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RANKS OF GL2 IWASAWA MODULES OF ELLIPTIC CURVES

Tibor Backhausz

Abstract: Let p > 5 be a prime and E an elliptic curve without complex multiplication and let
K∞ = Q (E [p∞]) be a pro-p Galois extension over a number field K. We consider X(E/K∞),
the Pontryagin dual of the p-Selmer group Selp∞ (E/K∞). The size of this module is roughly
measured by its rank τ over a p-adic Galois group algebra Λ(H), which has been studied in the
past decade. We prove τ > 2 for almost every elliptic curve under standard assumptions. We
find that τ = 1 and j /∈ Z is impossible, while τ = 1 and j ∈ Z can occur in at most 8 explicitly
known elliptic curves. The rarity of τ = 1 was expected from Iwasawa theory, but the proof is
essentially elementary.

It follows from a result of Coates et al. that τ is odd if and only if [Q (E [p]) : Q]/2 is odd. We
show that this is equivalent to p = 7, E having a 7-isogeny, a simple condition on the discriminant
and local conditions at 2 and 3. Up to isogeny, these curves are parametrised by two rational
variables using recent work of Greenberg, Rubin, Silverberg and Stoll.
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1. Introduction

Let E be an elliptic curve defined over Q with good ordinary reduction at the prime
p > 5 and without complex multiplication. We denote by X(E/K∞) the dual
Selmer group of E over its associated p-division extension K∞ := Q(E[p∞]). The
aim of this paper is to investigate the Λ(H)-rank of X(E/K∞) under certain usual
technical conditions that are conjectured to be always satisfied. Here Λ(H) denotes
the Iwasawa algebra of H = Gal(K∞/K

cyc) where K/Q is a finite extension so
that Gal(K∞/K) is pro-p, and Kcyc is the cyclotomic Zp-extension of K. Our
main result is that this Λ(H)-rank τ can never be 1 except possibly for finitely
many, explicitly known curves. It was previously proven using Iwasawa theoretic
techniques that τ 6= 0, and that τ = λ+sE/Kcyc . Here sE/Kcyc denotes the number
of primes in Kcyc at which the curve E has split multiplicative reduction and λ
is the usual λ-invariant of E over Kcyc, ie. the Zp-rank of the dual Selmer group
X(E/Kcyc). We do not use further Iwasawa theory. Instead, the main ingredients
are:
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(i) refinements of Serre’s [19] study of division points on E;
(ii) Mazur’s [16] result on possible isogenies over Q; and
(iii) elementary calculations on the moduli curve X0(7).

In fact, τ is very rarely odd as one could expect from the formula τ ≡ [K : Q]/2 ≡
[Q (E [p]) : Q] (mod 2) (this follows from [3], we give a simplified proof).

This decides the parity of [Q (E [p]) : Q]/2 for a given curve in a computation-
ally easy way (Theorem 5.10), and combining this result with parametrisation from
[10] gives all curves with odd [Q (E [p]) : Q]/2 (Theorem 5.12). This determines
all the curves with odd τ .

Moreover, by the formula τ = λ+ sE/Kcyc there are two possibilities for τ = 1:
either λ = 0 and sE/Kcyc = 1, or λ = 1 and sE/Kcyc = 0. We prove that the
former never occurs — all the possible exceptions are in the latter case.

Our results are in some sense negative, as Selmer groups with low Λ(H)-corank
would be easier to test conjectures on. Moreover, using the results in [23] it can
be shown that whenever the j-invariant of E is non-integral (or, equivalently, if
sE/Kcyc 6= 0) then X(E/K∞) is not annihilated by any central element in Λ(G)
where G = Gal(K∞/K). Combining this with results in [1] would give the first
example of a completely faithful Selmer group over the GL2-extension if τ = 1.
However, as we show, this does not exist in nature even though it is expected that
Selmer groups are all completely faithful. The possible exceptions are still good
candidates to test this and other conjectures. On the other hand, the Λ(H)-rank
encodes important information on the growth of the λ-invariant inside K∞ and is
therefore interesting on its own (see Proposition 3.5).

Acknowledgements. The author would like to thank Gergely Zábrádi for his
absolutely indispensable guidance that led to this work, and especially for his
helpful and encouraging attitude.

2. Assumptions and definitions

In this section we describe some of our assumptions for a field K, prime p and
elliptic curve E. We assume that E does not have complex multiplication. For CM
curves, the theory is different and better understood.

