EXPLICIT BOUNDS ON THE LOGARITHMIC DERIVATIVE AND THE RECIPROCAL OF THE RIEMANN ZETA-FUNCTION

TIM TRUDGIAN

Abstract: The purpose of this article is consider $|\zeta'(\sigma+it)/\zeta(\sigma+it)|$ and $|\zeta(\sigma+it)|^{-1}$ when σ is close to unity. We prove that $|\zeta'(\sigma+it)/\zeta(\sigma+it)| \leq 87 \log t$ and $|\zeta(\sigma+it)|^{-1} \leq 6.9 \times 10^6 \log t$ for $\sigma \geq 1 - 1/(8 \log t)$ and $t \geq 45$.

Keywords: Riemann zeta-function, prime number theorem, zero-free region.

1. Introduction

Consider $\mu(n)$ the Möbius function, $M(x) = \sum_{n \leq x} \mu(n)$ and $m(x) = \sum_{n \leq x} \mu(n)/n$. It is known that M(x)/x and m(x) both tend to zero as x tends to infinity. Schoenfeld [10] showed that $|M(x)|/x \leq 2.9/(\log x)$ for x > 1; this was improved by Ramaré [9] who showed that $|M(x)|/x \leq 0.013/(\log x)$ for $x \geq 1.1 \times 10^6$. Ramaré [op. cit.] also proved that $|m(x)| \leq 0.026/(\log x)$ for $x \geq 61000$.

One can produce explicit bounds of the form

$$|m(x)| \leqslant C_1 \log^3 x \exp(-C_2 \sqrt{\log x}), \tag{1.1}$$

where $C_1, C_2 > 0$, by following the arguments in §3.13 in [13]. Indeed, since $\sum_{n=1}^{\infty} \mu(n)/n^s = \zeta(s)^{-1}$ for all $\Re s = \sigma > 1$, one can use Perron's formula to show that

$$\sum_{n < x} \frac{\mu(n)}{n^{1+it}} = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{1}{\zeta(1+it+w)} \frac{x^w}{w} \, dw + E(c, x, T), \tag{1.2}$$

where c > 0 and E(c, x, T) is an error term that can be estimated explicitly. If one has an explicit zero-free region for $\zeta(s)$, and an explicit bound for $|\zeta(s)|^{-1}$ in $\sigma \ge 1 - 1/(W \log t)$, then one may apply Cauchy's theorem to the integral in (1.2) and prove (1.1) with $C_2 = 1/W$. One can recover explicit bounds for M(x) using (1.1) and partial summation.

Supported by ARC Grant DE120100173

2010 Mathematics Subject Classification: primary: 11M06

254 Tim Trudgian

Similarly, if one has a bound for $|\zeta'(s)/\zeta(s)|$ one may follow §3.14 in [13] to bound $\psi(x) = \sum_{n \leq x} \Lambda(n)$, where $\Lambda(n)$ is the von Mangoldt function. Finally, one can consider $L(x) = \sum_{n < x} \lambda(n)$, where $\lambda(n)$ is Liouville's function, which defines the Dirichlet series $\zeta(2s)/\zeta(s) = \sum_{n=1}^{\infty} \lambda(n)n^{-s}$, for $\sigma > 1$. Provided that we have an explicit bound for $|\zeta(s)|^{-1}$, we may apply Perron's formula to obtain an explicit bound for L(x).

Given the applications to $M(x), m(x), \psi(x)$ and L(x), it seems natural to try to obtain an explicit bound for $|\zeta(s)|^{-1}$ and for $|\zeta'(s)/\zeta(s)|$. The point of this article is to prove

Theorem 1. For $t \ge 45$ and for $\sigma \ge 1 - 1/(8 \log t)$ we have

$$\left|\frac{\zeta'(s)}{\zeta(s)}\right| \leqslant 87 \log t, \qquad \frac{1}{|\zeta(s)|} \leqslant 6.9 \times 10^6 \log t.$$
(1.3)

Moreover, for s in the region $t \ge t_0$ and $\sigma \ge 1 - 1/(W \log t)$, bounds of the sort $|\zeta'(s)/\zeta(s)| \le R_1 \log t$ and $|\zeta(s)|^{-1} \le R_2 \log t$ are given in Table 1.

