is exact. By definitions of convex conjugate and infimal convo-
lution, we can write (2.3) as

sup
x∈E

(〈z, x〉 − ϕ(x)− ψ(x)) = inf
z=z1+z2∈E∗

(ϕ∗ (z1) + ψ∗ (z2)) .

Since infimal convolution (ϕ∗ ⊕ ψ∗) (z) is exact, we can write

sup
x∈E

(〈z, x〉 − ϕ(x)− ψ(x)) = min
z2∈E∗

(ϕ∗ (z − z2) + ψ∗ (z2)) .

Let z = 0, then we obtain that

sup
x∈E

(−ϕ(x)− ψ(x)) = min
f∈E∗

(ϕ∗ (−f) + ψ∗ (f)) . (2.4)
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Note that
sup
u∈E

[−F (u)] = − inf
u∈E

F (u) .

Then the expression (2.4) can be written as

inf
x∈E

(ϕ(x) + ψ(x)) = − min
f∈E∗

(ϕ∗ (−f) + ψ∗ (f)) .

By definition of infimal convolution, we can rewrite this as

inf
x∈E

(ϕ(x) + ψ(x)) = − (ϕ∗ ⊕ ψ∗) (0)

where the infimal convolution on the right-hand side is exact. �

3. Infimal convolution on couples of Banach spaces

In this section we prove a theorem on subdifferentiability of infimal convolution
on couples of Banach spaces. We start with the definition of infimal convolution
on couples. Let (X0, X1) be a regular Banach couple, i.e. X0∩X1 is dense in both
X0 and X1, and let ϕ0 : X0 −→ R ∪ {+∞} and ϕ1 : X1 −→ R ∪ {+∞} be convex
and proper functions. Let us also define the following functions on X0 +X1:

ϕi (u) =

{
ϕi (u) if u ∈ Xi

+∞ if u ∈ (X0 +X1) \Xi

i = 0, 1.

Then we can define the infimal convolution ϕ0 ⊕ ϕ1 on the space X0 + X1 as
follows:

(ϕ0 ⊕ ϕ1)(x) = inf
x=x0+x1

(ϕ0(x0) + ϕ1(x1)).

Remark 3.1. The functions ϕ0, ϕ1 may be not lower semicontinuous even when
ϕ0, ϕ1 are lower semicontinuous.

The infimal convolution (ϕ0⊕ϕ1)(x) can be obtained by solving a minimization
problem on the intersection X0 ∩X1. Indeed, let us fix x ∈ (X0 +X1) such that
(ϕ0 ⊕ ϕ1) (x) < +∞ and fix a decomposition

x = a0 + a1, a0 ∈ X0, a1 ∈ X1.

If x = x0 + x1, where x0 ∈ X0 and x1 ∈ X1, then x0 + x1 = a0 + a1. Thus the
element y = a0 − x0 = x1 − a1 ∈ (X0 ∩X1) and we have

(ϕ0 ⊕ ϕ1)(x) = inf
x=x0+x1

(ϕ0(x0) + ϕ1(x1)) = inf
y∈X0∩X1

(ϕ0 (a0 − y) + ϕ1 (a1 + y)) .

Therefore, if we define the functions

Sa0(y) = ϕ0 (a0 − y) , Ra1(y) = ϕ1 (a1 + y) (3.1)
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on the intersection X0 ∩X1, then we have

(ϕ0 ⊕ ϕ1)(x) = inf
y∈X0∩X1

(Sa0(y) +Ra1(y)) .

This representation of infimal convolution is useful because the functions Sa0 and
Ra1 are usually convex, lower semicontinuous, and proper on X0 ∩ X1. The fol-
lowing result will serve as a tool for checking if an infimal convolution defined on
a given Banach couple is subdifferentiable.

