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THE DUAL OF THE LOCALLY CONVEX SPACE Cp (X)
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Abstract: If X is an infinite Tichonov space, we show that the weak dual Lp (X) of the con-
tinuous function space Cp (X) cannot be barrelled, bornological, or even quasibarrelled. Indeed,
of the fourteen standard weak barrelledness properties between Baire-like and primitive, Lp (X)
enjoys precisely the four between property (C) and primitive if X is a P-space, and none oth-
erwise. Since Lp (X) is Sσ , it must admit an infinite-dimensional separable quotient. Under its
Mackey topology, Lp (X) enjoys eleven of the properties if X is discrete, nine if X is a nondiscrete
P-space, and none otherwise.

Keywords: weak barrelledness, P-spaces, separable quotients.

1. Introduction

In the sequel, X will be an infinite Tichonov (completely regular Hausdorff) space
and Cp (X) will denote the space C (X) of all continuous real-valued functions
defined on X provided with the pointwise convergence topology. L (X) denotes
the topological dual of Cp (X) and Lp (X) the linear space L (X) equipped with
the weak topology σ (L (X) , C (X)). A locally convex space (lcs) E is [bar-
relled ] 〈quasibarrelled〉 if every [σ (E′, E)-bounded] 〈β (E′, E) -bounded〉 set in E′
is equicontinuous, and E is bornological if every absolutely convex set which ab-
sorbs the bounded sets of E is a neighborhood of the origin.

Folklore says Lp (X) is realcompact if and only if X is realcompact, and Lp (X)
is a Lindelöf space if and only if Cp (X) is countably tight. Very likely the following
question is still open: If Lp (X) is countably tight, must Cp (X) be a Lindelöf
space?
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But our study of Lp (X) will follow the study of Cp (X) by Buchwalter, Schmets,
Cascales, and others who proved in [3], [5, Cor.2.8], [11, Cor.11.7.3], [26] that (i)
Cp (X) is always quasibarrelled, (ii) Cp (X) is bornological if and only if X is re-
alcompact, (iii) Cp (X) is barrelled if and only if every bounding set in X is finite,
(iv) Cp (X) is quasicomplete if and only if X is discrete, (v) Cp (X) is sequentially
complete if and only if X is a P-space, and (vi) Cp (X) belongs to class G if and
only if X is countable.

We will quickly see that Lp (X) is never barrelled, quasibarrelled, bornological,
or in class G, then consider all fourteen properties usually associated with weak
barrelledness [22], from Baire-like to primitive. We show that, of these fourteen,
Lp (X) enjoys precisely the four duality invariant properties between property (C)
and primitive, or none at all, depending on whether X is a P-space or not. Result
(v) is an immediate corollary. Recall [27, p.103] that a property is duality invariant
if whenever it holds for a lcs (E, T ) it also holds for (E, T1), where T1 is any locally
convex topology on E such that (E, T )

′
= (E, T1)

′.
Thus our analysis of Lp (X) vis-à-vis weak barrelledness is complete, albeit

monochromatic. Letting Lm (X) denote Lp (X) endowed with its Mackey topology
τ (L (X) , C (X)), we obtain for Lm (X) an analysis more colorful but somewhat
less than complete: Lm (X) is barrelled if and only if X is discrete, and then has
precisely the eleven weak barrelledness properties between barrelled and primi-
tive. If X is not a P-space, then Lm (X) enjoys none of the fourteen properties.
When X is a nondiscrete P-space, we show that Lm (X) has all fourteen prop-
erties except Baire-like (BL), quasi-Baire (QB), barrelled, non-Sσ, and possibly
ℵ0-barrelled, so that Lm (X) enjoys either nine or ten of the fourteen properties.
ForX a nondiscrete Lindelöf P-space, we prove that Lm (X) possesses exactly nine
of the properties (is not ℵ0-barrelled). The only question left open1 is whether
Lm (X) fails to be ℵ0-barrelled for every nondiscrete P-space X.

Several times we rely on the fact that Cp (X) contains a dense subspace
Cb (X) = {f ∈ C (X) : f (X) is bounded in R} dominated by that Banach space,
denoted Cbu (X), which it becomes under the uniform convergence norm. This
same fact and Baire’s theorem prove Cp (X) is always a non-Sσ space; i.e., a lcs
that cannot be covered by an increasing sequence of proper closed subspaces (cf.
[15]). Nonetheless, we prove Lp (X) is never non-Sσ, i.e., is always Sσ. Conse-
quently, every Lp (X) admits infinite-dimensional separable quotients (that are
ℵ0-dimensional, even). Similarly for the strong dual Cp (X)

′
β of Cp (X). The

strong dual Cc (X)
′
β , where Cc (X) denotes C (X) endowed with the compact-

open topology, always admits infinite-dimensional separable quotients [16], as do
the strong duals of infinite-dimensional Banach spaces [1]. Only very recently have
we, jointly with Todd [16], identified a class of infinite-dimensional strong duals
that disallow such quotients.

1The positive answer was given by the last-named author in the following paper: S.A. Saxon,
Weak barrelledness vs. P-spaces, to appear in Vol. 80 of the Springer Proceedings in Mathematics
and Statistics, titled Descriptive Topology and Functional Analysis (added in press).
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2. Lp (X): not bornological, not (quasi)barrelled, not in class G

Jarchow’s unequivocal (i), the classical Buchwalter-Schmets characterizations
(ii-v), and the Cascales-Kąkol-Saxon result (vi) cited above attest to the fact that
interesting Cp (X) spaces are always quasibarrelled and sometimes bornological,
barrelled, or in class G. Never so for Lp (X) spaces.

