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NON-VANISHING OF DERIVATIVES OF CERTAIN MODULAR
L-FUNCTIONS
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Abstract: This paper is to show a non-vanishing property of the derivatives of certain class of
L-functions. We study the non-vanishing and transcendence of special values of L-functions and
their derivatives, attached to (cuspidal) Siegel-Hecke eigenforms of genus 2, quadratic twists of
classical Hecke eigenforms, and half-integral weight modular forms.
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1. Introduction

The special values of L-functions have been the subject of much study, both be-
cause of their intrinsic interest and also of their prominent role they have played in
various places. For example, the central critical values play an important role in
the Kolyvagin’s work on the Birch and Swinnerton-Dyer conjecture, and Böcherer’s
conjecture concerning central critical values of odd quadratic twists of spinor zeta
functions attached to cuspidal Siegel-Hecke eigenforms of genus 2.

In [8], Gun, Murty, and Rath investigated the non-vanishing and transcendence
of special values of a varying class of L-functions and their derivatives. In [16],
Tanobe extended these results to Hilbert modular forms.

In this paper, we show that the non-vanishing and transcendence of special
values of L-functions and their derivatives continues to hold for (cuspidal) Siegel-
Hecke eigenforms of genus 2 (cf. Section 2), quadratic twists of classical Hecke
eigenforms (cf. Section 3), and half-integral weight modular forms (cf. Section 4).
Some applications in transcendental number theory are deduced from these results
(cf. Section 5).

Throughout this paper, we let F, f , and h to denote (cuspidal) Siegel-Hecke
eigenforms of genus 2, classical Hecke eigenforms, and half-integral weight
modular forms.

2010 Mathematics Subject Classification: primary: 11F67, 11J81; secondary: 11F46,
11F11, 11F37



122 Narasimha Kumar

2. For (cuspidal) Siegel-Hecke eigenforms of genus 2

Let Γ2 = Sp4(Z) ⊂ GL4(Z) be the Siegel modular group of genus 2. (This consists
of all four by four symplectic matrices with integer entries). Let F be a non-
zero (cuspidal) Siegel-Hecke eigenform of integral weight k on Γ2, in particular,
F is a simultaneous eigenform for all the Hecke operators Tn (n ∈ N). For the
definitions of Siegel modular forms and Hecke operators, see [1], [2].

2.1. Spinor zeta functions of Siegel-Hecke eigenforms

Let F be a nonzero (cuspidal) Siegel-Hecke eigenform of integral weight k on Γ2

(or of genus 2) with Hecke eigenvalues λ(n) (n ∈ N). We shall recall some facts
about the spinor zeta function attached to F (cf. [1] for more details). Consider
the Dirichlet series

D(F, s) =

∞∑
n=1

λ(n)

ns

which converges for Re(s)� 0.

Theorem 2.1 (Andrianov). The spinor zeta function of F is

Z(F, s) = ζ(2s− 2k + 4)D(F, s)

has a meromorphic continuation to C. More precisely, the completed function is

Z∗(F, s) = (2π)−2sΓ(s)Γ(s− k + 2)Z(F, s)

has a meromorphic continuation to C, with at most two simple poles at the points
s = k − 2 and s = k, and satisfies the functional equation

Z∗(F, 2k − 2− s) = (−1)kZ∗(F, s). (2.1)

2.2. Non-vanishing result for (cuspidal) Siegel-Hecke eigenforms

Now, we show that if the spinor zeta function Z(F, s) is non-zero at center of
symmetry of the functional equation, then so is the derivative. Here, we prove the
following theorem, which is analogous to [8, Thm. 4.1].

Theorem 2.2. Suppose F is a (cuspidal) Siegel-Hecke eigenform of weight k of
genus 2. Assume that Z(F, k − 1) 6= 0. Then one has

Z ′(F, k − 1)

Z(F, k − 1)
= −ψ(k − 1)− ψ(1) + 2 log(2π),

where ψ is the logarithmic derivative of the gamma function Γ. Further, for such
an F , Z ′(F, k − 1) 6= 0.
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Proof. By (2.1), we have

(2π)−2sΓ(s)Γ(s−k+2)Z(F, s) = (2π)−2(2k−2−s)Γ(2k−2−s)Γ(k−s)Z(F, 2k−2−s).