Theorem 3.1. Suppose that the functions Sa0 and Ra1 , defined by (3.1) on
X0 ∩ X1, are convex, lower semicontinuous, and proper. Let ϕ∗0 and ϕ∗1 be the
respective conjugate functions of ϕ0 and ϕ1, defined on the spaces X∗0 and X∗1 ,
respectively. Suppose that

a) the sets dom(Sa0) and dom(Ra1) satisfy the equality⋃
λ>0

λ (dom(Sa0)− dom(Ra1)) = X0 ∩X1;

b) the conjugate function S∗a0 of Sa0 , defined on (X0 ∩X1)
∗

= X∗0 +X∗1 , is equal
to

S∗a0 (z) =

{
ϕ∗0 (−z) + 〈z, a0〉 if z ∈ X∗0
+∞ if z ∈ (X∗0 +X∗1 ) \X∗0 ;

c) the conjugate function R∗a1 of Ra1 , defined on (X0 ∩X1)
∗

= X∗0 + X∗1 , is
equal to

R∗a1 (z) =

{
ϕ∗1 (z) + 〈−z, a1〉 if z ∈ X∗1
+∞ if z ∈ (X∗0 +X∗1 ) \X∗1 .

Then the function ϕ0 ⊕ ϕ1 is subdifferentiable on its domain in X0 +X1.

Proof. For any given x ∈ (X0 +X1) such that (ϕ0 ⊕ ϕ1) (x) < +∞ we consider
a decomposition x = a0 + a1. Then we have

(ϕ0 ⊕ ϕ1) (x) = inf
y∈X0∩X1

(Sa0(y) +Ra1(y)) .

From the condition (a) it follows that the functions Sa0 and Ra1 satisfy the con-
ditions of Corollary 2.1 and therefore by applying this corollary we obtain the
equality

(ϕ0 ⊕ ϕ1) (x) = −
(
S∗a0 ⊕R

∗
a1

)
(0)

and that the infimal convolution S∗a0 ⊕R
∗
a1 is exact. Thus there exists an element

y∗ ∈ domS∗a0 ∩ domR
∗
a1 such that

(ϕ0 ⊕ ϕ1) (x) = −S∗a0(−y∗)−R∗a1 (y∗) .
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By the assumptions (b) and (c) in Theorem 3.1, this is equivalent to

(ϕ0 ⊕ ϕ1) (x) = −ϕ∗0(y∗) + 〈y∗, a0〉 − ϕ∗1 (y∗) + 〈y∗, a1〉
= 〈y∗, x〉 − ϕ∗0(y∗)− ϕ∗1 (y∗) .

Since the functions (ϕi)
∗ (i = 0, 1) on (X0 +X1)

∗
= X∗0 ∩X∗1 coincide with their

restrictions ϕ∗i (i = 0, 1) on X∗0 ∩X∗1 , therefore from Theorem 2.1 we have

(ϕ0 ⊕ ϕ1) (x) = 〈y∗, x〉 − (ϕ0 ⊕ ϕ1)
∗

(y∗) .

Thus the element y∗ is dual to the element x with respect to the function ϕ0⊕ϕ1

and hence the function ϕ0 ⊕ϕ1 is subdifferentiable on its domain in X0 +X1. �

4. Subdifferentiability of K-,L-, and E-functionals

In this section we illustrate Theorem 3.1 by proving subdifferentiability of the K-,
L- and E-functionals.

4.1. Some Lemmas

Below we will prove several simple lemmas that show that the conditions of The-
orem 3.1 are satisfied for some functions Sa0 and Ra1 from (3.1). These functions
will be used to describe the K-, Lp0,p1 - and E-functionals. Everywhere below the
couple (X0, X1) is a regular couple.

Lemma 4.1. Let 1 6 p0, p1 < +∞ and let a0 ∈ X0, a1 ∈ X1 be given. Then the
functions S,R : X0 ∩X1 −→ R ∪ {+∞}, defined by

S (y) =
1

p0
‖a0 − y‖p0X0

, R (y) =
t

p1
‖a1 + y‖p1X1

,

are convex, proper, and lower semicontinuous.

Proof. We will give the proof only for the function S (the proof for R is similar).
It is clear that S is convex and proper. Let us show that it is lower semicontinuous.
Suppose that (uj)

+∞
j=1 ∈ (X0 ∩X1) converges to y in the norm of X0 ∩X1:

lim
j→+∞

‖uj − y‖X0∩X1
= 0. (4.1)

From the definition of the function S, we can write

S (y) =
1

p0
‖a0 − y‖p0X0

=
1

p0
‖a0 − y + uj − uj‖p0X0

6
1

p0

(
‖a0 − uj‖X0

+ ‖uj − y‖X0

)p0
6

1

p0

(
‖a0 − uj‖X0

+ ‖uj − y‖X0∩X1

)p0
=

1

p0

(
[p0S(uj)]

1/p0 + ‖uj − y‖X0∩X1

)p0
.
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Then
[p0S (y)]

1/p0 6 [p0S(uj)]
1/p0 + ‖uj − y‖X0∩X1

.