The method of proof follows that in Titchmarsh [13, pp. 56-60]. In §2 explicit versions of Titchmarsh's Lemmas α and γ are given. These were first annunciated by Landau [5]. Bounds similar to those in (1.3), but without explicit constants, were proved by Gronwall [2, p. 96].

Landau's method contains two steps. First, one uses good bounds for $\zeta(s)$ near $\sigma = 1$ to deduce a zero-free region near $\sigma = 1$. Second, the bound on $\zeta(s)$ and the zero-free region are used to bound $|\zeta'(s)/\zeta(s)|$ and $|\zeta(s)|^{-1}$. We break into this argument after the first step. Instead of using the zero-free region obtained by Landau's method we use the one obtained by Kadiri [4]. This sharper zero-free region enables us to obtain relatively good bounds on $|\zeta'(s)/\zeta(s)|$ and $|\zeta(s)|^{-1}$.

It should be remarked that Ford's [1] theorem, that

$$|\zeta(\sigma+it)| \leq 76.2t^{4.45(1-\sigma)^{3/2}}\log^{2/3}t, \qquad (t \ge 3, \ \frac{1}{2} \le \sigma \le 1),$$

could be used to obtain results of the form

$$\frac{1}{|\zeta(s)|} \leqslant A(\log t)^{2/3} (\log \log t)^{1/3},$$

for some constant A, as well as a similar result for $|\zeta'(s)/\zeta(s)|$. One could burn the extra candle and estimate the size of the constant A. However it is likely that such results would improve on those in Theorem 1 only when t is extremely large.

Acknowledgements

I am grateful to Olivier Ramaré for suggesting the problem to me, and for the referee for bringing Gronwall's result to my attention.

2. Preparatory lemmas

Lemma 1. Let f(s) be regular and let $\left|\frac{f(s)}{f(s_0)}\right| \leq A_1$ in $|s - s_0| \leq r$. Then

$$\left|\frac{f'(s)}{f(s)} - \sum_{\rho} \frac{1}{s-\rho}\right| \leqslant \frac{4\log A_1}{r(1-2\alpha)^2}, \qquad (|s-s_0| \leqslant \alpha r),$$
(2.1)

where ρ runs through the zeroes of f(s) for which $|s - \rho| \leq \frac{1}{2}r$, and where $\alpha < \frac{1}{2}$.

Proof. See [11, p. 151].

Whereas Titchmarsh [13, Lemma α] proves Lemma 1 by applying the Borel– Carathéodory theorem and then Cauchy's theorem for derivatives, Tenenbaum in [11] proves Lemma 1 'in one go'. This diminishes the right hand side of (2.1). For example, when $\alpha = \frac{1}{4}$ the proof in [13] gives $48 \log A_1/r$, whereas Lemma 1 gives $16 \log A_1/r$.

Lemma 2. Let f(s) satisfy the conditions of Lemma 1, and let $\left|\frac{f'(s_0)}{f(s_0)}\right| \leq \frac{A_2}{r}$. Suppose also that $f(s) \neq 0$ when $|s - s_0| \leq r$ and $\sigma \geq \sigma_0 - \eta r'$, where $\eta > 1$ and $\eta r' \leq \alpha r$. Then

$$\left|\frac{f'(s)}{f(s)}\right| \leqslant \frac{8\alpha \log A_1}{r(\eta - 1)(1 - 2\alpha)^2} + \frac{\eta + 1}{\eta - 1}\frac{A_2}{r}, \qquad (|s - s_0| \leqslant r')$$

Proof. In the region $|s - s_0| \leq \alpha r$, bound the real part of f'(s)/f(s) using Lemma 1 and note that, for $\sigma \geq \sigma_0 - \eta r'$, we have $\Re(s - \rho) > 0$. Now apply the Borel–Carathéodory theorem (see, e.g., [12, §5.5]) to the function -f'(s)/f(s) on the circles $|s - s_0| = \eta r'$ and $|s - s_0| = r'$.