For G, a pro-p group with p-adic Lie-group structure and no element of order p,
we define its Iwasawa algebra as the inverse limit of p-adic group rings

Λ(G) = lim←−Zp[G/H]

where H varies over open normal subgroups of G.
For a Λ(G)-module M , the standard definition of rank is

rkΛ(G)(M) = dimK(G)K(G)⊗Λ(G) M

where K(G) is the skew field of fractions of Λ(G). Let K∞ = Q(E[p∞]), and K be
a Galois number field such that K∞/K is pro-p. Recall that by the Weil pairing,
we have

∧2
E[pn] = µpn , the group of pn-th roots of unity as a Galois module.

Therefore K(E[pn]) contains K(µpn) so K∞ contains Kcyc = K(µp∞).
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Define G = Gal(K∞/K), H = Gal(K∞/K
cyc) and Γ = Gal(Kcyc/K).

Let M(p) denote the p-primary torsion subgroup of a module M . Let MH(G)
denote the category of finitely generated Λ(G) modules M such that M/M(p)
is finitely generated over Λ(H). We make the following assumptions, which are
traditional in non-commutative Iwasawa theory.

(I) p > 5;
(II) E/K has good ordinary reduction at all places above p;
(III) Gal(K∞/K) is pro-p;
(IV) X(E/K∞) ∈MH(G).
It is always conjectured that Assumptions (I)-(II) imply Assumption (IV) [4,

Conjecture 5.1]. Equivalently, define Y (E/K∞) = X(E/K∞)/X(E/K∞)(p), then
Y (E/K∞) should be finitely generated over Λ(H). This assumption also implies
that X(E/Kcyc) is torsion over Λ(Γ) see [4, Lemma 5.3].

In the usual case when X(E/Kcyc) is finitely generated over Zp, X(E/K∞)
is torsion-free and finitely generated over Λ(H), in particular Y (E/K∞) =
X(E/K∞).

3. The τ rank

A proposed analogue to λ in the non-commutative case is

τ = rkΛ(H)Y (E/K∞)

(see, e.g. [3], whose notation τ we follow). We state some earlier results on τ ,
originally stated with stronger assumptions, and show they are applicable assuming
(I)-(IV).

Theorem 3.1 (Howson). Suppose that Assumptions (I)-(IV) hold. Then

τ = rkΛ(H)Y (E/K∞) = λ+ sE/Kcyc

Proof. As stated above, (IV) is stronger than [13, Conjecture 2.6] which implies
[13, Conjecture 2.5] therefore [13, Theorem 2.8] is applicable. This states that λ+
sE/Kcyc is the homological rank ofX(E/K∞). This equals τ using [13, eqn. 47]. �

Let rkSel
p E/F = rkZpX(E/F ) be the p-Selmer rank of E/F .

Corollary 3.2. τ > rkSel
p E/K + sE/K

Proof. This follows from λ > rkSel
p E/K [9, Theorem 1.9] and sE/Kcyc > sE/K .

�

Theorem 3.3 ([5]). Assuming (I)-(IV), τ > 0.

Proof. [6, Theorem 1.5] means that Y (E/K∞) 6= 0. The kernel of the projection
X(E/K∞) → Y (E/K∞) is finitely generated over Λ(G) therefore annullated by
some ph. Let N be a pseudo-null submodule of Y (E/K∞) with preimage M
inX(E/K∞). Then phM isomorphic to N , hence pseudo-null. Under assumptions
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weaker than Howson’s, [17, Theorem 5.1] states that all nontrivial pseudo-null
submodules of X(E/K∞) are zero, hence N = phM = 0.

Then [5, Corollary 7.4] holds for Y (E/K∞) instead of X(E/K∞). �

Proposition 3.4 ([13]). Assumptions (I)-(IV) for K imply the same for K ′, and

τ(E/K ′) = [K
′cyc : Kcyc]τ(E/K).

Proof. (I) and (II) are obviously unchanged. (III) holds because G′ is pro-p as
a subgroup of G. Define G′, H ′ analogously for K ′. Λ(H) is finitely generated of
Λ(H ′) rank [H : H ′] = [Kcyc′ : Kcyc]. �

This means that we only need to determine τ(E/K) when K is minimal among
fields satisfying (I)−(IV ), and then we can use the above formula. Therefore from
now on we assume that K is minimal in this sense.

Remark. Our minimal K will turn out to be same as the field K in [10] if there
is a p-isogeny and Q (E [p]) otherwise.