Using (4.1) we obtain
S (y) 6 lim inf

j→+∞
S (uj)

and thus the function S is lower semicontinuous. �

Lemma 4.2. Let BX1(ã1; t) denote the ball of X1 of radius t > 0 centered at
ã1 ∈ X1 and let R : X0 ∩X1 −→ R ∪ {+∞} be the function defined by

R (u) =

{
0 if u ∈ BX1

(ã1; t) ∩ (X0 ∩X1)

+∞ otherwise.

Then R is convex, proper, and lower semicontinuous and its conjugate function
R∗ is equal to

R∗ (z) =

{
t ‖z‖X∗1 + 〈z, ã1〉 if z ∈ X∗1
+∞ if z ∈ (X∗0 +X∗1 ) \X∗1 .

Proof. It is clear that R is convex, proper, and lower semicontinuous (as an
indicator function of a convex, closed set). Let z ∈ X∗1 . Since

R∗(z) = sup
y∈X0∩X1

‖ã1−y‖X1
6t

〈z, y〉

and

sup
y∈X1

‖ã1−y‖X1
6t

〈z, y〉 = sup
y∈X1

‖ã1−y‖X1
6t

〈z, y − ã1〉+ 〈z, ã1〉 = t ‖z‖X∗1 + 〈z, ã1〉

therefore to prove the formula for R∗ for z ∈ X∗1 it is sufficient to demonstrate
that for any y ∈ X1 such that ‖ã1 − y‖X1

6 t we have

sup
y∈X0∩X1

‖ã1−y‖X1
6t

〈z, y〉 > 〈z, y〉 .

Let u = ã1 − y. Then∥∥∥∥(1− 1

n

)
u

∥∥∥∥
X1

=

(
1− 1

n

)
‖u‖X1

6

(
1− 1

n

)
t.

As X0 ∩X1 is dense in X1, we can find un ∈ X0 ∩X1 and a1,n ∈ X0 ∩X1 such
that ∥∥∥∥un − (1− 1

n

)
u

∥∥∥∥
X1

6
t

2n
and ‖ã1 − a1,n‖X1

6
t

2n
.
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Let us pick yn = a1,n − un ∈ X0 ∩X1. Then

lim
n→+∞

‖y − yn‖X1
= lim
n→+∞

‖ã1 − u+ un − a1,n‖X1
= 0

and
‖ã1 − yn‖X1

= ‖ã1 − a1,n + un‖X1
6 t.

We conclude that

sup
y∈X0∩X1

‖ã1−y‖X1
6t

〈z, y〉 > lim
n→+∞

〈z, yn〉 = 〈z, y〉 .

Let us now consider the case z ∈ (X∗0 +X∗1 ) \X∗1 . We need to show that

sup
y∈X0∩X1

‖ã1−y‖X1
6t

〈z, y〉 = +∞.

The fact that z ∈ (X∗0 +X∗1 ) \X∗1 implies that z is defined on X0 ∩X1 and is un-
bounded on the set BX1(0; 1)∩(X0 ∩X1). Indeed, if it were bounded on BX1(0; 1)∩
(X0 ∩X1), then, since X0 ∩X1 is dense in X1, it would be possible to extend z as
a bounded linear functional on X1. Let Ω =

{
y ∈ X0 ∩X1 : ‖ã1 − y‖X1

6 t
}
. We

need to prove that
sup
y∈Ω
〈z, y〉 = +∞. (4.2)

Note that 〈z, y〉 is well-defined because z ∈ (X∗0 +X∗1 ) = (X0 ∩X1)
∗. Let us

assume the contrary to (4.2), i.e.

sup
y∈Ω
〈z, y〉 = C < +∞.

Let us choose a1,t ∈ X0 ∩X1 such that ‖ã1 − a1,t‖X1
< t

2 and consider the set

Ω t
2

=

{
u ∈ X0 ∩X1 : ‖u− a1,t‖X1

6
t

2

}
.

