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HILBERT MODULAR AND QUASIMODULAR FORMS
MIN Ho LEE

Abstract: Quasimodular forms generalize modular forms and have been studied actively in
recent years in connection with various topics in number theory and geometry. One of their
interesting properties is that they correspond to finite sequences of modular forms of certain
types. We extend such a correspondence to the case of Hilbert quasimodular forms. As an
application we construct Poincaré series for Hilbert quasimodular forms.
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1. Introduction

Quasimodular forms generalize modular forms and were introduced by Kaneko and
Zagier in [4]. They have been studied actively in recent years in connection with
various topics in number theory and geometry (see e.g. [2], [7], [8], [9]). Derivatives
of both modular and quasimodular forms are quasimodular forms, and, in fact,
each quasimodular form can be expressed as a linear combination of derivatives of
a finite number of modular forms.

A holomorphic function f on the Poincaré upper half plane # is a quasimodular
form for a discrete subgroup I' of SL(2,R) of weight A € Z and depth at most

m > 0 if there exist holomorphic functions fy, f1,..., fin on H satisfying
1 jaztby chi(2) " fn(2)
(cz+d)>‘f(cz+d> = folz) cz—l—djL (cz+d)™

for all z € H and (2%) € I. Given such a quasimodular form, it is known that
there are modular forms hg, h1,..., h,, for I' of certain weights such that each fj
is a linear combination of derivatives of those modular forms. On the other hand,
each modular form h; can also be written as a linear combination of derivatives
of the functions f;. These results can be used to show that there is a one-to-
one correspondence between quasimodular forms (of weight greater than twice the
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depth) and certain finite sequences of modular forms (cf. [6]). This correspondence
may potentially be used to investigate certain properties of quasimodular forms by
studying similar properties of the modular forms in the corresponding sequences.

The goal of this paper is to establish an analog of the above-mentioned cor-
respondence for functions of several variables. In the case of several variables,
as was done by F. Pellarin in [10], we can consider Hilbert quasimodular forms.
In order to study such quasimodular forms more effectively we introduce Hilbert
quasimodular polynomials for a discrete subgroup of SL(2,R)™. We also consider
Hilbert modular polynomials for the same discrete group, whose coefficients are
Hilbert modular forms of certain types, and construct an isomorphism between
the space of such polynomials and the space of Hilbert quasimodular polynomials.
This isomorphism then determines our desired correspondence between Hilbert
quasimodular forms and sequences of Hilbert modular forms. As an application
we construct Poincaré series for Hilbert quasimodular forms.

2. Correspondences of polynomials

Given a positive integer n, we denote by F the ring of holomorphic functions
f:H" — C with H being the Poincaré upper half plane. Throughout this paper

we use the multi-index notation. Thus, given elements o = (o, ..., a,) € Z™ and
z={(z1,...,2n) € H", we have
(03 P
Zazzll...zz‘”’ ‘a|:a1+...+an’

If o € Z7 with Z, denoting the set of nonnegative integers and 8 = (B31,...,3,) €

7™, we also have
0% = o ... e, <5) _ <51>...(ﬁn)7
« q Qan

where 0; = 9/0z; for 1 < i < n. For a, 8 € Z™, we write a < S if a;; < f; for each
i=1,...,n. We also write a < 8 if @« < f and a # . If ¢ € Z, we shall use the
bold-faced symbol to denote the element ¢ = (c, ..., c) € Z™.

We now fix an element p1 = (p1,...,pn) € Z7. Let X = (X1,...,,X,), and
denote by F,[X] the complex vector space of polynomials in X1,...,, X, over F
of the form

(2, X) =021, ..., zn; X1, Xn) = Y $p(2) X7 € Fu[X] (2.1)
0<psp

with z € H", ¢, € F and
XP = Xfl ---XfL”

for each p = (p1,...,pn) € Z7%. Given such a polynomial and an element A\ =
(AM,...,An) € Z™ with A > 2p + 1, we consider two other polynomials

—~

ENE)(z, X), (AX®)(z, X) € FulX]
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defined by
(ERD)(=X)= Y G()X% (M) X)= D o (2.2)
0<p<sp 0<psp
where
o5 = 1 > ! 0" Gyps (2.3)
p! o<iis vViAN=2p—v—1)!

