EXPLICIT BOUNDS ON THE LOGARITHMIC DERIVATIVE AND THE RECIPROCAL OF THE RIEMANN ZETA-FUNCTION

Tim Trudgian

Abstract

The purpose of this article is consider $\left|\zeta^{\prime}(\sigma+i t) / \zeta(\sigma+i t)\right|$ and $|\zeta(\sigma+i t)|^{-1}$ when σ is close to unity. We prove that $\left|\zeta^{\prime}(\sigma+i t) / \zeta(\sigma+i t)\right| \leqslant 87 \log t$ and $|\zeta(\sigma+i t)|^{-1} \leqslant 6.9 \times 10^{6} \log t$ for $\sigma \geqslant 1-1 /(8 \log t)$ and $t \geqslant 45$.

Keywords: Riemann zeta-function, prime number theorem, zero-free region.

1. Introduction

Consider $\mu(n)$ the Möbius function, $M(x)=\sum_{n \leqslant x} \mu(n)$ and $m(x)=\sum_{n \leqslant x} \mu(n) / n$. It is known that $M(x) / x$ and $m(x)$ both tend to zero as x tends to infinity. Schoenfeld [10] showed that $|M(x)| / x \leqslant 2.9 /(\log x)$ for $x>1$; this was improved by Ramaré [9] who showed that $|M(x)| / x \leqslant 0.013 /(\log x)$ for $x \geqslant 1.1 \times 10^{6}$. Ramaré $[o p$. cit.] also proved that $|m(x)| \leqslant 0.026 /(\log x)$ for $x \geqslant 61000$.

One can produce explicit bounds of the form

$$
\begin{equation*}
|m(x)| \leqslant C_{1} \log ^{3} x \exp \left(-C_{2} \sqrt{\log x}\right), \tag{1.1}
\end{equation*}
$$

where $C_{1}, C_{2}>0$, by following the arguments in $\S 3.13$ in [13]. Indeed, since $\sum_{n=1}^{\infty} \mu(n) / n^{s}=\zeta(s)^{-1}$ for all $\Re s=\sigma>1$, one can use Perron's formula to show that

$$
\begin{equation*}
\sum_{n<x} \frac{\mu(n)}{n^{1+i t}}=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{1}{\zeta(1+i t+w)} \frac{x^{w}}{w} d w+E(c, x, T) \tag{1.2}
\end{equation*}
$$

where $c>0$ and $E(c, x, T)$ is an error term that can be estimated explicitly. If one has an explicit zero-free region for $\zeta(s)$, and an explicit bound for $|\zeta(s)|^{-1}$ in $\sigma \geqslant 1-1 /(W \log t)$, then one may apply Cauchy's theorem to the integral in (1.2) and prove (1.1) with $C_{2}=1 / W$. One can recover explicit bounds for $M(x)$ using (1.1) and partial summation.

[^0]Similarly, if one has a bound for $\left|\zeta^{\prime}(s) / \zeta(s)\right|$ one may follow $\S 3.14$ in [13] to bound $\psi(x)=\sum_{n \leqslant x} \Lambda(n)$, where $\Lambda(n)$ is the von Mangoldt function. Finally, one can consider $L(x)=\sum_{n<x} \lambda(n)$, where $\lambda(n)$ is Liouville's function, which defines the Dirichlet series $\zeta(2 s) / \zeta(s)=\sum_{n=1}^{\infty} \lambda(n) n^{-s}$, for $\sigma>1$. Provided that we have an explicit bound for $|\zeta(s)|^{-1}$, we may apply Perron's formula to obtain an explicit bound for $L(x)$.

Given the applications to $M(x), m(x), \psi(x)$ and $L(x)$, it seems natural to try to obtain an explicit bound for $|\zeta(s)|^{-1}$ and for $\left|\zeta^{\prime}(s) / \zeta(s)\right|$. The point of this article is to prove

Theorem 1. For $t \geqslant 45$ and for $\sigma \geqslant 1-1 /(8 \log t)$ we have

$$
\begin{equation*}
\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right| \leqslant 87 \log t, \quad \frac{1}{|\zeta(s)|} \leqslant 6.9 \times 10^{6} \log t . \tag{1.3}
\end{equation*}
$$

Moreover, for s in the region $t \geqslant t_{0}$ and $\sigma \geqslant 1-1 /(W \log t)$, bounds of the sort $\left|\zeta^{\prime}(s) / \zeta(s)\right| \leqslant R_{1} \log t$ and $|\zeta(s)|^{-1} \leqslant R_{2} \log t$ are given in Table 1.