The quantitative meaning of τ is given by the following,

Proposition 3.5 (Coates, Howson). Assume (I)-(IV). Let Kn = Q(E[pn]). By
Serre’s theorem [19] there exists m such that

Gal(K∞/Kn) ∼= ker (GL2(Zp)→ GL2(Z mod pm)) .

Then
λ(E/Kn) = τ(E/Km)p3(n−m) +O(p2n).

Proof. Take the sequence of subgroups Hn = Gal(K∞/K
cyc
n ). These are p-adic

Lie groups of dimension 3, and |Hm : Hn| = p3(n−m). Then [13, Corollary 2.12]
means that λ(E/Kn) = τ(E/Km)p3(n−m) − sE/Kn .

The decomposition subgroup Dq of a prime q with multiplicative reduction
of E has dimension 2 as a p-adic Lie subgroup of G [2, Lemma 2.8], therefore these
primes each decompose into O(p2n) primes over Kn. Hence sE/Kn = O(p2n). �

Therefore giving a lower bound to τ implies a lower bound for the growth of λ
in the tower of division fields of E.

4. The parity of τ

Theorem 4.1. Suppose that Conditions (I)-(IV) hold for some Galois number
field K ⊆ K∞. Then we have

τ(E/K) ≡ [K : Q]

2
(mod 2)
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Remark. Theorem 4.1 can be obtained as a consequence of Corollary 5.7. in [3]
for F = Q, F ′ = K. Using its notation,

τ ≡
∑

α∈Ω̂, α2=1

[L : Q]/2 = |Ω̂[2]| · [L : Q]/2 ≡ |Ω| · [L : Q]/2 = [K : Q]/2 (mod 2)

We give a direct, somewhat simpler proof using Theorem 3.1, a case of the
p-parity conjecture and some lemmas about the field K. We will use these lemmas
in subsequent sections as well.

Proposition 4.2.

(a) Gal(K(E[p])/K) has order dividing p.
(b) E/K has a nontrivial p-torsion subgroup.

Proof. Gal(K(E[p])/K) is a factor group of Gal(K∞/K) which is pro-p by our
assumptions. Gal(K(E[p])/K) acts on E[p] Fp-linearly so it has order dividing
|GL2(Fp)| = p(p2 − 1)(p − 1). This means Gal(K(E[p]/K)) has p-power order
dividing p(p2 − 1)(p− 1), which proves part (a).

If Gal(K(E[p])/K)) is trivial, claim (b) is also trivial. Otherwise it has order
p and so it is a p-Sylow subgroup in Gal(K(E[p])/K). As such, it is conjugate to(

1 Fp
0 1

)
when written in a suitable basis of E[p]. Hence it fixes a one-dimensional

Fp-subspace of E[p]. �

Proposition 4.3. All bad reductions of E/K are split multiplicative.

Proof. It is well known that good and split multiplicative reductions remain that
way through field extensions so it is enough to prove the claim for K.

When K contains Q(E[p]), this is a classical result from [20]. Otherwise we
have by Proposition 4.2 part (a) that Gal(K(E[p])/K) has order p.

For places lying above p our assumptions assure good reduction.
Suppose for contradiction that E/K has additive reduction at some v not lying

above p. Then [15, Theorem 1.13.] applies and rules out p-torsion for p > 3. This
contradicts Proposition 4.2, so E/K is semistable.

Since splitting of a multiplicative reduction depends on solvability of x2 + c6
in the local residue field (where c6 is computed from coefficients of E). This is
unchanged in the degree p extension K(E[p])/K, so by [20], bad reductions are
already split in K. �

Proposition 4.4.

(a) The local root number for a place v is wv(E/K) = −1 if v is Archimedean
or E/K has split multiplicative reduction at v. Otherwise, wv(E/K) = 1.

(b) Let sE/K be the number of split multiplicative reductions of E in K.

w(E/K) = (−1)[K : Q]/2(−1)sE/K
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Proof.