—1)
¢y =A+2p—2u—1)" > )
0<v<p

X(A+2p=2p—v—=2)10"¢u—piu,
for each p € Z™ with 0 < p < p. The next proposition shows that the resulting
maps are linear automorphisms of F,[X], and its proof uses the combinatorial

identity .
> cr(t)(0) =0 29

r=0

(1= p+v)! (2.4)

for positive integers v and v with v < v (see e.g. [5, Lemma 2.7]).

Proposition 2.1. The maps EY, Ay : F,[X] — F,[X] given by (2.2) are complex
linear isomorphisms with

(M)~ =24
for each A € Z™ with X\ > 2u + 1.

Proof. Given A > 2u + 1, we first consider a polynomial ®(z, X) and its image
(EA®)(z, X) under Z as in (2.1) and (2.2), respectively. Then, using (2.3) and

(2.4), we obtain
((Al;\ °© Eﬁ)‘b)(za X)= Z ¢P<Z)Xpa
0<psp
where

(A +20—21-1)7%, (2.6)

N =
S ( i') (B=p+ ) (AN +2p—2u—v—2)10"¢5 .,

osr<p

_ )M +20-2u—v—2)! .,
N Z Z 1/15!0\—2u+2p—2y—§—1)8 Po-e-v
o<rp 0LELp—r
|‘)\+2p—2,u—u—2)! .
- Z Z i —v)!(A+2p—2u—v— —1)'8 o
0<n<Lp OLry P K n :

=\ +2p—2u— 1)‘1¢

DN +2p—2p — v —2)!
+ > 2 0"
| _ _ 1y —n —
oSt 05ty vi( IA+2p—2u—v—n—1)!
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for 0 < p < p. If p > 0, we note that n; # 0 for some i € {1,...,n}. Denoting by
7 = (n,...,0,...,m,) the element of Z™ with n; replaced by 0 in the i-th entry
and similarly for other elements, we have

Z Z Vl A+2p 2/,L—V—2)' 7]¢
' — _ _ _ p—n

O<n<p0<u<nl/ IA+2p—2p—v—n—1)

Z Z ‘l()\ +2p2—2ﬂz—y—2)'
0<m; <p OL<v<m; ()‘ +2p272,u171/*7h*1)

X k/\+2m—2uz—k 2)!

y

% sz' m RO 201 =2 — k= — D1 P

n:=1 k=0

D \|A+2p7—2ul—yfz)v

()‘ +2p2_2/%_y_771_1)

0<m<00<V<m
(71) Ai+2p; —2p; — k=2
<3 ol > ( (e -0,
g i

where we used (2.5). From this and (2.6) it follows that &S\p = ¢, for all p with
0 < p < p; hence we obtain

((AX 0 ER)®)(2, X) = (2, X).
We now assume that (AY®)(z, X) is as in (2.2) and that

(%o A)® Z@

Thus, in particular, (2.4) is valid for 0 < p < p. Noting that clearly %,t = ¢, we
shall verify that ¢, = ¢, for 0 < p < i by using induction. Given a vector p with
0 < p < pu, we assume that

_ 1
Gy =y== Y O —51 A (2.7)

! 2n—v
osr<pu—n

holds for each n with p < n < p. Thus there is an index j € {1,...,n} such that
p+£] (p157pj+1a7pn)<:u’
Then from (2.4) we obtain

(bup (A - 2'0_1) Z (_1|)

o<v<u—p O
=(A=2p-1)'p!(A = 2p - 2)lg,
_1yv
ro-z-0t Y -2 2100,

v!
o<v<u—p

v

(p+ )\ =20 — v = 2)1 0,
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Hence we have

_ 1 A
= I 2p 1) O
1 (—=1)l! ”
_ A—2p—v—2)10 ”
(/\ 2p7 ) 0<VZ<H , o (p+ V) ( 14 v ) ¢P+

Shifting the index v to v + ¢; and using (2.7), the sum over v on the right hand
side can be written as

_1)\I¥l
) %(p F A= 20— v — 21 by

o<v<u—p

osv<pu—p—c¢;

(_1)\v+sj\

o v A= 20—y =y = Iy,
5

1
- Z Z (p+v+e)BlAN—2p—2v—2¢; — —1)!