The method of proof follows that in Titchmarsh [13, pp. 56-60]. In §2 explicit versions of Titchmarsh's Lemmas α and γ are given. These were first annunciated by Landau [5]. Bounds similar to those in (1.3), but without explicit constants, were proved by Gronwall [2, p. 96].

Landau's method contains two steps. First, one uses good bounds for $\zeta(s)$ near $\sigma=1$ to deduce a zero-free region near $\sigma=1$. Second, the bound on $\zeta(s)$ and the zero-free region are used to bound $\left|\zeta^{\prime}(s) / \zeta(s)\right|$ and $|\zeta(s)|^{-1}$. We break into this argument after the first step. Instead of using the zero-free region obtained by Landau's method we use the one obtained by Kadiri [4]. This sharper zero-free region enables us to obtain relatively good bounds on $\left|\zeta^{\prime}(s) / \zeta(s)\right|$ and $|\zeta(s)|^{-1}$.

It should be remarked that Ford's [1] theorem, that

$$
|\zeta(\sigma+i t)| \leqslant 76.2 t^{4.45(1-\sigma)^{3 / 2}} \log ^{2 / 3} t, \quad\left(t \geqslant 3, \quad \frac{1}{2} \leqslant \sigma \leqslant 1\right)
$$

could be used to obtain results of the form

$$
\frac{1}{|\zeta(s)|} \leqslant A(\log t)^{2 / 3}(\log \log t)^{1 / 3}
$$

for some constant A, as well as a similar result for $\left|\zeta^{\prime}(s) / \zeta(s)\right|$. One could burn the extra candle and estimate the size of the constant A. However it is likely that such results would improve on those in Theorem 1 only when t is extremely large.

Acknowledgements

I am grateful to Olivier Ramaré for suggesting the problem to me, and for the referee for bringing Gronwall's result to my attention.

2. Preparatory lemmas

Lemma 1. Let $f(s)$ be regular and let $\left|\frac{f(s)}{f\left(s_{0}\right)}\right| \leqslant A_{1}$ in $\left|s-s_{0}\right| \leqslant r$. Then

$$
\begin{equation*}
\left|\frac{f^{\prime}(s)}{f(s)}-\sum_{\rho} \frac{1}{s-\rho}\right| \leqslant \frac{4 \log A_{1}}{r(1-2 \alpha)^{2}}, \quad\left(\left|s-s_{0}\right| \leqslant \alpha r\right), \tag{2.1}
\end{equation*}
$$

where ρ runs through the zeroes of $f(s)$ for which $|s-\rho| \leqslant \frac{1}{2} r$, and where $\alpha<\frac{1}{2}$.
Proof. See [11, p. 151].

Whereas Titchmarsh [13, Lemma α] proves Lemma 1 by applying the BorelCarathéodory theorem and then Cauchy's theorem for derivatives, Tenenbaum in [11] proves Lemma 1 'in one go'. This diminishes the right hand side of (2.1). For example, when $\alpha=\frac{1}{4}$ the proof in [13] gives $48 \log A_{1} / r$, whereas Lemma 1 gives $16 \log A_{1} / r$.

Lemma 2. Let $f(s)$ satisfy the conditions of Lemma 1, and let $\left|\frac{f^{\prime}\left(s_{0}\right)}{f\left(s_{0}\right)}\right| \leqslant \frac{A_{2}}{r}$. Suppose also that $f(s) \neq 0$ when $\left|s-s_{0}\right| \leqslant r$ and $\sigma \geqslant \sigma_{0}-\eta r^{\prime}$, where $\eta>1$ and $\eta r^{\prime} \leqslant \alpha r$. Then

$$
\left|\frac{f^{\prime}(s)}{f(s)}\right| \leqslant \frac{8 \alpha \log A_{1}}{r(\eta-1)(1-2 \alpha)^{2}}+\frac{\eta+1}{\eta-1} \frac{A_{2}}{r}, \quad\left(\left|s-s_{0}\right| \leqslant r^{\prime}\right)
$$

Proof. In the region $\left|s-s_{0}\right| \leqslant \alpha r$, bound the real part of $f^{\prime}(s) / f(s)$ using Lemma 1 and note that, for $\sigma \geqslant \sigma_{0}-\eta r^{\prime}$, we have $\Re(s-\rho)>0$. Now apply the Borel-Carathéodory theorem (see, e.g., $[12, \S 5.5])$ to the function $-f^{\prime}(s) / f(s)$ on the circles $\left|s-s_{0}\right|=\eta r^{\prime}$ and $\left|s-s_{0}\right|=r^{\prime}$.

