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EXPLICIT BOUNDS ON THE LOGARITHMIC DERIVATIVE
AND THE RECIPROCAL OF THE RIEMANN ZETA-FUNCTION

Tim Trudgian

Abstract: The purpose of this article is consider |ζ′(σ+ it)/ζ(σ+ it)| and |ζ(σ+ it)|−1 when σ
is close to unity. We prove that |ζ′(σ+ it)/ζ(σ+ it)| 6 87 log t and |ζ(σ+ it)|−1 6 6.9× 106 log t
for σ > 1− 1/(8 log t) and t > 45.
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1. Introduction

Consider µ(n) the Möbius function,M(x)=
∑
n6x µ(n) andm(x)=

∑
n6x µ(n)/n.

It is known that M(x)/x and m(x) both tend to zero as x tends to infinity.
Schoenfeld [10] showed that |M(x)|/x 6 2.9/(log x) for x > 1; this was improved
by Ramaré [9] who showed that |M(x)|/x 6 0.013/(log x) for x > 1.1 × 106.
Ramaré [op. cit.] also proved that |m(x)| 6 0.026/(log x) for x > 61000.

One can produce explicit bounds of the form

|m(x)| 6 C1 log3 x exp(−C2

√
log x), (1.1)

where C1, C2 > 0, by following the arguments in §3.13 in [13]. Indeed, since∑∞
n=1 µ(n)/ns = ζ(s)−1 for all <s = σ > 1, one can use Perron’s formula to show

that ∑
n<x

µ(n)

n1+it
=

1

2πi

∫ c+iT

c−iT

1

ζ(1 + it+ w)

xw

w
dw + E(c, x, T ), (1.2)

where c > 0 and E(c, x, T ) is an error term that can be estimated explicitly. If
one has an explicit zero-free region for ζ(s), and an explicit bound for |ζ(s)|−1 in
σ > 1− 1/(W log t), then one may apply Cauchy’s theorem to the integral in (1.2)
and prove (1.1) with C2 = 1/W . One can recover explicit bounds for M(x) using
(1.1) and partial summation.
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Similarly, if one has a bound for |ζ ′(s)/ζ(s)| one may follow §3.14 in [13] to
bound ψ(x) =

∑
n6x Λ(n), where Λ(n) is the von Mangoldt function. Finally, one

can consider L(x) =
∑
n<x λ(n), where λ(n) is Liouville’s function, which defines

the Dirichlet series ζ(2s)/ζ(s) =
∑∞
n=1 λ(n)n−s, for σ > 1. Provided that we have

an explicit bound for |ζ(s)|−1, we may apply Perron’s formula to obtain an explicit
bound for L(x).

Given the applications to M(x),m(x), ψ(x) and L(x), it seems natural to try
to obtain an explicit bound for |ζ(s)|−1 and for |ζ ′(s)/ζ(s)|. The point of this
article is to prove

Theorem 1. For t > 45 and for σ > 1− 1/(8 log t) we have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ 6 87 log t,
1

|ζ(s)|
6 6.9× 106 log t. (1.3)

Moreover, for s in the region t > t0 and σ > 1 − 1/(W log t), bounds of the sort
|ζ ′(s)/ζ(s)| 6 R1 log t and |ζ(s)|−1 6 R2 log t are given in Table 1.

The method of proof follows that in Titchmarsh [13, pp. 56-60]. In §2 explicit
versions of Titchmarsh’s Lemmas α and γ are given. These were first annunciated
by Landau [5]. Bounds similar to those in (1.3), but without explicit constants,
were proved by Gronwall [2, p. 96].

Landau’s method contains two steps. First, one uses good bounds for ζ(s) near
σ = 1 to deduce a zero-free region near σ = 1. Second, the bound on ζ(s) and
the zero-free region are used to bound |ζ ′(s)/ζ(s)| and |ζ(s)|−1. We break into
this argument after the first step. Instead of using the zero-free region obtained
by Landau’s method we use the one obtained by Kadiri [4]. This sharper zero-free
region enables us to obtain relatively good bounds on |ζ ′(s)/ζ(s)| and |ζ(s)|−1.