Taking the logarithmic derivative with respect to s, we see that

− 2 log(2π) + ψ(s) + ψ(s− k + 2) +
Z ′(F, s)

Z(F, s)

= 2 log(2π)− ψ(2k − 2− s)− ψ(k − s)− Z ′(F, 2k − 2− s)
Z(F, 2k − 2− s)

.

Since Z(F, k − 1) 6= 0, putting s = k − 1 in the expression above, we get that

Z ′(F, k − 1)

Z(F, k − 1)
= −ψ(k − 1)− ψ(1) + 2 log(2π).

Now, if Z
′(F,k−1)
Z(F,k−1) = 0, then we will have

γ + log(2π) =
1

2

k−2∑
n=1

1

n
, (2.2)

by noting that ψ(k) = −γ+
∑k−1
n=1

1
n , where γ is Euler’s constant, and 0.577215 <

γ < 0.577216.
The equality in (2.2) cannot happen, because 2.41421 < γ + log 2π < 2.41511,

and 1
2

∑k−2
n=1

1
n an increasing function of k such that 1

2

∑69
n=1

1
n = 2.4093 and

1
2

∑70
n=1

1
n = 2.4164. This proves the theorem. �

Remark 2.3. Suppose that the cuspidal Siegel-Hecke eigenform F of weight k is
the Maass lift of a classical Hecke eigenform f of weight 2k − 2 and level 1. Then
the L-functions of F and f are related by the formula

Z(F, s) = ζ(s− k + 1)ζ(s− k + 2)L(f, s),

where L(f, s) is the Hecke L-function of f (cf. [12, §2, §3] for more details).
Hence, the non-vanishing of Z(F, s) at s = k − 1 could be closely related to the
non-vanishing of L(f, s), for cusp forms f , at s = k − 1 (as in [8, Thm. 4.1]).

Now, we have some corollaries to Theorem 2.2.
Let E(k) denote the set of all (cuspidal) Siegel-Hecke eigenforms F of weight

k of genus 2 such that Z(F, k − 1) 6= 0.

Corollary 2.4. For Fk ∈ E(k), the function Z′(Fk,k−1)
Z(Fk,k−1) +ψ(k− 1) is independent

of k, and its value belongs to the interval [4.252, 4.253].

Proof. The assertions follow from Theorem 2.2, and from the estimates of γ,
log(2π). �
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Corollary 2.5. For Fk ∈ E(k), the function Z′(Fk,k−1)
Z(Fk,k−1) → −∞ as k →∞.

Proof. By Corollary 2.4, we have Z′(Fk,k−1)
Z(Fk,k−1) = c − ψ(k − 1), for some c ∈ R>0.

Since the digamma function ψ(k)→∞ as k →∞, the corollary follows. �

2.3. Transcendence of the special values

Recall that, E(k) denotes the set of all (cuspidal) Siegel-Hecke eigenforms F of
weight k of genus 2 such that Z(F, k − 1) 6= 0.

Corollary 2.6. For F ∈ E(k), the real number

exp

(
Z ′(F, k − 1)

Z(F, k − 1)
+ ψ(k − 1) + ψ(1)

)
is transcendental.

Surprisingly, the transcendental nature of these special values{
Z ′(F, k − 1)

Z(F, k − 1)
: F ∈ E(k), ∀ k ∈ N

}
is quite different from the classical situation (cf. [8, Cor. 4.3]). Now, we show that
the nature of these values is pure, in the sense that either all are algebraic or all
are transcendental. More precisely, we have the following:

Proposition 2.7. If Z
′(F0,k0−1)
Z(F0,k0−1) is algebraic (resp., transcendental) for some F0 ∈

E(k0), k0 ∈ N, then Z′(F,k−1)
Z(F,k−1) is algebraic (resp., transcendental) for all F ∈ E(k)

and for all k ∈ N.