Clearly, Ω t
2
⊂ Ω. We consider the set BX1(0; t4 ) ∩ (X0 ∩X1) and pick an element

v ∈ BX1
(0; t4 ) ∩ (X0 ∩X1). Then u = (2v + a1,t) ∈ Ω t

2
and for such v we have

〈z, v〉 =
〈
z,−a1,t

2

〉
+

1

2
〈z, 2v + a1,t〉 6

〈
z,−a1,t

2

〉
+

1

2
C = C1 < +∞,

i.e.
sup

v∈BX1
(0; t4 )∩(X0∩X1)

〈z, v〉 6 C1 < +∞.

This is a contradiction to the fact that z is unbounded on BX1
(0; 1) ∩ (X0 ∩X1).

Therefore
sup
y∈Ω
〈z, y〉 = +∞. �
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Lemma 4.3. Let a0 ∈ X0 and a1 ∈ X1 be given. Let also the functions S and R
be defined on X0 ∩X1 by

S (y) =
1

p0
‖a0 − y‖p0X0

and R (y) =
t

p1
‖y + a1‖p1X1

and let p′i, i = 0, 1 be such that 1
pi

+ 1
p′i

= 1. Then

a) in the case when 1 < p0, p1 < +∞, we have

S∗ (z) =

{
1
p′0
‖z‖p

′
0

X∗0
+ 〈z, a0〉 if z ∈ X∗0

+∞ if z ∈ (X∗0 +X∗1 ) \X∗0

and

R∗ (z) =

{
t
p′1

∥∥ z
t

∥∥p′1
X∗1

+ 〈−z, a1〉 if z ∈ X∗1
+∞ if z ∈ (X∗0 +X∗1 ) \X∗1 .

b) in the case when p0 = p1 = 1, we have

S∗ (z) =

{
〈z, a0〉 if z ∈ BX∗0 (0; 1)

+∞ if z ∈ (X∗0 +X∗1 ) \BX∗0 (0; 1)

and

R∗ (z) =

{
〈−z, a1〉 if z ∈ BX∗1 (0; t)

+∞ if z ∈ (X∗0 +X∗1 ) \BX∗1 (0; t) .

Proof. We will only prove the formulas for the function S∗ (the proofs for R∗ are
similar). Let us first consider

The case when 1 < p0 < +∞: Assume that z ∈ X∗0 . From Proposition 2.1
it follows that the conjugate function to the function T : X0 −→ R+, defined by
T (y) = 1

p0
‖y‖p0X0

, is equal to

T ∗(z) =
1

p′0
‖z‖p

′
0

X∗0
.

Let us calculate S∗. We have

S∗(z) = sup
y∈X0∩X1

{
〈z, y〉 − 1

p0
‖y − a0‖p0X0

}
= sup
y∈X0∩X1

{〈z, y〉 − T (y − a0)} .

Since our couple (X0, X1) is regular, i.e. X0 ∩X1 is dense in both X0 and X1 and
T is a continuous function with respect to the norm of X0, then

S∗(z) = sup
y∈X0

{〈z, y − a0〉 − T (y − a0)}+ 〈z, a0〉

= T ∗(z) + 〈z, a0〉 =
1

p′0
‖z‖p

′
0

X∗0
+ 〈z, a0〉 .
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If z ∈ (X∗0 +X∗1 ) \X∗0 , then z is unbounded on BX0
(0; 1) ∩ (X0 ∩X1). Hence

S∗(z) = sup
y∈X0∩X1

{
〈z, y〉 − 1

p0
‖y − a0‖p0X0

}
= +∞.

The case when p0 = 1: In this case the function T becomes

T (y) = ‖y‖X0

and its conjugate (see Proposition 2.1) is equal to

T ∗(z) =

{
0 if z ∈ BX∗0 (0; 1)

+∞ if z ∈ (X∗0 +X∗1 ) \BX∗0 (0; 1) .

As before, we have S∗(z) = T ∗(z) + 〈z, a0〉. Therefore

S∗ (z) =

{
〈z, a0〉 if z ∈ BX∗0 (0; 1)

+∞ if z ∈ (X∗0 +X∗1 ) \BX∗0 (0; 1) .
�

4.2. Subdifferentiability of the E-functional

Given x ∈ (X0 +X1) and t > 0, the E-functional is defined by

E (t, x;X0, X1) = inf
‖x1‖X1

6t
‖x− x1‖X0

.