(a) For Archimedean and good or split multiplicative non-Archimedean places,
this is a special case of Rohrlich’s Theorem 2 in [18]. (In his notation,
τ should be the trivial character, and χ will also be trivial in the split case.)
Other possibilites are ruled out by Proposition 4.3

(b) This follows by multiplying the local root numbers given by (a). The number
of Archimedean valuations of K is [K : Q]/2 since µp ⊂ K so K is totally
imaginary. �

Proposition 4.5. There are finitely many primes in Kcyc over any prime of K.
Furthermore, sE/Kcyc ≡ sE/K (mod 2)

Proof. Gal(Kcyc/K) ∼= Zp since µp ⊂ K. Then the decomposition subgroup of
each prime has finite index, which must be a power of p. Since p is odd, each
primes in K corresponds to an odd number of primes in Kcyc. �

Proposition 4.6. The p-parity conjecture applies for E/K i.e. (−1)rkSel
p E/K =

w(E/K)

Proof. From Proposition 4.2 we have a p-torsion subgroup in E/K. There is
a K-rational isogeny having this subgroup as kernel. Then we can apply Theorem
2 from [8]. �

Substituting part (b) from Proposition 4.4 for the right side of Proposition 4.6,
then using Propositions 4.5, we have

(−1)rkSel
p E/K = w(E/K) = (−1)[K : Q]/2(−1)sE/K ,

rkSel
p E/K + sE/K ≡ [K : Q]/2 (mod 2),

rkSel
p E/K + sE/Kcyc ≡ [K : Q]/2 (mod 2).

[9, Proposition 3.10] states that rkSel
p E/K ≡ λ (mod 2). This proves Theorem 4.1.

5. The parity of [K : Q]/2

Our goal in this section is to classify the elliptic curves E where [K : Q]/2 is odd.
This is mostly based on classical results of Mazur and Serre [16, 19]. In fact, we
roughly follow Serre’s argument while also paying attention to parity of various
subgroups. We retain Assumptions (I)-(III). Recall also that E is still assumed to
be a non-CM curve defined over Q.

Note that we assumed in the beginning that K is minimal among fields satis-
fying Assumption (III). The parity of τ for other fields in the tower is the same
(Proposition 3.4).
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5.1. Inertia

In this section, denote Gal(Q (E [p]) /Q) by G and Gal(K/Q) by G0. Since it
acts faithfully on E[p] ∼= Fp × Fp, G is identified with a subgroup of GL2(Fp).
For a prime q ∈ Q, let Dq denote its decomposition subgroup within G0, and
let Iq denote its subgroup of inertia within Dq. (Note that Dq and Iq are, in
general, defined only up to conjugacy in Gal(K/Q). However, they are unique if
the extension is Abelian, which turns out to be the most interesting case.)

Recall that q splits into [G0 : Dq] distinct prime ideals, and has ramification
degree |Iq|. Iq is also a normal subgroup of Dq with a cyclic quotient (isomorphic
to the Galois group of an extension of finite fields).

Proposition 5.1 (Serre, [19, Section 1.11]). Ip is either

(a) conjugate to a subgroup of the form
(

1 0
0 F×p

)
of order p − 1. We will call

these semi-Cartan subgroups.
(b) a non-split Cartan subgroup (isomorphic to a cyclic group of order p2 − 1,

corresponding to the action of a primitive root in Fp2 by multiplication)

Case (b) means 4 | p2 − 1 | |G| so we can exclude it.

Remark. Case (b) would also contradict Assumption (II) since it implies super-
singular reduction at p.

5.2. Image in GL2 and PGL2

Serre gives a classification for Gal(Q (E [p]) /Q), based on the following definitions.
Borel and split Cartan subgroups are defined as conjugate to respectively(

F×p Fp
0 F×p

)
and

(
F×p 0
0 F×p

)
.

Non-split Cartan subgroups are as defined in Proposition 5.1.

Proposition 5.2 (Serre). G satisfies at least one of these:

(a) G = GL2(Fp)
(b) G is contained in a Borel subgroup
(c) G is contained in the normaliser of a split Cartan subgroup
(d) G is contained in the normaliser of non-split Cartan subgroup

Note that it can be easily computed (and Serre does so) that in cases (a), (c)
and (d), p does not divide |G|. Therefore

Proposition 5.3. If p | |G| but 4 - |G| then G is contained in a Borel subgroup.

Proposition 5.4 (Serre [19, Section 2.6]). Suppose that p - |G| for a group
G < GL2(Fp). Let H be the quotient of G by the center of GL2(Fp). Then H,
lying in PGL2(Fp), satisfies at least one of these:
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(i) H is cyclic. Then G is in a Cartan subgroup of GL2(Fp).
(ii) H is dihedral, containing a cyclic subgroup C of index 2. C is contained

in a unique Cartan subgroup of PGL2(Fp) normalised by H. Then G is
in the normaliser of a Cartan subgroup.

(iii) H is isomorphic to A4, S4 or A5.

Proposition 5.5. Suppose that 4 - |G|. Then G lies in a Borel subgroup.