We shall also require the following bound on $\zeta(s)$ which we shall borrow from [14].

Lemma 3 (Cor. 1 [14]). Let δ be a positive real number and let

$$a_0(\sigma, Q_0, t) = \frac{\sigma + Q_0}{2t^2 \log t} + \frac{\pi}{2 \log t} + \frac{\pi(\sigma + Q_0)^2}{4t \log^2 t}, \qquad a_1(\sigma, Q_0, t) = \frac{\sigma + Q_0}{t}.$$

Then, for $\sigma \in [\frac{1}{2}, 1+\delta]$ and $t \ge t_0$ we have

$$|\zeta(s)| \leq 0.732(1+a_1(1+\delta,5,t_0))^{7/6}(1+a_0(1+\delta,5,t_0))^2 t^{1/6}\log t, \qquad (2.2)$$

provided that

$$t \ge \max\{1.16, \exp[4\zeta(1+\delta)/3]\}.$$
 (2.3)

3. Estimating $|\zeta'(s)/\zeta(s)|$

First consider $t_0 \ge H$, where $H = 3.06 \times 10^{10}$ is the height to which the Riemann hypothesis has been verified — see [7]. Let $s_0 = \sigma_0 + it_0 = 1 + \frac{c}{\log t_0} + it_0$, where c is a positive constant to be determined later. We aim at applying Lemma 2 with $r = \frac{1}{2}$. In the region $|s - s_0| \le \frac{1}{2}$ we have

$$\frac{1}{2} \leqslant \sigma \leqslant 1 + \frac{1}{2} + \frac{c}{\log H}, \qquad t \leqslant t_0 \left(1 + \frac{1}{2H}\right).$$

We shall apply Lemma 3 with $\delta = \frac{1}{2} + \frac{c}{\log H}$; the condition in (2.3) is certainly met for all $t \ge 34$. This shows that

$$|\zeta(s)| \leq 0.732 \alpha_1 t_0^{\frac{1}{6}} \log t_0, \qquad (|s-s_0| \leq \frac{1}{2}),$$

where

$$\alpha_1 = \left(1 + a_1\left(\frac{3}{2} + \frac{c}{\log H}, 5, H - \frac{1}{2}\right)\right)^{\frac{7}{6}} \left(1 + a_0\left(\frac{3}{2} + \frac{c}{\log H}, 5, H - \frac{1}{2}\right)\right)^2 \left(1 + \frac{1}{2H}\right)^{\frac{7}{6}}.$$
 (3.1)

We now bound $|\zeta(s_0)|$ trivially using the estimate $|\zeta(s_0)| \ge \zeta(2\sigma_0)/\zeta(\sigma_0)$. This, together with (3.1), shows that

$$\left|\frac{\zeta(s)}{\zeta(s_0)}\right| \leqslant A_1 := 0.732 \alpha_1 t_0^{\frac{1}{6}} (\log t_0)^2 \frac{X(1 + \frac{c}{\log H})}{c}$$
(3.2)

where

$$X(t) = \frac{\zeta(t)(t-1)}{\zeta(2t)}.$$
(3.3)

Note that X(t) is increasing and that $\lim_{t\to 1} X(t) = 6\pi^{-2}$.