We can express the E-functional as the following infimal convolution on the
sum X0 +X1

E (t, x;X0, X1) = (ϕ̄0 ⊕ ϕ̄1) (x) ,

where ϕ̄0 and ϕ̄1 are functions defined on the sum X0 +X1 by

ϕ̄0 (u) =

{
‖u‖X0

if u ∈ X0

+∞ if u ∈ (X0 +X1) \X0

(4.3)

and

ϕ̄1 (u) =

{
0 if u ∈ BX1 (0; t)

+∞ if u ∈ (X0 +X1)\BX1 (0; t) ,
(4.4)

where BX1 (0; t) is the ball of X1 of radius t centered at the origin. In this case
the functions ϕ0 : X0 −→ R ∪ {+∞} and ϕ1 : X1 −→ R ∪ {+∞} are defined by

ϕ0 (u) = ‖u‖X0
and ϕ1 (u) =

{
0 if u ∈ BX1

(0; t)

+∞ if u ∈ X1\BX1
(0; t) .

(4.5)

Let us fix a0 ∈ X0 and a1 ∈ X1 such that x = a0 + a1. Then

E (t, x;X0, X1) = inf
‖a1+y‖X1

6t
‖a0 − y‖X0

, y ∈ (X0 ∩X1)
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and, similarly to (3.1), we can rewrite the E-functional as

E (t, x;X0, X1) = inf
y∈X0∩X1

{Sa0(y) +Ra1(y)} ,

where Sa0(y), Ra1(y) : X0 ∩X1 −→ R ∪ {+∞} are the functions defined by

Sa0 (y) = ‖a0 − y‖X0

and

Ra1 (y) =

{
0 if y ∈ (BX1(−a1; t) ∩ (X0 ∩X1))

+∞ otherwise.

Theorem 4.1. The E-functional is subdifferentiable on its whole domain.

Proof. It follows from Lemma 4.1 that the function Sa0 is convex, lower semi-
continuous, and proper. The function Ra1 is convex and lower semicontinuous
as an indicator function of a convex and closed set BX1(−a1; t) ∩ (X0 ∩X1).
Since the space X0 ∩ X1 is dense in X1, then BX1

(−a1; t) ∩ (X0 ∩X1) 6= ∅ and
therefore the function Ra1 is proper. Moreover, since domSa0 = X0 ∩ X1 and
domRa1 = BX1

(−a1; t) ∩ (X0 ∩X1) then⋃
λ>0

λ (domSa0 − domRa1) = X0 ∩X1.

Thus the condition (a) of the Theorem 3.1 is satisfied. The conjugate function ϕ∗0
of ϕ0 is defined on X∗0 and is given by

ϕ∗0 (z) = sup
u∈X0

(
〈z, u〉 − ‖u‖X0

)
=

{
0 if z ∈ BX∗0 (0; 1)

+∞ if z ∈ X∗0\BX∗0 (0; 1) .
(4.6)

The conjugate function S∗a0 of Sa0 can be obtained from Lemma 4.3:

S∗a0 (z) =

{
〈z, a0〉 if z ∈ BX∗0 (0; 1)

+∞ if z ∈ (X∗0 +X∗1 ) \BX∗0 (0; 1).

Hence

S∗a0 (z) =

{
ϕ∗0 (−z) + 〈z, a0〉 if z ∈ X∗0
+∞ if z ∈ (X∗0 +X∗1 ) \X∗0 .

The conjugate ϕ∗1 of ϕ1 is defined on X∗1 and is given by

ϕ∗1 (z) = sup
x∈BX1

(0;t)

〈z, x〉 = t ‖z‖X∗1 . (4.7)

From Lemma 4.2, where we take ã1 = −a1, we obtain

R∗a1 (z) =

{
t ‖z‖X∗1 − 〈z, a1〉 if z ∈ X∗1
+∞ if z ∈ (X∗0 +X∗1 ) \X∗1 ,
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i.e.

R∗a1 (z) =

{
ϕ∗1 (z)− 〈z, a1〉 if z ∈ X∗1
+∞ if z ∈ (X∗0 +X∗1 ) \X∗1 .