0y p—p—c; 0SB pU—p—v—e;
( )IV"FEJI
(v+¢e))!
Z Z (—D)lrFel(N—2p —v —g; — 2)!
Ov i e, 0B e, Blv+e)l(A—2p—2v—2¢; — —1)!
x GEitBHY ph

(p+1/+5]) ()\_Qp_,,_g _2)'85J+6+V¢# pes—v—B

H—p—Ej—V— /3

Z Z |”+51|(/\ 2p—v—e; —2)!
20— —05—92.—1)
0<o<p—p—e; 0<u<5 vEe)lA=2p—v—4-2; - 1)

8£J+6¢

p—p—e;j—0o
O A G ON
0<5<i—p— Ej5+5j 05 <5 v+e; S+e;—1

x 9Fitoph

w—p—e;—6°

Using (2.5), we have
Z (= 1)l <5+€j) <)\ —2p—v—¢g;— 2>
osies VHE; (5—|—€j -1
v ($+€j -1

e;<v<d+te;

_ (A —2p—2
- (54’5]'71 '
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Thus we obtain

—1)
> ( w) (p+)A=2p—v—2)10"¢,.,
O<v<p—p ’
1 (A=2p—2\ . 15
Z 5+€j <5+€j1)8 d)uipisjié

1/A=2p—2\ 5 .a
5( 5—1 )‘MHM’

(]

e;<oSpu—p

which implies that

1 A
% = pl(A—2p— l)l(b“*p
S
pl(A—2p—2)! ey <heup 5 6—1

. 1 5 A T
Tl Z (5!(/\—2,0—5_ 1)[8 d)#*pf& = ¢p'

T 0Ls<p—p
Hence we have ap = ¢, for allm € {0,1,..., u} by induction. Thus it follows that
(BN 0 AD)®)(2, X) = @(z, X),

and the proof of the proposition is complete. |

3. Modular and quasimodular polynomials
The usual action of the group SL(2,R) on the Poincaré upper half plane H by

linear fractional transformations determines an action of SL(2,R)™ on H". Thus,
it z=(21,...,2n) € H" and v = (71,...,7) € SL(2,R)™ with

a; bl
%= (cz_ di) € SL(2R)

for 1 < i < n, then we have

a1z1 + by Qnzn + bn)

vz = (71213-"7’771271) = <0121+d17“.’cn2’n+dn

For the same z and v, we set
3(77 Z) = (31(7a Z)7 o 7371(7) Z))7
R(v,2) = (Ra(7,2), -+, Ra(7,2)), (3.1)

where
(&5

~i 9 = Ciz4 di7 ﬁl ’ =
Ji(,2) = cizi + (v, 2) P
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for 1 < ¢ < n. These formulas determine the maps J, 8 : SL(2,R)" x H™ — C"
whose component functions satisfy

(v 2) = Ji(1, Y )3, 2),

Ri(,2) = K7, 2) + 37, 2) PRi(7,7'2)

for v, € SL(2,R)", ze H" and 1 < i < n.
If ye SL2,R)", N€ Z", p € Z, f € F and

(2, X) = Y $,(2)X" € Fu[X], (3.4)
0<psp
we set
(f A () =307, 2) 7 f(v2), (3.5)
(@R NEX) = > (8 Iz N()XP, (3.6)

(@ [\ N (z,X) =3(7,2) (72, (X — R(y,2))(diag I(1,2))*)  (3.7)

for all z € H™, where diagJ(v,2) is the n x n diagonal matrix whose diagonal
entries are the components of J(v, z), so that

(X — 8(7,2))(diag I(7, 2))?
= (17, 2)* (X1 = K1(7,2)); -+ Tn(7:2)* (X = Ra(7, 2))-
If 4" is another element of SL(2,R)™, then it can be shown that
(f Ix (N E) = ((f [x7) x)(2),

(@ X (1" Nz X) = (@[5 ) 1\7) (= X),
(@[1(rNE X) = (@5 ) 7)(z X).

Thus the above operations determine right actions of SL(2,R)", the first one on
F and the other two on F,[X].

Lemma 3.1. If f € F and v € ', we have

PhNE= Y <1>"a”!(“”‘l)Waafwz> (3.8)

| _ ~ A2a
al V—a z
0ty (v, 2)

for allv € Z7 .
Proof. Given v = (v1,...,v,) € Z7, if 1 < j <n, from [1, (1.9)] we see that

v; o 1 uj—EVj! )\j—|-l/j—1 ﬁj(’y’z)yj_e y
P e = g 0 (V) S o
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for 1 < j < n. If k # j is another index with 1 < k < n, noting that J;(v, 2) and
8, ) depend only on zj, we obtain

Vj

e B vi—tVj Aty —1
00 ( 1n )(z) = (-1 Zw( 20

£=0

ﬁ(%) 0 v -\ >
Xwaa (s 2)" " f(v2))

=Syt (A J v = 1)&-(%@”‘4

{ vy .
il vj —{ 3,7, 2)% aja (f A M=)

=0
hence the lemma follows by applying 0**,...,9"~ succssessively to f | 7. |

Theorem 3.2. Given a polynomial ®(z, X) € F,[X] and an element A € Z"™ with
AZ>2u+ 1, we have

(ER®) 1y 7)(z X) = EX(P 32 (2, X) (3.9)
(AL®) [3 0, M(z, X) = AL(® [, 1) (2, X) (3.10)
for all v € SL(2,R)"™, where Z5 and A\ are the isomorphisms in Proposition 2.1.