Proof. Using Proposition 5.3 we can assume that p - |G|. Then we look at the
cases in Proposition 5.4.

In case (i), the Cartan subgroup containing G is either split or non-split. If it
is split, then it is contained in a Borel subgroup. Otherwise Ip must have been
a nonsplit Cartan subgroup, which leads to 4 | |G|.

In case (ii), by [19, Proposition 14] the Cartan subgroup normalised by G
contains the semi-Cartan subgroup Ip (see Proposition 5.1). We use the basis
where Ip is

(
1 0
0 F×p

)
. Then the projection of

(
1 0
0 −1

)
is in the Cartan subgroup

normalised by H, thus in the index 2 cyclic subgroup of H. Since it has order 2,
the index 2 cyclic subgroup of H has even order hence 4 | |H| | |G|.

In case (iii), it is enough to note that |A4|, |S4| and |A5| are all multiples
of 4. �

5.3. Restrictions on p

Whether G is contained in a Borel subgroup is equivalent to whether E/Q has an
isogeny of degree p to some elliptic curve E′.

Mazur’s results [16] show that a non-CM curve E/Q can only have isogenies
with prime degree for

p ∈ {2, 3, 5, 7, 11, 13, 17, 37}
We exclude further primes with the following simple observation.

Proposition 5.6. Assume in addition to (I)-(III) that p ≡ 1 (mod 4). Then

[K : Q]/2 ≡ 0 (mod 2)

Proof. From the Weil pairing, K > Q(µp) so 4 | [Q(µp) : Q] | [K : Q]. �

With this and Assumption (I), we can exclude all primes but 7 and 11.

5.4. Inertia in the Borel case

Whether G is contained in a Borel subgroup is equivalent to whether E/Q has an
isogeny of degree p. Borel subgroups can be written over a suitable basis as(

F×p Fp
0 F×p

)
We work in this basis from now on. Note that the Borel subgroup contains the

unipotent subgroup (with 1s in the diagonal) as a normal subgroup of order p.
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Recall that we chose K to be the minimal field over which K∞ is a pro-p
extension. Therefore K is contained in the fixed field of the unipotent subgroup
of K. Then elements of G0 (understood as cosets in G) will be written as(

a Fp
0 b

)
for a, b ∈ F×p . Note that by some abuse of terminology these have well-defined
trace and determinant.

G0 is isomorphic to a subgroup of F×p × F×p and is therefore Abelian. For
a rational prime q, let Iq be the inertia subgroup of Gal(K/Q) at q.

The isomorphism ∧2
E[p] ∼= µp

implies that the action of Gal(K/Q) on µp is given by the determinant on G0.
The kernel of det is Gal(K/Q(µp)).

Since Q(µp) ⊂ Q(K), det is surjective to F×p . Moreover, det : Ip → F×p is
a bijection since both have p− 1 elements (Prop. 5.1).

Therefore det : G0 → F×p belongs to split exact sequence i.e.

G0
∼= Gal(K/Q(µp))× Ip.

Proposition 5.7. 2 - [K : Q]/2 is equivalent to p ≡ 3 (mod 4) and 2 - |Iq| for all
rational primes q 6= p.

Proof. [K : Q] = |G0| = |Ip| × |Gal(K/Q(µp))|.
|Ip| = p − 1 so if p ≡ 1 (mod 4) we are done, and otherwise [K : Q]/2 ≡

|Gal(K/Q(µp))| (mod 2).
If for any q 6= p, Iq is contained in Gal(K/Q(µp)) since Q(µp) is unramified

at q. Hence |Iq| | |Gal(K/Q(µp))|.
In the other direction, Iq together generate all of Gal(K/Q(µp)) (otherwise Q

would have an unramified extension), so if each is odd then Gal(K/Q(µp)) has
odd exponent, therefore also odd order. �

Note that our Iq for a prime q 6= p is the same as Serre’s φq (This follows from
p > 5 and [19, Proposition 23 (b)]).

Proposition 5.8 (Serre [19, Section 5.6 part a)]). Let Qunr
q be a maximal

unramified extension of Qq and suppose E has potentially good reduction at q.
Then |Iq| is the degree of the minimal extension over Qunr

q where E obtains good
reduction.

Proposition 5.9. If E/Q has additive, potentially multiplicative reduction at q,
|Iq| = 2.