So all the conditions of Theorem 3.1 are satisfied, therefore the E-functional is
subdifferentiable on its domain in X0 +X1. �

4.3. Subdifferentiability of the L-functional

Let x ∈ (X0 +X1) and let t > 0 be a fixed parameter. We consider the following
L-functional

Lp0,p1 (t, x;X0, X1) = inf
x=x0+x1

(
1

p0
‖x0‖p0X0

+
t

p1
‖x1‖p1X1

)
, (4.8)

where 1 6 p0, p1 < ∞. Note that the K-functional corresponds to the particular
case when p0 = p1 = 1.

The Lp0,p1 -functional can be written as the infimal convolution

Lp0,p1 (t, x;X0, X1) = (ϕ̄0 ⊕ ϕ̄1) (x) ,

where the functions ϕ̄0 and ϕ̄1 are both defined on the sum X0 +X1 as follows

ϕ̄0 (u) =

{
1
p0
‖u‖p0X0

if u ∈ X0

+∞ if u ∈ (X0 +X1) \X0.
(4.9)

and

ϕ̄1 (u) =

{
t
p1
‖u‖p1X1

if u ∈ X1

+∞ if u ∈ (X0 +X1) \X1.
(4.10)

In this case, the functions ϕ0 : X0 −→ R ∪ {+∞} and ϕ1 : X1 −→ R ∪ {+∞} are
defined by

ϕ0 (u) =
1

p0
‖u‖p0X0

and ϕ1 (u) =
t

p1
‖u‖p1X1

. (4.11)

Theorem 4.2. The L-functional (4.8) is subdifferentiable on X0 +X1.

Proof. We will only consider the case when p0, p1 > 1, as the proofs for the other
cases are similar. For given a0 ∈ X0 and a1 ∈ X1 such that x = a0 + a1, we can
define the Lp0,p1-functional as

Lp0,p1 (t, x;X0, X1) = inf
y∈X0∩X1

{Sa0(y) +Ra1(y)} ,

where

Sa0(y) =
1

p0
‖a0 − y‖p0X0

and Ra1 (y) =
t

p1
‖y + a1‖p1X1

.

Moreover,
Lp0,p1 (t, x;X0, X1) = (ϕ̄0 ⊕ ϕ̄1) (x) ,
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where the functions ϕ̄0 and ϕ̄1 are defined by (4.9) and (4.10), respectively. From
Lemma 4.1 we see that the functions Sa0 and Ra1 are convex, proper, and lower
semicontinuous and since domSa0 = domRa1 = X0 ∩X1 then⋃

λ>0

λ (domSa0 − domRa1) = X0 ∩X1.

Thus the condition (a) of Theorem 3.1 is satisfied. The respective conjugate func-
tions S∗ and R∗ of S and R are given in Lemma 4.3:

S∗a0 (z) =

{
1
p′0
‖z‖p

′
0

X∗0
+ 〈z, a0〉 if z ∈ X∗0

+∞ if z ∈ (X∗0 +X∗1 ) \X∗0

and

R∗a1 (z) =

{
t
p′1

∥∥ z
t

∥∥p′1
X∗1

+ 〈−z, a1〉 if z ∈ X∗1
+∞ if z ∈ (X∗0 +X∗1 ) \X∗1 .

The conjugate functions ϕ∗0 of ϕ0 and ϕ∗1 of ϕ1 are defined on X∗0 and X∗1 , respec-
tively, and are given by (see Propositions 2.1-2.2)

ϕ∗0 (z) =
1

p′0
‖z‖p

′
0

X∗0
∀z ∈ X∗0 (4.12)

and

ϕ∗1 (z) =
t

p′1

∥∥∥z
t

∥∥∥p′1
X∗1

∀z ∈ X∗1 . (4.13)

It is clear that

S∗a0 (z) =

{
ϕ∗0 (−z) + 〈z, a0〉 if z ∈ X∗0
+∞ if z ∈ (X∗0 +X∗1 ) \X∗0

and

R∗a1 (z) =

{
ϕ∗1 (z) + 〈−z, a1〉 if z ∈ X∗1
+∞ if z ∈ (X∗0 +X∗1 ) \X∗1 .

Thus all the conditions of Theorem 3.1 are satisfied and therefore the Lp0,p1 -
functional is subdifferentiable on its domain, which is equal to X0 +X1. �
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