To bound $|\zeta'(s)/\zeta(s)|$ we use the trivial bound $|\zeta'(s)/\zeta(s)| \leq -\zeta'(\sigma)/\zeta(\sigma)$ and Lemma 70.1 in [3], which shows that $-\zeta'(x)/\zeta(x) < 1/(x-1)$ for any real x > 1. We therefore have

$$\left|\frac{\zeta'(s_0)}{\zeta(s_0)}\right| \leqslant \frac{A_2}{r}, \quad \text{where} \quad A_2 = \frac{r\log t_0}{c}, \quad r = \frac{1}{2}.$$
(3.4)

3.1. Using the zero-free region

Suppose

$$\zeta(s) \neq 0, \quad \text{for } \sigma \ge 1 - \frac{1}{R \log t}, \quad (t \ge 3)$$

Kadiri [4] has shown that one may take R = 5.69693. We keep the parameter R in the equations that follow. Let t' be a real number for which

$$\frac{c}{\log t_0} + \frac{1}{R\log(t_0 + t')} < t'.$$

It follows that there are no zeroes of $\zeta(s)$ in the region $|s - s_0| \leq 1 + \frac{c}{\log t_0} - \frac{1}{R\log(t_0+t')}$. We may convert this into a slightly easier form to show that there are no zeroes of $\zeta(s)$ in the region

$$|s-s_0| \leqslant \frac{c + \frac{1}{\alpha_2 R}}{\log t_0},$$

where

$$\alpha_2 = 1 + \frac{t'}{H \log H}$$

To apply Lemma 2 we choose

$$\eta r' = \alpha r = \frac{1}{2}\alpha = \frac{c + \frac{1}{\alpha_2 R}}{\log t_0},$$

whence

$$r' = \frac{c + \frac{1}{\alpha_2 R}}{\eta \log t_0}, \qquad \alpha \leqslant \frac{2(c + \frac{1}{\alpha_2 R})}{\log H}.$$

We use Lemma 2 and (3.2), (3.3), and (3.4) to prove

Lemma 4. For $t_0 \ge H$

$$\left|\frac{\zeta'(s)}{\zeta(s)}\right| \leqslant A \log t_0 + B \log \log t_0 + C, \qquad \left(|s - s_0| \leqslant \frac{c + \frac{1}{\alpha_2 R}}{\eta \log t_0}\right), \tag{3.5}$$

where

$$A = \frac{8}{3(\eta - 1)(1 - 2\alpha)^2} + \left(\frac{\eta + 1}{\eta - 1}\right)\frac{1}{2c},$$

$$B = \frac{32}{(\eta - 1)(1 - 2\alpha)^2},$$

$$C = \frac{16(\log \alpha_1 + \log(0.732X/c))}{(\eta - 1)(1 - 2\alpha)^2}.$$

The bound in (3.5) holds whenever

$$\sigma_0 - \frac{c + \frac{1}{\alpha_2 R}}{\eta \log t_0} \leqslant \sigma \leqslant \sigma_0 + \frac{c + \frac{1}{\alpha_2 R}}{\eta \log t_0}.$$

For larger values of σ_0 we use the trivial bound on $|\zeta'(s)/\zeta(s)|$. Making the substitution $t_0 \mapsto t$ we obtain a bound on $|\zeta'(s)/\zeta(s)|$ for all $\sigma > 1 - 1/(W \log t)$ for some constant W. The result is summarised in

Theorem 2. Let

$$W = \frac{\eta \alpha_2 R}{1 + (1 - \eta) \alpha_2 R c}, \qquad (\alpha_2 R c (\eta - 1) < 1).$$
(3.6)

Then, for all $t \ge H$ and for $\sigma \ge 1 - 1/(W \log t)$ we have

$$\left|\frac{\zeta'(\sigma+it)}{\zeta(\sigma+it)}\right| \leqslant R_1 \log t$$

where

$$R_1 = \max\left\{\frac{\eta}{\eta c + c + \frac{1}{\alpha_2 R}}, A + B\frac{\log\log H}{\log H} + \frac{C}{\log H}\right\}.$$
(3.7)

For a given W, we solve (3.6) for η and evaluate R_1 in (3.7) by varying $c \in [10^{-4}, 1]$ in increments of 10^{-4} . For example, when R = 5.69693, given W = 8, choosing c = 0.1369 gives $R_1 \leq 86.23$.