Proof. By Theorem 2.2, for any F ∈ E(k), we have

Z ′(F, k − 1)

Z(F, k − 1)
− Z ′(F0, k0 − 1)

Z(F0, k0 − 1)
= ψ(k0 − 1)− ψ(k − 1).

Now, the proposition follows immediately from the functional equation of ψ(x), i.
e., ψ(x+1)−ψ(x) = 1/x, because ψ(k0−1)−ψ(k−1) is an algebraic number. �

In last part of this section, we study the non-vanishing of D(F, s) and its
derivative at the central critical value 1

2 (critical, in the sense of Deligne). We set

∆(F, s) := (2π)−2sπ−
s
2 Γ
(s

2

)
Γ(s+ k − 1)Γ(s+ k − 2)D(F, s).

Then, ∆(F, s) has a holomorphic continuation to C, except for simple poles at
s = 0 and s = 1, and satisfies the functional equation

∆(F, s) = ∆(F, 1− s)

(cf. [7, §20, §21]). We have the following theorem, whose proof is similar to the
proof of Theorem 2.2.
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Theorem 2.8. Suppose F is a (cuspidal) Siegel-Hecke eigenform of weight k of
genus 2. Assume that D(F, 1/2) 6= 0, i.e., the standard zeta function of F does
not vanish at the critical value 1

2 . Then one has

D′(F, 1/2)

D(F, 1/2)
= −ψ

(
k − 1

2

)
− ψ

(
k − 3

2

)
− 1

2
ψ

(
1

4

)
+ log

(
4π

5
2

)
.

Further, for such an F , D′(F, 1/2) 6= 0.

3. For quadratic twists of (classical) Hecke eigenforms

Let k,N > 1 be two integers. Let f =
∑∞
n=1 a(n)qn be a normalized cuspidal

Hecke eigenform of weight 2k for Γ0(N) with trivial nebentypus, in particular, f
is a simultaneous eigenform for all the Hecke operators Tn (n ∈ N). For definitions
of cusp forms and Hecke operators, see [6].

3.1. L-functions of quadratic twists of modular forms

Let L(f, s) =
∑∞
n=1 a(n)n−s, s ∈ C, Re(s) > k + 1

2 denote the L-function associ-
ated with f . For a fundamental discriminant D, that is D = 1 or the discriminant
of a quadratic field, with (D,N) = 1, we let

L(f,D, s) :=

∞∑
n=1

(
D

n

)
a(n)

ns

for Re(s) > k + 1
2 , be the L-series of f twisted with the quadratic character

(
D
.

)
.

The following theorem is well-known.

Theorem 3.1. The function L(f,D, s) has a holomorphic continuation to C.
More precisely, the completed L-function

L∗(f,D, s) = (2π)−s(ND2)s/2Γ(s)L(f,D, s)

has a meromorphic continuation to C and satisfies the functional equation

L∗(f,D, s) = (−1)k
(
D

−N

)
L∗(WNf,D, 2k − s), (3.1)

where WNf := f |k
[

0 −1
N 0

]
, an idempotent operator.

3.2. Non-vanishing result for quadratic twists of (classical)
Hecke eigenforms

Now, we show that if the central critical value L(f,D, k) is non-zero, then so is
the derivative at s = k. Here, we prove the following.



126 Narasimha Kumar

Theorem 3.2. Let f =
∑∞
n=1 a(n)qn be a normalized cuspidal Hecke eigenform

of weight 2k for Γ0(N) with trivial nebentypus. Assume that L(f,D, k) 6= 0. Then
one has

L′(f,D, k)

L(f,D, k)
= −ψ(k) + log(2π)− log(ND2)

2
.

Further, for such an f , L′(f,D, k) 6= 0.

Proof. By (3.1), we have

(2π)−s(ND2)s/2Γ(s)L(f,D, s) = (2π)−(2k−s)(ND2)k−
s
2 Γ(2k − s)L(f,D, 2k − s).