Proof. E becomes semistable at q at the degree 2 extension Qq(
√
−c6) where c6

is a fixed polynomial of the coefficients of E (see [21]). �
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Therefore, in particular, |Iq| = 1 is equivalent to E being semistable at q. Serre
states that since E obtains good reduction at q (its discrimant ∆ has q-valuation
0 (mod 12)) at a field extension with Galois group Iq, |Iq|vq(∆) ≡ 0 (mod 12),
and if gcd(q, 12) = 1 then | Iq |= 12

gcd(12,vq(∆)) .
Note that by inspecting Serre’s list of possibilites in points a1), a2) and a3) of

section 5.6. in [19], the only odd possibilities for |Iq| are 1 and 3.
Summarizing the above, we have the following.

Theorem 5.10. Suppose that Gal(Q (E [p]) /Q) is in a Borel subgroup. If it has
order not divisible by 4, the following conditions hold necessarily.

(1) p ≡ 3 (mod 4)
(2) For all primes q 6= p where E/Q has additive reduction, it has potentially

good reduction and 4 | vq(∆).
These conditions are sufficient provided E/Q is semistable at 2 and 3, or it is
otherwise known that |I2| and |I3| are odd.

Note that these properties can be checked quickly by a computer as long as it
can factorise the discriminant.

Proposition 5.11. Suppose that E is an elliptic curve with a p-isogeny and
|Iq| = 1 for all primes q 6= p. Let E′ be the p-isogeny pair of E. Then either
E or E′ have rational p-torsion.

Proof. By [19, Proposition 21 ii)], one of

0→ Z/pZ→ E[p]→ µp → 0

0→ µp → E[p]→ Z/pZ→ 0

is an exact sequence of Galois modules. These imply that respectively one of

0→ µp → E′[p]→ Z/pZ→ 0

0→ Z/pZ→ E′[p]→ µp → 0

is an exact sequence as well. �

Now we can rule out p = 11. The theorem above means that for all q 6= 11, |Iq|
is 1 or 3. The latter is impossible since Iq is a subgroup of F×11 × F×11 but 3 - 100.
Then Iq = 1 for all q 6= p and the proposition above implies the existence of an
elliptic curve with rational 11-torsion. But there is no such curve by the work of
Mazur [16].

We set p = 7. A result of Greenberg, Rubin, Silverberg and Stoll (Theorem 3.6
in [10]) gives a parametrisation of all E that have odd [Q (E [p]) : Q]/2, up to
isogeny. G0 is given by (

χ′ Fp
0 χ′′

)
for characters χ′, χ′′, giving the action on kerϕ and E[p]/ kerϕ respectively, where
ϕ is a p-isogeny.
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Let ω denote the character Gal(K/Q)→ F×p given by action on µp.
Then the characters χ′,χ′′ restricted to Ip are ωa

′
and ωa

′′
respectively for

some a′, a′′. From the determinant, ωa
′+a′′ = ω so one of a′ and a′′ must be even,

hence the p-inertia part of a character has odd order. Since |Iq| is odd for all
primes q 6= p, one of χ′ and χ′′ has odd order. Changing E to its 7-isogeny pair
E′ interchanges χ′ and χ′′ so up to isogeny, we can assume that the order of χ′
divides 3. Then we can adapt the theorem almost word by word, setting k = Q.

Theorem 5.12. Let E/Q be an elliptic curve and p a prime. Under Assumptions
(I)-(III), [K : Q]/2, equivalently [Q (E [p]) : Q]/2, is odd if and only if E has a ra-
tional 7-isogeny and there is a v ∈ Q such that E is 7-isogenous over Q to the
elliptic curve

Av,t : y
2 + a1(v, t)xy + a3(v, t)y = x3 + a2(v, t)x2 + a4(v, t)x+ a6(v, t)

defined as in [10, Theorem 3.6], with an appropriate rational parameter t.

Remark. Here t determines the character χ′.

6. A lower bound for τ

In this section we establish τ > 2 under Assumptions (I)-(IV) and the extra
condition j(E) /∈ Z. Recall that K is the minimal field satisfying Assumption
(III). See Proposition 3.4 for other fields in the tower.

Note that j(E) /∈ Z guarantees τ > sE/K > 1 as the denominator of j(E) will
be divisible by some prime.

Now suppose τ = 1, which is odd, therefore p = 7 and E has a 7-isogeny by
the previous section.

6.1. 7-torsion

Suppose |Iq| = 1 for all primes q 6= 7, then by Proposition 5.11 E or its isogeny
pair E′ has rational 7-torsion.