We now turn to the case when $0 < T_0 < t < H$. In this case there are no zeroes for $\sigma_0 - \eta r' > \frac{1}{2}$. We therefore choose

$$\eta r' = \alpha r = \frac{1}{2}\alpha$$
, whence $r' = \frac{\alpha}{2\eta}$

where we require that α be less than $\frac{1}{2}$ to ensure that the conditions of Lemma 1 are satisfied. We now follow the argument leading to Lemma 4, noting the change of α and of r'. We arrive at a bound for $|\zeta'(s)/\zeta(s)|$ in the region $\sigma \ge \sigma_0 - \alpha/(2\eta)$. This region will be at least as wide as that in Theorem 2 if

$$\frac{\frac{\alpha}{2}\log T_0 - c\eta}{\eta} \ge \frac{1}{W}.$$
(3.8)

We use (3.8) to solve for T_0 . We then optimise by varying $\alpha \in [10^{-2}, 1]$ in increments of 10^{-2} , $\eta \in [1.001, 3]$ in increments of 10^{-3} , and $c \in [0.001, 1]$ in increments of 10^{-3} . We compare the value of R_1 thus obtained with that obtained when $t \ge H$. For example, when W = 8 we have already shown that $R_1 \le 86.23$ for all $t \ge H$. Choosing $\alpha = 0.23, c = 0.041, \eta = 2.631$ we have $R_1 \le 86.11$ with W = 8 and $t \ge 44.61$. We continue in this way for other values of W: the results on R_1 are presented in Table 1.

4. Bounding $1/|\zeta(s)|$

We follow the argument on page 60 of [13]. If $1 - \frac{1}{W \log t} \leq \sigma \leq 1 + \frac{d}{\log t}$, for some d > 0, then, by Theorem 2, we have

$$\log \frac{1}{|\zeta(s)|} \leq -\Re \log \zeta(s)$$

$$= -\Re \log \zeta \left(1 + \frac{d}{\log t} + it\right) + \int_{\sigma}^{1 + \frac{d}{\log t}} \Re \frac{\zeta'}{\zeta} (\xi + it) d\xi$$

$$\leq \log \zeta \left(1 + \frac{d}{\log t}\right) - \log \zeta \left(2\left(1 + \frac{d}{\log t}\right)\right) + R_1 \left(d + \frac{1}{W}\right),$$

for $t \ge t_0$ where t_0, W and R_1 are in Table 1. Write

$$\zeta(\sigma) = \zeta(\sigma)(\sigma-1)/(\sigma-1) = Y(\sigma)/(\sigma-1)$$

whence

$$|\zeta(s)|^{-1} \leqslant \frac{Y(1 + \frac{d}{\log t_0})e^{R_1(d+1/W)}}{d\zeta(2(1 + \frac{d}{\log t_0}))}\log t, \qquad (1 - 1/(W\log t) \leqslant \sigma \leqslant 1 + d/\log t).$$
(4.1)

If $\sigma_1 \ge \sigma \ge 1 + \frac{d}{\log t}$ we have

$$|\zeta(s)|^{-1} \leqslant \frac{X(\sigma_1)}{d} \log t.$$
(4.2)

Finally, for $\sigma \ge \sigma_1$ we have

$$|\zeta(s)|^{-1} \leqslant \frac{\zeta(\sigma_1)}{\zeta(2\sigma_1)} \leqslant \frac{\zeta(\sigma_1)}{\zeta(2\sigma_1)\log t_0}\log t.$$
(4.3)

We now optimise the maximum of (4.1), (4.2) and (4.3) by varying $d \in [10^{-4}, 1)$ in increments of 10^{-4} . The values of R_2 are presented in Table 1: this proves Theorem 1.