Taking the logarithmic derivative with respect to s, we see that

− log(2π) +
1

2
log(ND2) + ψ(s) +

L′(f,D, s)

L(f,D, s)

= log(2π)− 1

2
log(ND2)− ψ(2k − s)− L′(f,D, 2k − s)

L(f,D, 2k − s)
. (3.2)

Since L(D, f, k) 6= 0, putting s = k in the expression above, we get that

L′(f,D, k)

L(f,D, k)
= −ψ(k) + log(2π)− log(ND2)

2
.

Now, if L
′(f,D,k)
L(f,D,k) = 0, then we will have

γ + log(2π) =

k−1∑
n=1

1

n
+

log(ND2)

2
, (3.3)

since ψ(k) = −γ+
∑k−1
n=1

1
n , where 0.577215 < γ < 0.577216. The equality in (3.3)

cannot hold, because from the inequalities

2.41421 < γ + log 2π < 2.41511, 2.418 <
1

2
log 126, and

6∑
n=1

1

n
= 2.45

we get that

γ + log(2π) <

k−1∑
n=1

1

n
+

log(ND2)

2

is true if either k > 7 or ND2 > 126. For the remaining cases, one can similarly
check that (3.3) can never happen. �

Deep results of Bump, Friedberg, and Hoffstein [5], of Murty and Murty [14], of
Ono and Waldspurger [13], and of others (in various cases) establish non-vanishing
results for central critical values of quadratic twists of modular L-functions.

Remark 3.3. In [8, §5], the authors proved a non-vanishing result for the deriva-
tives of symmetric square L-functions for k > 48. A computation similar to the
above (or by calculating with the computer), one can check that Theorem 4.7 in
loc. cit. continues to hold for all k > 1.
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3.3. Transcendence of the special values

Fix a fundamental discriminant D. For N ∈ N with (N,D) = 1, we let ED(N, k)
to denote the set of all normalized cuspidal Hecke eigenforms f of weight 2k for
Γ0(N) with trivial nebentypus such that the twisted L-value L(f,D, k) 6= 0.

Corollary 3.4. For f ∈ ED(N, k), the real number

exp

(
L′(f,D, k)

L(f,D, k)
+ ψ(k)

)
is transcendental.

Proof. The corollary follows from Theorem 3.2. �

We finish this section with a generalization of [8, Cor. 4.3] to the quadratic
twists of cuspidal Hecke eigenforms.

Proposition 3.5. For k > 1, the set{
L′(f,D, k)

L(f,D, k)
: f ∈ ED(N, k), ∀ N > 1 such that (N,D) = 1

}
has at most one algebraic element.

Proof. For i = 1, 2, let fi ∈ ED(Ni, k) be two Hecke eigenforms of weights 2k for
Γ0(Ni). If N1 = N2, then

L′(f1,D,k)
L(f1,D,k) = L′(f2,D,k)

L(f2,D,k) . In the other case, i.e., N1 6= N2,

if both L′(f1,D,k)
L(f1,D,k) and L′(f2,D,k)

L(f2,D,k) are algebraic, then their difference logN2/N1 is
also algebraic, which is a contradiction. This proves the proposition. �

4. For half-integral weight (cuspidal) modular forms

For k ∈ N, N odd square-free positive integer, we let Sk+1/2(Γ0(4N)) to denote
the space of cusp forms of weight k+ 1

2 on Γ0(4N) with trivial nebentypus (cf. [15]
for definitions). The results in this section are quite similar to the ones obtained
before, so we will sketch the results (and also only for the subgroup Γ0(4)).

4.1. L-functions of half-integral weight (cuspidal) modular forms

Let h =
∑∞
n=1 c(n)qn be a cuspidal Hecke eigenform of weight k+1/2, in particular,

h is a simultaneous eigenform for all the Hecke operators. For the definitions of
cusp forms and Hecke operators, see [15].