Proof. Let ®(z, X) € F,[X] be given by (3.4), so that

BN (2, X) = > 45 (2)X”

0<psp

—
1

where the coefficients ¢7(z) are as in (2.3). If v € SL(2,R)"™, from (3.7) we obtain

(ER®) LNz X) =3(1.2) ™ D 65(12)3(7,2)°* (X — &(v,2))

o<asy
=> > () 2)3(7, 2)20 M (= 1) Pl &y, 2) 0P X
0<agsu 0 pLa

> % 0 (0)eEnaat. e,

o<psu pLasy

Thus we may write

(B5®) [Nz X) = > &(r,2)X7,

where
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for each p € Z™ with 0 < p < p. Using (2.3), we have

= 1 1
a+p(12) = (a+p)! Z BIA—2p—2a—fB— 1)185%7%&7[3@2%

T 0B p—p—a
and therefore we obtain

= (=13 (y, 2)** 2P~ AR(, 2)°

0<asu—p 0<BLp—p—a

(3.11)
On the other hand, from (2.2), (2.3) and (3.6) we see that
EK(Q |f\£2u ’7)<Z’X) = Z an(%Z)va
0<p<p
where
)= Y . O (Gu-p-p | )(2)
Ne\V:2) = — n—p—pB IA=2p—28 7
!Ogﬂgﬂ_pﬁv\ 2p—p—1)!
for p > 0. Using (3.8), we have
B A=2p—-p—-1
0% (du—p—p Ir20287)(2) = > (-1 a‘a B—a
0<agp '
R(y,2)f >,
* 3(’7,2)A_2p—26+2aa Pu—p-5(72).
Thus we obtain
\ﬁ 0¢|ﬁ7 z)ﬁ *J(v, 2)” A+2p+28— 2a
Z Z ¢u—p—l3(72)

p'a' a)l(A—=2p—-28+a—1)!
\/3 O‘lﬁ'y z)B QJ(V z) A2p+28—2a

0%y
0<o;u a<5z<,L o '0" a) A —=2p—28+a—1)! bu—p-p(72)
(—l)lﬂlﬁ(ey 2)83(y, Z)*)\+2p+2ﬂ
Z Z plalBl(N—2p—28 —a —1)!

0L BLu—p 0LaLp

d’u p—pB— a(72).
0<asu—p 0LBLu—a—p

Comparing this with (3.11), we have &,(7,2) = 1,(7,2) for each p € Z™ with
0 < p < p, which verifies (3.9). The relation (3.10) follows from this and Propo-
sition 2.1. |

We now choose a discrete subgroup I' of SL(2,R)™ and consider the restriction
of the operations |y, |{ and ||, of SL(2,R)" with A € Z" in (3.5), (3.6) and (3.7)
to I
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Definition 3.3. (i) An element f € F is a Hilbert modular form for T' of weight
A if it satisfies

fIxy=1f

for all v € T.
(ii) An element ®(z, X) € F,[X]is a Hilbert modular polynomial for I' of weight
A and degree at most p if it satisfies

P y=20

for all v € T', and the same element is a Hilbert quasimodular polynomial for T' of
weight A and degree at most u if it satisfies

‘I)H,\’Y:‘I)
for all v € T.

We use M, (T') to denote the space of Hilbert modular forms for T of weight A.
We also denote by M P{'(I") and QP (T) the spaces of Hilbert modular and quasi-
modular, respectively, polynomials for I" of weight A and degree at most pu.

If a polynomial ®(z, X) € F,[X] of the form

(2, X)= > ¢,(2)X°

0<psp
belongs to M P{'(T'), from (3.6) and Definition 3.3(ii) we see that

bp € Myy2,(T) (3.12)

for 0 < p < p; hence a Hilbert modular polynomial determines a finite sequence
of Hilbert modular forms.