Table 1: Bounds for $|\zeta'(s)/\zeta(s)| \leq R_1 \log t$ and $|\zeta(s)|^{-1} \leq R_2 \log t$ and in $\sigma \geq 1 - 1/(W \log t)$ for $t \geq t_0$

W	R_1	R_2	t_0
6	548.53	7.8×10^{43}	34
7	140.03	$1.3\! imes\!10^{11}$	34
8	86.23	$6.9 imes 10^6$	44.61
9	64.98	$1.5 imes 10^5$	63.91
10	53.60	$1.9 imes 10^4$	79.35
11	46.50	$5.3 imes10^3$	95.45
12	41.64	2252	113.30

5. Conclusion

The dominant factor in (4.1) is $d^{-1} \exp(R_1(d+1/W))$. It is the exponential dependence on R_1 that leads to such large values of R_2 in Table 1. Both R_1 and R_2 would be diminished were one in possession of any of the following: a higher height to which the Riemann hypothesis has been proved (a larger value of H), a wider zero-free region (a smaller value of R), or a better bound on $\zeta(s)$ across the critical strip (improving (2.2)). As noted in [8], the bound in (2.2) appears to be far from optimal. It is hoped that future researchers are able to improve on the methods of attacking this problem.

5.1. Note added in proof

Recently, in [6] it was announced that one could take R = 5.573412. Conditional on this bound of R one could refine the bounds in Table 1 as follows.

W	R_1	R_2	t_0
6	382.58	$3.2 imes 10^{30}$	34
7	125.60	$1.3 imes 10^{10}$	34
8	80.38	$3.1 imes 10^6$	50.28
9	61.54	$9.6 imes 10^4$	70.59
10	51.19	$1.5 imes 10^4$	90.87
11	44.65	4.4×10^3	111.12
12	40.14	1900	132.16

Table 2: Bounds for $|\zeta'(s)/\zeta(s)| \leq R_1 \log t$ and $|\zeta(s)|^{-1} \leq R_2 \log t$ and in $\sigma \geq 1 - 1/(W \log t)$ for $t \geq t_0$ — with R = 5.573412

References

- K. Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. 85(3) (2002), 565–633.
- [2] T.H. Gronwall, Sur la fonction $\zeta(s)$ de Riemann au voisinage de $\sigma = 1$, Palermo Rend. **35**(1) (1913), 95–102.
- [3] R.R. Hall and G. Tenenbaum, *Divisors*, vol. 90 of *Cambridge Tracts in Math.*, Cambridge University Press, Cambridge, 1988.
- [4] H. Kadiri, Une région explicite sans zéros pour la fonction ζ de Riemann, Acta Arith. **117**(4) (2005), 303–339.
- [5] E. Landau, Uber die Wurzeln der Zetafunktion, Math. Z. 20 (1924), 98–104.
- [6] M.J. Mossinghoff and T.S. Trudgian, Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, submitted, 2014, preprint available at arXiv:1410.3926 [math.NT].
- [7] D.J. Platt, Computing π(x) analytically, Math. Comp. 84(293) (2015), 1521– 1535.
- [8] D.J. Platt and T.S. Trudgian, An improved explicit bound on $|\zeta(1/2 + it)|$, J. Number Theory 147 (2015), 842–851.
- [9] O. Ramaré, From explicit estimates for primes to explicit estimates for the Möbius function, Acta Arith. 157(4) (2013), 365–379
- [10] L. Schoenfeld, An improved estimate for the summatory function of the Möbius function, Acta Arith. 15 (1969), 221–233.
- [11] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, vol. 46 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.

Explicit bounds on the logarithmic derivative and the reciprocal of $\zeta(s) = 261$

- [12] E.C. Titchmarsh, *The Theory of Functions*, Oxford Science Publications, Oxford University Press, Oxford, 2nd edition, 1932.
- [13] E.C. Titchmarsh, *The Theory of the Riemann zeta-function*, Oxford Science Publications, Oxford University Press, Oxford, 2nd edition, 1986.
- [14] T.S. Trudgian, *Improvements to Turing's method II*, Rocky Mountain J. Math., to appear.
- **Address:** Tim Trudgian: Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia.

E-mail: timothy.trudgian@anu.edu.au

Received: 22 April 2014; revised: 13 January 2015