Consider the Dirichlet series

L(h, s) :=
∑
n>1

c(n)

ns
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which converges for Re(s) > k/2+5/4. Then by means of the usual Mellin formula
and using some standard arguments one proves that the complete L-function

L∗(h, s) = π−sΓ(s)L(h, s)

has a holomorphic continuation to the complex plane C and satisfies the functional
equation

L∗(h, k + 1/2− s) = L∗(W4h, s),

where W4h(z) := (−2iz)−k−1/2h(−1/4z) ∈ Sk+1/2(Γ0(4)), an idempotent opera-
tor (cf. [15, §5] or [11, pg. 429]).

4.2. Non-vanishing result for half-integral weight cusp forms

Now, we show that if the L-function L(h, s) is non-zero at center of symmetry of
the functional equation, then so is the derivative. Here, we prove the following
theorem, which is analogous to Theorem 2.2 and Theorem 3.2.

Theorem 4.1. Let h =
∑∞
n=1 c(n)qn be a cuspidal Hecke eigenform of weight

k+ 1/2 for Γ0(4) with trivial nebentypus. Assume that L(h, k/2 + 1/4) 6= 0. Then
one has

L′(h, k/2 + 1/4)

L(h, k/2 + 1/4)
= −ψ(k/2 + 1/4) + log(π)

Further, for such an h, L′(h, k/2 + 1/4) 6= 0.

Proof. The proof of this theorem is quite similar to the proofs of Theorem 2.2
and Theorem 3.2. We will skip the proof, but we remark that in the final step of
the proof, one need to use the fact that log(π) ∼ 1.144729885 and ψ(k/2 + 1/4)
is an increasing function for k > 3 such that ψ(13/4) = 1.016991 and ψ(15/4) =
1.182537. �

We have a few corollaries to the theorem above, which are similar to Corol-
lary 2.4 and Corollary 2.5.

Let E(k+1/2) denote the set of all cuspidal Hecke eigenforms h of weight k+1/2
for Γ0(4) with trivial nebentypus, such that the L-value L(h, k/2 + 1/4) 6= 0.

Corollary 4.2. For hk ∈ E(k + 1/2), the function L′(hk,k/2+1/4)
L(hk,k/2+1/4) + ψ(k/2 + 1/4)

is independent of k, and its value belongs to the interval [1.144, 1.145].

Corollary 4.3. For hk ∈ E(k + 1/2), the function L′(hk,k/2+1/4)
L(hk,k/2+1/4) → −∞ as

k →∞.

Finally, we will make one remark. By Waldspurger’s theorem, the central
critical values L(f,D, k) are essentially proportional to the squares of Fourier
coefficients of the modular form h of weight k + 1/2 corresponding to f under
Shimura correspondence.

Corollary 4.4. Let h =
∑∞
n=1 c(n)qn be a half-integral weight cuspidal newform

of weight k + 1/2 in the Kohnen’s +-subspace, and let f denote the corresponding
classical cusp form of weight 2k under the Shimura correspondence. Let D be a fun-
damental discriminant such that (−1)kD > 0. If c(|D|) 6= 0, then L′(f,D, k) 6= 0.
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4.3. Transcendence of the special values

Recall that, E(k+1/2) denotes the set of all cuspidal Hecke eigenforms h of weight
k+1/2 for Γ0(4) with trivial nebentypus, such that the L-value L(h, k/2+1/4) 6= 0.

Corollary 4.5. For h ∈ E(k + 1/2), the real number

exp

(
L′(h, k/2 + 1/4)

L(h, k/2 + 1/4)
+ ψ(k/2 + 1/4)

)
is transcendental.

Surprisingly, the transcendental nature of these special values{
L′(h, k/2 + 1/4)

L(h, k/2 + 1/4)
: h ∈ E(k + 1/2)

}
is quite different from the Propositions 2.7 and 3.5. Now, we show that the nature
of these values is pure with respect to the parity of k. More precisely, we have the
following:

Proposition 4.6. If L′(h0,k0/2+1/4)
L(h0,k0/2+1/4) is algebraic (resp., transcendental) for some

h0 ∈ E(k0 + 1/2), k0 ∈ N, then L′(h,k/2+1/4)
L(h,k/2+1/4) is algebraic (resp., transcendental)

for all h ∈ E(k + 1/2) and for all k ∈ N with k ≡ k0 (mod 2).