We shall also require the following bound on $\zeta(s)$ which we shall borrow from [14].

Lemma 3 (Cor. 1 [14]). Let δ be a positive real number and let

$$
a_{0}\left(\sigma, Q_{0}, t\right)=\frac{\sigma+Q_{0}}{2 t^{2} \log t}+\frac{\pi}{2 \log t}+\frac{\pi\left(\sigma+Q_{0}\right)^{2}}{4 t \log ^{2} t}, \quad a_{1}\left(\sigma, Q_{0}, t\right)=\frac{\sigma+Q_{0}}{t} .
$$

Then, for $\sigma \in\left[\frac{1}{2}, 1+\delta\right]$ and $t \geqslant t_{0}$ we have

$$
\begin{equation*}
|\zeta(s)| \leqslant 0.732\left(1+a_{1}\left(1+\delta, 5, t_{0}\right)\right)^{7 / 6}\left(1+a_{0}\left(1+\delta, 5, t_{0}\right)\right)^{2} t^{1 / 6} \log t \tag{2.2}
\end{equation*}
$$

provided that

$$
\begin{equation*}
t \geqslant \max \{1.16, \exp [4 \zeta(1+\delta) / 3]\} \tag{2.3}
\end{equation*}
$$

3. Estimating $\left|\zeta^{\prime}(s) / \zeta(s)\right|$

First consider $t_{0} \geqslant H$, where $H=3.06 \times 10^{10}$ is the height to which the Riemann hypothesis has been verified - see [7]. Let $s_{0}=\sigma_{0}+i t_{0}=1+\frac{c}{\log t_{0}}+i t_{0}$, where c is a positive constant to be determined later. We aim at applying Lemma 2 with $r=\frac{1}{2}$. In the region $\left|s-s_{0}\right| \leqslant \frac{1}{2}$ we have

$$
\frac{1}{2} \leqslant \sigma \leqslant 1+\frac{1}{2}+\frac{c}{\log H}, \quad t \leqslant t_{0}\left(1+\frac{1}{2 H}\right) .
$$

We shall apply Lemma 3 with $\delta=\frac{1}{2}+\frac{c}{\log H}$; the condition in (2.3) is certainly met for all $t \geqslant 34$. This shows that

$$
|\zeta(s)| \leqslant 0.732 \alpha_{1} t_{0}^{\frac{1}{6}} \log t_{0}, \quad\left(\left|s-s_{0}\right| \leqslant \frac{1}{2}\right),
$$

where

$$
\begin{equation*}
\alpha_{1}=\left(1+a_{1}\left(\frac{3}{2}+\frac{c}{\log H}, 5, H-\frac{1}{2}\right)\right)^{\frac{7}{6}}\left(1+a_{0}\left(\frac{3}{2}+\frac{c}{\log H}, 5, H-\frac{1}{2}\right)\right)^{2}\left(1+\frac{1}{2 H}\right)^{\frac{7}{6}} . \tag{3.1}
\end{equation*}
$$

We now bound $\left|\zeta\left(s_{0}\right)\right|$ trivially using the estimate $\left|\zeta\left(s_{0}\right)\right| \geqslant \zeta\left(2 \sigma_{0}\right) / \zeta\left(\sigma_{0}\right)$. This, together with (3.1), shows that

$$
\begin{equation*}
\left|\frac{\zeta(s)}{\zeta\left(s_{0}\right)}\right| \leqslant A_{1}:=0.732 \alpha_{1} t_{0}^{\frac{1}{6}}\left(\log t_{0}\right)^{2} \frac{X\left(1+\frac{c}{\log H}\right)}{c} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
X(t)=\frac{\zeta(t)(t-1)}{\zeta(2 t)} \tag{3.3}
\end{equation*}
$$