It should be remarked that Ford’s [1] theorem, that

|ζ(σ + it)| 6 76.2t4.45(1−σ)3/2 log2/3 t,
(
t > 3, 1

2 6 σ 6 1
)
,

could be used to obtain results of the form

1

|ζ(s)|
6 A(log t)2/3(log log t)1/3,

for some constant A, as well as a similar result for |ζ ′(s)/ζ(s)|. One could burn
the extra candle and estimate the size of the constant A. However it is likely that
such results would improve on those in Theorem 1 only when t is extremely large.
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2. Preparatory lemmas

Lemma 1. Let f(s) be regular and let
∣∣ f(s)
f(s0)

∣∣ 6 A1 in |s− s0| 6 r. Then∣∣∣∣f ′(s)f(s)
−
∑
ρ

1

s− ρ

∣∣∣∣ 6 4 logA1

r(1− 2α)2
, (|s− s0| 6 αr), (2.1)

where ρ runs through the zeroes of f(s) for which |s− ρ| 6 1
2r, and where α < 1

2 .

Proof. See [11, p. 151]. �

Whereas Titchmarsh [13, Lemma α] proves Lemma 1 by applying the Borel–
Carathéodory theorem and then Cauchy’s theorem for derivatives, Tenenbaum in
[11] proves Lemma 1 ‘in one go’. This diminishes the right hand side of (2.1). For
example, when α = 1

4 the proof in [13] gives 48 logA1/r, whereas Lemma 1 gives
16 logA1/r.

Lemma 2. Let f(s) satisfy the conditions of Lemma 1, and let
∣∣ f ′(s0)
f(s0)

∣∣ 6 A2

r .
Suppose also that f(s) 6= 0 when |s − s0| 6 r and σ > σ0 − ηr′, where η > 1 and
ηr′ 6 αr. Then∣∣∣∣f ′(s)f(s)

∣∣∣∣ 6 8α logA1

r(η − 1)(1− 2α)2
+
η + 1

η − 1

A2

r
, (|s− s0| 6 r′).

Proof. In the region |s − s0| 6 αr, bound the real part of f ′(s)/f(s) using
Lemma 1 and note that, for σ > σ0 − ηr′, we have <(s − ρ) > 0. Now apply
the Borel–Carathéodory theorem (see, e.g., [12, §5.5]) to the function −f ′(s)/f(s)
on the circles |s− s0| = ηr′ and |s− s0| = r′. �

We shall also require the following bound on ζ(s) which we shall borrow
from [14].

Lemma 3 (Cor. 1 [14]). Let δ be a positive real number and let

a0(σ,Q0, t) =
σ +Q0

2t2 log t
+

π

2 log t
+
π(σ +Q0)2

4t log2 t
, a1(σ,Q0, t) =

σ +Q0

t
.

Then, for σ ∈ [ 1
2 , 1 + δ] and t > t0 we have

|ζ(s)| 6 0.732(1 + a1(1 + δ, 5, t0))7/6(1 + a0(1 + δ, 5, t0))2t1/6 log t, (2.2)

provided that
t > max{1.16, exp[4ζ(1 + δ)/3]}. (2.3)
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3. Estimating |ζ′(s)/ζ(s)|

First consider t0 > H, where H = 3.06× 1010 is the height to which the Riemann
hypothesis has been verified — see [7]. Let s0 = σ0 + it0 = 1 + c

log t0
+ it0, where c

is a positive constant to be determined later. We aim at applying Lemma 2 with
r = 1

2 . In the region |s− s0| 6 1
2 we have

1

2
6 σ 6 1 +

1

2
+

c

logH
, t 6 t0

(
1 +

1

2H

)
.