Let A ∈ {E,E′} be the curve with rational 7-torsion. Suppose for contradiction
that E has good reduction at 2. Then its rational 7-torsion points map injectively
to its reduction Ã over F2 [21]. Hence Ã is an elliptic curve with at least 7 points
over F2. But by the Hasse bound, an elliptic curve over a finite field Fq of order
q can have at most (

√
q + 1)2 points and (

√
2 + 1)2 ≈ 5.82842712 < 7 which is

a contradiction. A variant of the above argument is given in [19].
Therefore Amust have semistable bad (i.e. multiplicative) reduction at 2. Since

the conductor of an elliptic curve is isogeny invariant, E also has multiplicative
reduction at 2.

Over K = Q(µ7), the prime 2 decomposes into 2 primes, and by Proposi-
tion 4.3 the reductions at these primes are all split multiplicative, which gives
2 6 sE/K 6 τ . Note that from parity, we have in fact 3 6 τ . This is attained by
the example given in [3].
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6.2. Additive reduction at q

If the above does not hold, there is some prime q 6= p with |Iq| 6= 1.
Let ` ∈ Q be a rational prime dividing the denominator of the j-invariant of

E i.e. a prime where E has potentially multiplicative reduction. By Theorem 5.10
this is semistable multiplicative reduction and |I`| = 1.

We show that ` must decompose in K. Suppose for contradiction that ` does
not decompose i.e. its decomposition subgroup is all of G0. G0 is then the quotient
of the decomposition subgroup by I`, and as such it should be cyclic. Recall that
|Iq| must be a nontrivial factor of |F×p |. G0 contains Iq× Ip which cannot be cyclic
since gcd(|Iq|, |Ip|) = |Iq| > 1.

Therefore there will be at least 3 primes in K lying over `. These will all have
split multiplicative reduction by Proposition 4.3, hence 3 6 sE/K and our claim
follows.

7. Integral j-invariant

Our main tool is the following well known theorem:

Theorem 7.1. There is a p-isogeny between two elliptic curves E and E′ if and
only if (j(E), j(E′)) is a point on the curve X0(p).

Using Theorem 5.12, we can restrict to p = 7. Therefore we are looking for
integral points on X0(7).

7.1. Integral points on X0(7)

X0(7) has genus 0, therefore it has a rational parametrisation (see, e.g. [12])(
(t2 + 13t+ 49)(t2 + 245t+ 2401)3/t7, (t2 + 13t+ 49)(t2 + 5t+ 1)3/t

)
, t ∈ Q.

We need both coordinates to be integral. Let t = a/b in reduced form. The first
coordinate is then

(a2 + 13ab+ 49b2)(a2 + 245ab+ 2401b2)3

a7b

Modulo a, the numerator is 714b8. Using (a, b) = 1, this is divisible by a if and
only if a | 714. Modulo b, the numerator is a8. This is divisible by b if and only if
b | 1.

The second coordinate is

(a2 + 13ab+ 49b2)(a2 + tab+ b2)3

ab7

Modulo a, the numerator is 72b8. Using (a, b) = 1, this is divisible by a if and only
if a | 72. Modulo b, the numerator is a8. This is divisible by b if and only if b | 1.
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Therefore the possibilities are t ∈ {1, 7, 49,−1,−7,−49}. Note that if t para-
metrizes the pair (j1, j2) then 49/t gives (j2, j1).

Moreover t = 1 and t = 49 give j ∈ {32 · 7 · 26473, 32 · 74}. t = −1 and t = −49
give j ∈ {−33 · 37 · 7193, 33 · 37}. The rest are symmetric i.e. CM points: t = 7
gives j = 33 · 53 · 173 and t = −7 gives j = −33 · 53.

Therefore the possible j-invariants are j ∈ {32 · 7 · 26473, 32 · 74,−33 · 37 · 7193,
33 · 37}.

7.2. Twisting

Let Ed denote the twist of an elliptic curve E by the character
(
d
·
)
for a square-free

integer d. Explicitly, for an equation

E : y2 = x3 + a2x
2 + a4x+ a6,

Ed : dy2 = x3 + a2x
2 + a4x+ a6.

E and Ed are not isomorphic over Q if d 6= 1, but they are isomorphic over
Q(
√
d).

It is well known (see, e.g. [21]) that

Theorem 7.2. If E/Q is an elliptic curve with j(E) 6= 0, 1728 then the elliptic
curves with j-invariant j(E) are exactly the curves Ed.

Lemma 7.3. Let E/Q be an elliptic curve with a p-isogeny, having good reduction
at a prime q 6= p. Let

(
d
·
)
be a quadratic character with conductor divisible by q.