Note that $X(t)$ is increasing and that $\lim _{t \rightarrow 1} X(t)=6 \pi^{-2}$.
To bound $\left|\zeta^{\prime}(s) / \zeta(s)\right|$ we use the trivial bound $\left|\zeta^{\prime}(s) / \zeta(s)\right| \leqslant-\zeta^{\prime}(\sigma) / \zeta(\sigma)$ and Lemma 70.1 in [3], which shows that $-\zeta^{\prime}(x) / \zeta(x)<1 /(x-1)$ for any real $x>1$. We therefore have

$$
\begin{equation*}
\left|\frac{\zeta^{\prime}\left(s_{0}\right)}{\zeta\left(s_{0}\right)}\right| \leqslant \frac{A_{2}}{r}, \quad \text { where } \quad A_{2}=\frac{r \log t_{0}}{c}, \quad r=\frac{1}{2} \tag{3.4}
\end{equation*}
$$

3.1. Using the zero-free region

Suppose

$$
\zeta(s) \neq 0, \quad \text { for } \sigma \geqslant 1-\frac{1}{R \log t}, \quad(t \geqslant 3) .
$$

Kadiri [4] has shown that one may take $R=5.69693$. We keep the parameter R in the equations that follow. Let t^{\prime} be a real number for which

$$
\frac{c}{\log t_{0}}+\frac{1}{R \log \left(t_{0}+t^{\prime}\right)}<t^{\prime}
$$

It follows that there are no zeroes of $\zeta(s)$ in the region $\left|s-s_{0}\right| \leqslant 1+\frac{c}{\log t_{0}}-$ $\frac{1}{R \log \left(t_{0}+t^{\prime}\right)}$. We may convert this into a slightly easier form to show that there are no zeroes of $\zeta(s)$ in the region

$$
\left|s-s_{0}\right| \leqslant \frac{c+\frac{1}{\alpha_{2} R}}{\log t_{0}}
$$

where

$$
\alpha_{2}=1+\frac{t^{\prime}}{H \log H} .
$$

To apply Lemma 2 we choose

$$
\eta r^{\prime}=\alpha r=\frac{1}{2} \alpha=\frac{c+\frac{1}{\alpha_{2} R}}{\log t_{0}}
$$

whence

$$
r^{\prime}=\frac{c+\frac{1}{\alpha_{2} R}}{\eta \log t_{0}}, \quad \alpha \leqslant \frac{2\left(c+\frac{1}{\alpha_{2} R}\right)}{\log H} .
$$

We use Lemma 2 and (3.2), (3.3), and (3.4) to prove
Lemma 4. For $t_{0} \geqslant H$

$$
\begin{equation*}
\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right| \leqslant A \log t_{0}+B \log \log t_{0}+C, \quad\left(\left|s-s_{0}\right| \leqslant \frac{c+\frac{1}{\alpha_{2} R}}{\eta \log t_{0}}\right) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
A & =\frac{8}{3(\eta-1)(1-2 \alpha)^{2}}+\left(\frac{\eta+1}{\eta-1}\right) \frac{1}{2 c} \\
B & =\frac{32}{(\eta-1)(1-2 \alpha)^{2}}, \\
C & =\frac{16\left(\log \alpha_{1}+\log (0.732 X / c)\right)}{(\eta-1)(1-2 \alpha)^{2}} .
\end{aligned}
$$

The bound in (3.5) holds whenever

$$
\sigma_{0}-\frac{c+\frac{1}{\alpha_{2} R}}{\eta \log t_{0}} \leqslant \sigma \leqslant \sigma_{0}+\frac{c+\frac{1}{\alpha_{2} R}}{\eta \log t_{0}} .
$$

For larger values of σ_{0} we use the trivial bound on $\left|\zeta^{\prime}(s) / \zeta(s)\right|$. Making the substitution $t_{0} \mapsto t$ we obtain a bound on $\left|\zeta^{\prime}(s) / \zeta(s)\right|$ for all $\sigma>1-1 /(W \log t)$ for some constant W. The result is summarised in

Theorem 2. Let

$$
\begin{equation*}
W=\frac{\eta \alpha_{2} R}{1+(1-\eta) \alpha_{2} R c}, \quad\left(\alpha_{2} R c(\eta-1)<1\right) \tag{3.6}
\end{equation*}
$$

Then, for all $t \geqslant H$ and for $\sigma \geqslant 1-1 /(W \log t)$ we have

$$
\left|\frac{\zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}\right| \leqslant R_{1} \log t
$$

where

$$
\begin{equation*}
R_{1}=\max \left\{\frac{\eta}{\eta c+c+\frac{1}{\alpha_{2} R}}, A+B \frac{\log \log H}{\log H}+\frac{C}{\log H}\right\} . \tag{3.7}
\end{equation*}
$$

For a given W, we solve (3.6) for η and evaluate R_{1} in (3.7) by varying $c \in\left[10^{-4}, 1\right]$ in increments of 10^{-4}. For example, when $R=5.69693$, given $W=8$, choosing $c=0.1369$ gives $R_{1} \leqslant 86.23$.