We shall apply Lemma 3 with δ = 1
2 + c

logH ; the condition in (2.3) is certainly
met for all t > 34. This shows that

|ζ(s)| 6 0.732α1t
1
6
0 log t0, (|s− s0| 6 1

2 ),

where

α1 = (1+a1( 3
2 + c

logH , 5, H−
1
2 ))

7
6 (1+a0( 3

2 + c
logH , 5, H−

1
2 ))2

(
1 + 1

2H

) 7
6 . (3.1)

We now bound |ζ(s0)| trivially using the estimate |ζ(s0)| > ζ(2σ0)/ζ(σ0). This,
together with (3.1), shows that∣∣∣∣ ζ(s)

ζ(s0)

∣∣∣∣ 6 A1 := 0.732α1t
1
6
0 (log t0)2

X(1 + c
logH )

c
(3.2)

where

X(t) =
ζ(t)(t− 1)

ζ(2t)
. (3.3)

Note that X(t) is increasing and that limt→1X(t) = 6π−2.
To bound |ζ ′(s)/ζ(s)| we use the trivial bound |ζ ′(s)/ζ(s)| 6 −ζ ′(σ)/ζ(σ) and

Lemma 70.1 in [3], which shows that −ζ ′(x)/ζ(x) < 1/(x− 1) for any real x > 1.
We therefore have∣∣∣∣ζ ′(s0)

ζ(s0)

∣∣∣∣ 6 A2

r
, where A2 =

r log t0
c

, r =
1

2
. (3.4)

3.1. Using the zero-free region

Suppose

ζ(s) 6= 0, for σ > 1− 1

R log t
, (t > 3).

Kadiri [4] has shown that one may take R = 5.69693. We keep the parameter R
in the equations that follow. Let t′ be a real number for which

c

log t0
+

1

R log(t0 + t′)
< t′.
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It follows that there are no zeroes of ζ(s) in the region |s − s0| 6 1 + c
log t0

−
1

R log(t0+t′) . We may convert this into a slightly easier form to show that there are
no zeroes of ζ(s) in the region

|s− s0| 6
c+ 1

α2R

log t0
,

where
α2 = 1 +

t′

H logH
.

To apply Lemma 2 we choose

ηr′ = αr =
1

2
α =

c+ 1
α2R

log t0
,

whence

r′ =
c+ 1

α2R

η log t0
, α 6

2(c+ 1
α2R

)

logH
.

We use Lemma 2 and (3.2), (3.3), and (3.4) to prove

Lemma 4. For t0 > H∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ 6 A log t0 +B log log t0 + C,

(
|s− s0| 6

c+ 1
α2R

η log t0

)
, (3.5)

where

A =
8

3(η − 1)(1− 2α)2
+

(
η + 1

η − 1

)
1

2c
,

B =
32

(η − 1)(1− 2α)2
,

C =
16(logα1 + log(0.732X/c))

(η − 1)(1− 2α)2
.

The bound in (3.5) holds whenever

σ0 −
c+ 1

α2R

η log t0
6 σ 6 σ0 +

c+ 1
α2R

η log t0
.

For larger values of σ0 we use the trivial bound on |ζ ′(s)/ζ(s)|. Making the sub-
stitution t0 7→ t we obtain a bound on |ζ ′(s)/ζ(s)| for all σ > 1 − 1/(W log t) for
some constant W . The result is summarised in

Theorem 2. Let

W =
ηα2R

1 + (1− η)α2Rc
, (α2Rc(η − 1) < 1). (3.6)
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Then, for all t > H and for σ > 1− 1/(W log t) we have∣∣∣∣ζ ′(σ + it)

ζ(σ + it)

∣∣∣∣ 6 R1 log t,

where

R1 = max

{
η

ηc+ c+ 1
α2R

, A+B
log logH

logH
+

C

logH

}
. (3.7)

For a given W , we solve (3.6) for η and evaluate R1 in (3.7) by varying
c ∈ [10−4, 1] in increments of 10−4. For example, when R = 5.69693, givenW = 8,
choosing c = 0.1369 gives R1 6 86.23.