Proposition 3.4. The isomorphisms = and AX in Proposition 2.1 induce the
isomorphisms

Eﬁ : MP/(L_M(F) — QP/{‘(F), Af\L : QP/(L(I‘) — MP/{‘_2M(F) (3.13)
for each A € Z™ with X\ > 2u + 1.

Proof. This follows immediately from Theorem 3.2 and Definition 3.3. ]

4. Hilbert Quasimodular forms

In this section we introduce Hilbert quasimodular forms corresponding to Hilbert
quasimodular polynomials and construct Poincaré series for Hilbert quasimodular
forms for congruence subgroups of SL(2,R)".

Let F and F,[X] with u € Z7 be as in Section 3, and let I be a discrete
subgroup of SL(2,R)".
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Definition 4.1. Given A € Z", an element ¢ € F is a Hilbert quasimodular form
for I' of weight A and depth at most i if there are functions ¢, € F with0 < p <

such that
GhnE =3 6. (4.1)

oo
for all z € H™ and v € T, where R(v, z) is as in (3.1) and |, is the operation in
(3.5). We denote by QMY (") the space of such Hilbert quasimodular forms.

Remark 4.2. (i) If (4.1) is satisfied for another set of functions {$p eF|0<
p < p}, then we have

3" (Bp(2) — dp(2)R(7,2)” =0

0<psp

for all v belonging to the infinite set I'; hence it follows that ap = ¢, for each p.
Thus we see that the Hilbert quasimodular form ¢ determines the associated func-
tions ¢, € F uniquely.

(ii) If «y is the identity element of I" in (4.1), then K(v, z) = 0, and therefore it
follows that ¢ = ¢g. On the other hand, if 4 = 0, the relation (4.1) can be written
in the form

¢ |xvy=do=
hence QMY (T') coincides with the space M, (T) of Hilbert modular forms.

Let ¢ € F be a Hilbert quasimodular form belonging to QM (") satisfying

(4.1). Then we define the corresponding polynomial (QY¢)(z, X) € F,[X] by

(Qho)(z, X) Z@ (4.2)

for all z € H. From Remark 4.2(i) we see that Q4¢ is well-defined, and therefore
we obtain the complex linear map

Q) 1 QMY(T) — FulX]
for each \ € Z™.

Lemma 4.3. An element
O(z,X)= > ¢,(2)X" € FulX] (4.3)
0<psp

is a Hilbert quasimodular polynomial belonging to QPY (') if and only if for each
p EZ™ with 0 < p < p the function ¢, satisfies

G N = 3 (“:p)¢a+p<z>ﬁ<w>a (1.4)

for all z € H™ and v € T'. In particular, if ®(z,X) € QPY(T), then ¢, is a Hilbert
quasimodular form belonging to QM} "] (T').
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Proof. If a polynomial ®(z, X) given by (4.3) belongs to QP{ ('), we have
> d(2)X”
0<pp
3 77 Z 3 77 )(X _ﬁ(,y’z))P

opsp

Y e a'( )220, 021X

0<p<u 0<ap
—307 ¥ X oel(? >3(%Z)2pﬁ(%2)”“¢p(2)X
o<asp aLpsp

Replacing z by vz and v by v,

> a0ax =300 ¥ Y (orel(?)

oo o<aspy aLpsp
x IO 2) RO 2) T, (v2) X O

=30 Y Y IBI(O‘:;B)

0<asp 0B u—«o

we obtain

X I )P R v2) Parp(72) X

From this and the identities

IO ) =3y, ) RO 92)” = (3(6,2) P R(7, 2),
it follows that

a(v2) =301, 2 ) (a . B)ﬂ% 2) 2 R(y,2)77
0B pu—a

for 0 < a < p, which is equivalent to (4.4). [ |

If 0 < a < p, we consider the complex linear map

Sq : FulX] = F

defined by

& X nxt) =aulo

0<psp

for all z € H™. Then from Lemma 4.3 we see that
Ga(QPY(T)) C QMY 5, (T);
hence we obtain the map

G : QPY(T) — QM5 (T) (4.5)
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for each a. On the other hand, using (4.2) and (4.4), we also have
atp a
CEACHIEE TN DI G [CWCTCE Sy
o<aspu—p

for F(z,X) € QMY (T") and 0 < p < p. In particular, the map QX given by (4.2)
determines the complex linear map

o) : QMY (T) — QP{(I) (4.6)
for each \ € Z".

Lemma 4.4. The map So : QPY(T) — QM (T') in (4.5) with « = 0 is an
isomorphism whose inverse is the map QY in (4.6).