We now turn to the case when $0<T_{0}<t<H$. In this case there are no zeroes for $\sigma_{0}-\eta r^{\prime}>\frac{1}{2}$. We therefore choose

$$
\eta r^{\prime}=\alpha r=\frac{1}{2} \alpha, \quad \text { whence } \quad r^{\prime}=\frac{\alpha}{2 \eta},
$$

where we require that α be less than $\frac{1}{2}$ to ensure that the conditions of Lemma 1 are satisfied. We now follow the argument leading to Lemma 4, noting the change of α and of r^{\prime}. We arrive at a bound for $\left|\zeta^{\prime}(s) / \zeta(s)\right|$ in the region $\sigma \geqslant \sigma_{0}-\alpha /(2 \eta)$. This region will be at least as wide as that in Theorem 2 if

$$
\begin{equation*}
\frac{\frac{\alpha}{2} \log T_{0}-c \eta}{\eta} \geqslant \frac{1}{W} . \tag{3.8}
\end{equation*}
$$

We use (3.8) to solve for T_{0}. We then optimise by varying $\alpha \in\left[10^{-2}, 1\right]$ in increments of $10^{-2}, \eta \in[1.001,3]$ in increments of 10^{-3}, and $c \in[0.001,1]$ in increments of 10^{-3}. We compare the value of R_{1} thus obtained with that obtained when $t \geqslant H$. For example, when $W=8$ we have already shown that $R_{1} \leqslant 86.23$ for all $t \geqslant H$. Choosing $\alpha=0.23, c=0.041, \eta=2.631$ we have $R_{1} \leqslant 86.11$ with $W=8$ and $t \geqslant 44.61$. We continue in this way for other values of W : the results on R_{1} are presented in Table 1.

4. Bounding $1 /|\zeta(s)|$

We follow the argument on page 60 of [13]. If $1-\frac{1}{W \log t} \leqslant \sigma \leqslant 1+\frac{d}{\log t}$, for some $d>0$, then, by Theorem 2, we have

$$
\begin{aligned}
\log \frac{1}{|\zeta(s)|} & \leqslant-\Re \log \zeta(s) \\
& =-\Re \log \zeta\left(1+\frac{d}{\log t}+i t\right)+\int_{\sigma}^{1+\frac{d}{\log t}} \Re \frac{\zeta^{\prime}}{\zeta}(\xi+i t) d \xi \\
& \leqslant \log \zeta\left(1+\frac{d}{\log t}\right)-\log \zeta\left(2\left(1+\frac{d}{\log t}\right)\right)+R_{1}\left(d+\frac{1}{W}\right)
\end{aligned}
$$

for $t \geqslant t_{0}$ where t_{0}, W and R_{1} are in Table 1. Write

$$
\zeta(\sigma)=\zeta(\sigma)(\sigma-1) /(\sigma-1)=Y(\sigma) /(\sigma-1)
$$

whence

$$
\begin{equation*}
|\zeta(s)|^{-1} \leqslant \frac{Y\left(1+\frac{d}{\log t_{0}}\right) e^{R_{1}(d+1 / W)}}{d \zeta\left(2\left(1+\frac{d}{\log t_{0}}\right)\right)} \log t, \quad(1-1 /(W \log t) \leqslant \sigma \leqslant 1+d / \log t) . \tag{4.1}
\end{equation*}
$$

If $\sigma_{1} \geqslant \sigma \geqslant 1+\frac{d}{\log t}$ we have

$$
\begin{equation*}
|\zeta(s)|^{-1} \leqslant \frac{X\left(\sigma_{1}\right)}{d} \log t \tag{4.2}
\end{equation*}
$$

Finally, for $\sigma \geqslant \sigma_{1}$ we have

$$
\begin{equation*}
|\zeta(s)|^{-1} \leqslant \frac{\zeta\left(\sigma_{1}\right)}{\zeta\left(2 \sigma_{1}\right)} \leqslant \frac{\zeta\left(\sigma_{1}\right)}{\zeta\left(2 \sigma_{1}\right) \log t_{0}} \log t \tag{4.3}
\end{equation*}
$$

We now optimise the maximum of (4.1), (4.2) and (4.3) by varying $d \in\left[10^{-4}, 1\right)$ in increments of 10^{-4}. The values of R_{2} are presented in Table 1: this proves Theorem 1.