We now turn to the case when 0 < T0 < t < H. In this case there are no zeroes
for σ0 − ηr′ > 1

2 . We therefore choose

ηr′ = αr =
1

2
α, whence r′ =

α

2η
,

where we require that α be less than 1
2 to ensure that the conditions of Lemma 1

are satisfied. We now follow the argument leading to Lemma 4, noting the change
of α and of r′. We arrive at a bound for |ζ ′(s)/ζ(s)| in the region σ > σ0−α/(2η).
This region will be at least as wide as that in Theorem 2 if

α
2 log T0 − cη

η
>

1

W
. (3.8)

We use (3.8) to solve for T0. We then optimise by varying α ∈ [10−2, 1] in incre-
ments of 10−2, η ∈ [1.001, 3] in increments of 10−3, and c ∈ [0.001, 1] in increments
of 10−3. We compare the value ofR1 thus obtained with that obtained when t > H.
For example, when W = 8 we have already shown that R1 6 86.23 for all t > H.
Choosing α = 0.23, c = 0.041, η = 2.631 we have R1 6 86.11 with W = 8 and
t > 44.61. We continue in this way for other values of W : the results on R1 are
presented in Table 1.

4. Bounding 1/|ζ(s)|

We follow the argument on page 60 of [13]. If 1− 1
W log t 6 σ 6 1 + d

log t , for some
d > 0, then, by Theorem 2, we have

log
1

|ζ(s)|
6 −< log ζ(s)

= −< log ζ

(
1 +

d

log t
+ it

)
+

∫ 1+ d
log t

σ

<ζ
′

ζ
(ξ + it) dξ

6 log ζ

(
1 +

d

log t

)
− log ζ

(
2

(
1 +

d

log t

))
+R1

(
d+

1

W

)
,
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for t > t0 where t0,W and R1 are in Table 1. Write

ζ(σ) = ζ(σ)(σ − 1)/(σ − 1) = Y (σ)/(σ − 1),

whence

|ζ(s)|−1 6
Y (1 + d

log t0
)eR1(d+1/W )

dζ(2(1 + d
log t0

))
log t, (1− 1/(W log t) 6 σ 6 1 + d/ log t).

(4.1)
If σ1 > σ > 1 + d

log t we have

|ζ(s)|−1 6
X(σ1)

d
log t. (4.2)

Finally, for σ > σ1 we have

|ζ(s)|−1 6
ζ(σ1)

ζ(2σ1)
6

ζ(σ1)

ζ(2σ1) log t0
log t. (4.3)

We now optimise the maximum of (4.1), (4.2) and (4.3) by varying d ∈ [10−4, 1)
in increments of 10−4. The values of R2 are presented in Table 1: this proves
Theorem 1.

Table 1: Bounds for |ζ ′(s)/ζ(s)| 6 R1 log t and |ζ(s)|−1 6 R2 log t
and in σ > 1− 1/(W log t) for t > t0

W R1 R2 t0

6 548.53 7.8×1043 34
7 140.03 1.3×1011 34
8 86.23 6.9× 106 44.61
9 64.98 1.5× 105 63.91
10 53.60 1.9× 104 79.35
11 46.50 5.3× 103 95.45
12 41.64 2252 113.30

5. Conclusion

The dominant factor in (4.1) is d−1 exp(R1(d + 1/W )). It is the exponential
dependence on R1 that leads to such large values of R2 in Table 1. Both R1 and
R2 would be diminished were one in possession of any of the following: a higher
height to which the Riemann hypothesis has been proved (a larger value of H),
a wider zero-free region (a smaller value of R), or a better bound on ζ(s) across
the critical strip (improving (2.2)). As noted in [8], the bound in (2.2) appears to
be far from optimal. It is hoped that future researchers are able to improve on the
methods of attacking this problem.
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5.1. Note added in proof

Recently, in [6] it was announced that one could take R = 5.573412. Conditional
on this bound of R one could refine the bounds in Table 1 as follows.

Table 2: Bounds for |ζ ′(s)/ζ(s)| 6 R1 log t and |ζ(s)|−1 6 R2 log t and in
σ > 1− 1/(W log t) for t > t0 — with R = 5.573412

W R1 R2 t0

6 382.58 3.2× 1030 34
7 125.60 1.3× 1010 34
8 80.38 3.1× 106 50.28
9 61.54 9.6× 104 70.59
10 51.19 1.5× 104 90.87
11 44.65 4.4× 103 111.12
12 40.14 1900 132.16
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