Proof. If ®(z, X) € QP{(T) is as in (4.3), we have
(S0®)(2) = do(2)

for all z € H™. On the other hand, from Lemma 4.3 we see that

((bO |/\ '7 Z (ba

o<agy

Hence it follws that
((Qﬁ 060)P?)(z,X) = P(z, X).

Since &g o Qf is clearly the identity map on QM{ ('), the lemma follows. |

Let ¢ € QMY (T') be a Hilbert quasimodular form satisfying

(& [x 7)( Z Gp(z (4.7)

oo

for all v € " and z € H", so that

(Qhe)(z,X) = > #p(2)X” € QP{(T)

0<psp
by (4.2). We then set
Ki(@ = (¢£)O<p<u € Flultt, (4-8)
where the functions qﬁﬁ € F are the coefficients of the Hilbert modular polynomial
((AX 0 QY)¢)(2, X) € MPL(T)
given by (2.4). Then from (3.12) we see that

o™ € Myi2.(T)
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for each r € {0,1,...,m}; hence the formula (4.8) determines an isomorphism
A“ QM (I @ My 2r—2,(T)
0<p<

of complex vector spaces for A > 2u + 1.
In order to consider Poincaré series we now consider a totally real number field
F with [F : Q] = n and denote its ring of integers by 0. Thus there are n real
embeddings
01,...,0p: F—=R

of F', which induce an embedding
SL(2,F) — SL(2,R)".

Throughout the rest of this section we shall identify SL(2, F') with its embedded
image in SL(2,R)™. Thus SL(2,0) is a discrete subgroup of SL(2,R)", which is
the full Hilbert modular group. Let n be an ideal of o, so that the corresponding
principal congruence subgroup is given by

I'(n) ={y€SL(2,0) |y=1 (mod n)}.

For the rest of this section we assume that I' is a congruence subgroup of SL(2, F')
containing I'(n) with finite index, and set

T ={(5%) |z € F}.

We denote by
Tr:F—=>Q

the Galois trace map of F' over Q, and set
n* = {a € F|Tr(an) C o}.

Given A € Z" and a totally positive element v € n*, we can consider the
Poincaré series

Prv(z) = Z 3(7,z)_”\exp(Qﬂ'iTr(y(wz))), (4.9)

YEL o\
which is a Hilbert modular form belonging to M, (T") (cf. [3]). We now set

1)l8=al (2ri)lel
PR X) = DO DD Z 151)\ zpmg_yl)

YET oo \I' 0 o< 0B u— p0<o¢<ﬁp

A—20—B-1\ R(y,2)0° .
- < ;—aﬁ >3(7 z()z—22)0—2ﬂ+2a exp(2miT (v(y2))) X7,

which is a polynomial in F,,(X).
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Proposition 4.5. The polynomial ng(z,X) is a Hilbert quasimodular polyno-
mial belonging to QPY (T').

Proof. Since the function Py, : H" — C given by (4.9) belongs to M, (T'), we
see that the polynomial

Z PX—QH-&-?/),V(Z)XP

0<psp

is a Hilbert modular polynomial belonging to M Py' , ,.(I'). Thus, appying the map
2 in (3.13), we obtain

ENO(z, X) = Y ,(2) X € QPY(I),

0<psp

where

1 1
Ol BD DI o e vy VL S

|
p: 0<B<p—p

for 0 < p < p. If we set

M, (z) = exp(2mi Tr(v(2)))

for all z € H", we have

0" Prozu-ap(2) = Y 07(n |x-20-25 7)(2)

YET o\
> ¥ (I
ED o\ 0<a< B f-a

R(y,z)P X
- J(ry, 2)A—2p—26+2a (0%Nw) (vz)

Y (el i) Q<A_2;—_f_1>

ET o\ 0<a< B

Ry, 2)° _
Iy z()k—2)p—2/3+2a exp(2mi Tr(v(72)))-

Thus we see that

END(z, X) = Py (2, X);

hence the proposition follows. |
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From Proposition 4.5 it follows that the function PS&“ € F given by

yB=al(2mi)lealye
GO YD DD
| _
AET o\ 0B 0<a< B ﬂ A—p-1)

A—pB-1 Ay, z)P~@ ]
X ( 5_a )W exp(2miT (v(vz)))

all z € H™ belongs to QMY (T'), an such series may be regarded as Poincaré
es for Hilbert quasimodular forms.
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