Then the order of the inertia subgroup of q in Gal(Q(Ed[p])/Q) is 2.

Proof. Since the existence of a p-isogeny only depends on the j-invariant, Ed also
has a p-isogeny. E/Q and Ed/Q are isomorphic over Q(

√
d). E/Q(

√
d) has good

reduction at q, therefore so does Ed/Q(
√
d).

Hence the minimal extension where Ed obtains good reduction at q is a quadratic
extension with ramification degree 2 at q. The claim follows from Proposition 5.8.

�

Proposition 7.4. For any given j-invariant j0, there are only finitely many curves
E/Q having j(E) = j0 and also satisfying Assumptions (I)-(IV) and
4 - [Q(E[p]) : Q]. These curves have the same conductor apart from a possible
factor of 72.

Proof. Let E/Q be a curve with minimal conductor NE among elliptic curves
with j-invariant j0 and satisfying the conditions. Then by our previous results,
E has a rational 7-isogeny.

Let ∆ be the minimal discriminant of E/Q. If d is a square-free integer not
dividing 7∆, then there is prime q 6= 7 dividing d where E has good reduction.
Then by the above lemma, 2 | |Iq| so by Proposition 5.7, 4 | [Q(Ed[7]) : Q].

Therefore all exceptional curves with j-invariant j0 are twists of E by some
square-free divisor of 7∆, of which there are finitely many.
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Similarly, twists that change the conductor result in a larger conductor because
we chose NE to be minimal. The twisted conductor is either 72NE (since additive
bad reduction appeared at p) or has a prime divisor q 6= 7 where E has good
reduction. This implies a good reduction becomes potentially good additive after
the twist, and we can invoke the lemma. Note that since p > 5 the exponent of p
in the conductor of any elliptic curve with integral j-invariant is 0 or 2. �

7.3. Calculations

Together with the list of possible j-invariants, Proposition 7.4 provides
a list of all curves that could have τ = 1. Using the SAGE [22] function
EllipticCurve_from_j, we obtain a minimal conductor elliptic curve for each
j-invariant involved. We take all curves with these conductors and also their
−7-twists. Using Cremona’s tables [7], these are

Label j-invariant Discriminant
1369b1 33 · 37 −378

1369b2 −33 · 37 · 7193 −378

1369c1 33 · 37 −372

1369c2 −33 · 37 · 7193 −372

67081b1 33 · 37 −76 · 378

67081b2 −33 · 37 · 7193 −76 · 378

67081d1 33 · 37 −76 · 372

67081d2 −33 · 37 · 7193 −76 · 372

3969a1 32 · 74 34 · 78

3969a2 32 · 7 · 26473 34 · 78

3969c1 32 · 74 34 · 72

3969c2 32 · 7 · 26473 34 · 72

3969e1 32 · 74 310 · 72

3969e2 32 · 7 · 26473 310 · 72

3969f1 32 · 74 310 · 72

3969f2 32 · 7 · 26473 310 · 72

Next, we use Theorem 5.10 to rule out rows with 372 and 310 in the discrimi-
nant.

Theorem 7.5. Assume (I)-(IV) for an elliptic curve E/K having rational coeffi-
cients. Then

τ := rkΛ(H)X(E/K∞) > 2

holds with finitely many exceptions up to Q-isomorphism of elliptic curves. The
possibly exceptional isomorphism classes are classified by the following table.
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p E (label) j-invariant Discriminant rank over Q
7 1369b1 33 · 37 −378 1
7 1369b2 −33 · 37 · 7193 −378 1
7 67081b1 33 · 37 −76 · 378 0
7 67081b2 −33 · 37 · 7193 −76 · 378 0
7 3969a1 32 · 74 34 · 78 1
7 3969a2 32 · 7 · 26473 34 · 78 1
7 3969c1 32 · 74 34 · 72 0
7 3969c2 32 · 7 · 26473 34 · 72 0

Note that the first and second four curves in this table form two equivalence
classes: these are isomorphic or 7-isogenous over Q(

√
−7) 6 Q(µ7) 6 K (for any

possible K) and since λ and sE/Kcyc are isogeny invariants, these have the same
τ given assumptions (I)-(IV).

Remark. From these data it follows that all these curves have rank 1 overQ(
√
−7)

which is a necessary condition for τ = 1. Further Iwasawa theoretic calculations
would be needed to compute their λ rank (which equals their τ rank).
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