Table 1: Bounds for $\left|\zeta^{\prime}(s) / \zeta(s)\right| \leqslant R_{1} \log t$ and $|\zeta(s)|^{-1} \leqslant R_{2} \log t$ and in $\sigma \geqslant 1-1 /(W \log t)$ for $t \geqslant t_{0}$

W	R_{1}	R_{2}	t_{0}
6	548.53	7.8×10^{43}	34
7	140.03	1.3×10^{11}	34
8	86.23	6.9×10^{6}	44.61
9	64.98	1.5×10^{5}	63.91
10	53.60	1.9×10^{4}	79.35
11	46.50	5.3×10^{3}	95.45
12	41.64	2252	113.30

5. Conclusion

The dominant factor in (4.1) is $d^{-1} \exp \left(R_{1}(d+1 / W)\right)$. It is the exponential dependence on R_{1} that leads to such large values of R_{2} in Table 1. Both R_{1} and R_{2} would be diminished were one in possession of any of the following: a higher height to which the Riemann hypothesis has been proved (a larger value of H), a wider zero-free region (a smaller value of R), or a better bound on $\zeta(s)$ across the critical strip (improving (2.2)). As noted in [8], the bound in (2.2) appears to be far from optimal. It is hoped that future researchers are able to improve on the methods of attacking this problem.

5.1. Note added in proof

Recently, in [6] it was announced that one could take $R=5.573412$. Conditional on this bound of R one could refine the bounds in Table 1 as follows.

Table 2: Bounds for $\left|\zeta^{\prime}(s) / \zeta(s)\right| \leqslant R_{1} \log t$ and $|\zeta(s)|^{-1} \leqslant R_{2} \log t$ and in $\sigma \geqslant 1-1 /(W \log t)$ for $t \geqslant t_{0}$ - with $R=5.573412$

W	R_{1}	R_{2}	t_{0}
6	382.58	3.2×10^{30}	34
7	125.60	1.3×10^{10}	34
8	80.38	3.1×10^{6}	50.28
9	61.54	9.6×10^{4}	70.59
10	51.19	1.5×10^{4}	90.87
11	44.65	4.4×10^{3}	111.12
12	40.14	1900	132.16

References

[1] K. Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. 85(3) (2002), 565-633.
[2] T.H. Gronwall, Sur la fonction $\zeta(s)$ de Riemann au voisinage de $\sigma=1$, Palermo Rend. 35(1) (1913), 95-102.
[3] R.R. Hall and G. Tenenbaum, Divisors, vol. 90 of Cambridge Tracts in Math., Cambridge University Press, Cambridge, 1988.
[4] H. Kadiri, Une région explicite sans zéros pour la fonction ζ de Riemann, Acta Arith. 117(4) (2005), 303-339.
[5] E. Landau, Über die Wurzeln der Zetafunktion, Math. Z. 20 (1924), 98-104.
[6] M.J. Mossinghoff and T.S. Trudgian, Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, submitted, 2014, preprint available at arXiv:1410.3926 [math.NT].
[7] D.J. Platt, Computing $\pi(x)$ analytically, Math. Comp. 84(293) (2015), 15211535.
[8] D.J. Platt and T.S. Trudgian, An improved explicit bound on $|\zeta(1 / 2+i t)|$, J. Number Theory 147 (2015), 842-851.
[9] O. Ramaré, From explicit estimates for primes to explicit estimates for the Möbius function, Acta Arith. 157(4) (2013), 365-379
[10] L. Schoenfeld, An improved estimate for the summatory function of the Möbius function, Acta Arith. 15 (1969), 221-233.
[11] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, vol. 46 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.
[12] E.C. Titchmarsh, The Theory of Functions, Oxford Science Publications, Oxford University Press, Oxford, 2nd edition, 1932.
[13] E.C. Titchmarsh, The Theory of the Riemann zeta-function, Oxford Science Publications, Oxford University Press, Oxford, 2nd edition, 1986.
[14] T.S. Trudgian, Improvements to Turing's method II, Rocky Mountain J. Math., to appear.

Address: Tim Trudgian: Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia.

E-mail: timothy.trudgian@anu.edu.au
Received: 22 April 2014; revised: 13 January 2015

[^0]: Supported by ARC Grant DE120100173
 2010 Mathematics Subject Classification: primary: 11M06