Proof. By Theorem 4.1, for any h1 ∈ E(k + 1/2) and h2 ∈ E(` + 1/2), we will
have

L′(h1, k/2 + 1/4)

L(h1, k/2 + 1/4)
− L′(h2, `/2 + 1/4)

L(h2, `/2 + 1/4)
= ψ(`/2 + 1/4)− ψ(k/2 + 1/4).

The proposition is immediate from the functional equation of ψ(x), i.e., ψ(x+1)−
ψ(x) = 1/x, because ψ(`/2 + 1/4) − ψ(k/2 + 1/4) is an algebraic number if and
only if ` ≡ k (mod 2). �

5. Applications in transcendental number theory

In this penultimate section, we briefly recall one of the consequences of Schanuel’s
conjecture from the transcendental number theory (cf. [8, §2] for more details).
We will apply this to understand the transcendental nature of the special values of
(cuspidal) Siegel-Hecke eigenforms of genus 2, quadratic twists of classical Hecke
eigenforms.

Schanuel’s conjecture states that, for any {αi}ni=1 in C that are linearly inde-
pendent over Q, the transcendence degree of the field Q({αi}, {eαi})ni=1 over Q
is at least n. As a consequence of this conjecture, one sees that, for a non-zero
algebraic number α, the two numbers eα and π are algebraically independent, and
so are their logarithms (cf. §2 of loc. cit.).
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Corollary 5.1. Let F be as in Theorem 2.2, and assume that Schanuel’s conjec-
ture is true. Then

L′(F, k − 1)

L(F, k − 1)
− 2γ and exp

(
L′(F, k − 1)

L(F, k − 1)
− 2γ

)
are transcendental.

Proof. By Theorem 2.2, we have

L′(F, k − 1)

L(F, k − 1)
− 2γ = 2 log(2π)− α

and

exp

(
L′(F, k − 1)

L(F, k − 1)
− 2γ

)
= 4π2e−α, where α =

k−2∑
n=1

1

n
∈ Q.

Both of these numbers are transcendental, by Schanuel’s conjecture. �

We have a similar result in the quadratic twists of classical Hecke eigenforms.

Corollary 5.2. Let f be as in Theorem 3.2, and assume that Schanuel’s conjecture
is true. Then

L′(f,D, k)

L(f,D, k)
− γ and exp

(
L′(f,D, k)

L(f,D, k)
− γ
)

are transcendental.

Proof. By Theorem 3.2, we have

L′(f,D, k)

L(f,D, k)
− γ = log(2π)− 1

2
log(ND2)− α

and

exp

(
L′(f,D, k)

L(f,D, k)
− γ
)

= e−α
2π

N1/2D
, where α =

k−1∑
n=1

1

n
∈ Q.

Both of these numbers are transcendental, again by Schanuel’s conjecture. �

We end this article with an application, which is a special case of Theorem 3.2,
to elliptic curves. Let E be an elliptic curve defined over Q of conductor N , and
let D be a fundamental discriminant such that (D,N) = 1. Since every elliptic
curve over Q is modular (cf. [4], [17]), we have the following corollary.

Corollary 5.3. Suppose that L(E,D, 1) 6= 0. Then L′(E,D, 1) 6= 0. Further,

exp

(
L′(E,D, 1)

L(E,D, 1)
− γ
)

is transcendental.
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Finally, we ask the following:

Question. The non-vanishing results of special values of L-functions and their
derivatives are known to be true for cuspidal Hecke eigenforms and for their sym-
metric square L-functions [8], for Hilbert Modular forms [16]. Now, the current
article shows that these results continue to hold for (cuspidal) Siegel-Hecke eigen-
forms of genus 2, quadratic twists of cuspidal Hecke eigenforms, and half-integral
weight modular forms. Is it just a coincidence? or do these non-vanishing results
hold in much more generality, i. e., for a “special" class of motivic L-functions?
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