Theorem 1. Lp (X) is never barrelled, quasibarrelled, or bornological.

Proof. The unit ball U in the Banach space Cbu (X) is infinite-dimensional and
σ (C (X) , L (X))-bounded. The Banach-Mackey theorem [18, §20.11(3)] ensures
that U is strongly β (C (X) , L (X))-bounded. But U cannot be equicontinuous on
Lp (X), for no lcs E with its σ (E,E′) topology admits equicontinuous infinite-
dimensional sets in E′. Therefore Lp (X) is not quasibarrelled, hence neither
barrelled nor bornological. �

We see (vi) more simply from our joint paper [7] with López-Pellicer, which
shows that a lcs E having its weak σ (E,E′) topology is in Cascales and Orihuela’s
class G if and only if dimE′ 6 ℵ0. Indeed, if dimE′ 6 ℵ0, then E is metrizable,
hence in G, and the converse is Proposition 2 of [7], whose essential argument
Talagrand knew (cf. [12, Prop.3.7]).

Theorem 2. Lp (X) is never in class G.

Proof. C (X) contains an infinite-dimensional subspace Cb (X) dominated by
a Banach space, and thus dimLp (X)

′ > dimCb (X) > 2ℵ0 > ℵ0, so that Lp (X)
is not in G by the preceding paragraph. �

3. Weak barrelledness and L(X)

A lcs E is inductive if E is the inductive limit of every increasing sequence of
subspaces that cover E (cf. [8]). A lcs E is primitive if every linear form on E
with continuous restrictions to the members of some increasing, covering sequence
of subspaces must, itself, be continuous (cf. [23]). E is [`∞-barrelled ] 〈c0-barrelled〉
if every [σ (E′, E)-bounded] 〈σ (E′, E) -null〉 sequence is equicontinuous. Clearly,
inductive ⇒ primitive and `∞-barrelled ⇒ c0-barrelled.

Theorem 3. Lp (X) is never non-Sσ, inductive, `∞- or c0-barrelled.

Proof. There exists a sequence (Un)n of disjoint non-empty open sets in X. For
each n, choose xn ∈ Un and fn ∈ C (X) such that fn (xn) = 1 and fn (X \ Un) =
{0}, and set

Mn =
⋂
m>n

{v ∈ L (X) : 〈v, fm〉 = 0} .

One easily checks that Lp (X) is the union of the properly increasing sequence
(Mn)n of closed subspaces, and thus, by definition, is an Sσ space. Also, Lp (X)
is not the inductive limit of the subspaces Mn and not c0-barrelled, for otherwise
the linearly independent and weakly null sequence (fn)n would be equicontinuous
on Lp (X). �
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Since BL ⇒ QB ⇒ non-Sσ ⇒ inductive, and QB ⇒ barrelled ⇒ ℵ0-barrelled
⇒ C-barrelled ⇒ property (L) ⇒ inductive, it is clear that Lp (X) enjoys none of
these eight weak barrelledness properties between Baire-like and inductive, nor can
it be `∞- or c0-barrelled. (Barrelledness does not generally imply BL, QB, or non-
Sσ, but does, e.g., under metrizability.) The remaining four successively weaker
barrelledness properties are property (C), property (S), dual locally complete (dlc),
and primitive. All four are duality invariant and, as Theorem 6 will show, each
is realized in Lp (X) precisely when X is a P-space. Thus Lp (X) reduces weak
barrelledness to a single notion expressed in four standard ways.

A lcs E has [property (C)] 〈property (S)〉 if in the weak dual (E′, σ (E′, E)),
[bounded sets are relatively countably compact] 〈Cauchy sequences converge〉 [19].
E is locally complete if and only if for each bounded sequence (xn)n in E and each
absolutely summable scalar sequence (an)n, the series

∑
n anxn converges in E;

and E is dlc if its weak dual is locally complete [20].
The [weak] 〈Mackey〉 topology on a lcs E is the [coarsest] 〈finest〉 locally convex

topology on E that reproduces the given dual. On the quasibarrelled (cf. (i))
space Cp (X) these extreme topologies, weak and Mackey, coincide. Never so for
Lp (X): Let S be a linearly independent null sequence in the Banach space Cbu (X);
the absolutely convex closed hull of S is compact in Cp (X), therefore Mackey
equicontinuous, but not weakly equicontinuous. In short, Lp (X) 6= Lm (X).

A lcs E is feral [15] if every infinite-dimensional set in E is unbounded. Clearly,
a lcs with its weak topology is quasibarrelled if and only if its strong dual is feral,
so (i) merely says that L (X) with its strong β (L (X) , C (X)) topology is always
feral.

The proof is not hard: Let A be an infinite-dimensional subset of L (X). With
regard to the Hamel basis X, we choose sequences (zn)n ⊂ A and (un)n ⊂ X
of distinct elements such that, in the expansion of zn, the coefficient cn of un is
nonzero. Let (xn)n be a subsequence of (un)n for which there is a sequence (Un)n of
disjoint open sets in X with xn ∈ Un, and let (yn)n and (bn)n be the corresponding
subsequences of (zn)n and (cn)n. For each n, choose an open set Vn ⊂ Un such that
xn ∈ Vn and Vn misses the finitely many other x in X having nonzero coefficients
in the expansion of yn. Finally, choose gn ∈ C (X) such that gn (xn) = n/bn and
gn (X\Vn) = {0}. We observe that gn (yn) = gn (bnxn) = n and, since the Vn are
pairwise disjoint, {gn : n ∈ N} is bounded in Cp (X). It follows that (yn)n, and
thus A, is not strongly bounded; i.e., (L (X) , β (L (X) , C (X))) is feral, Q.E.D.

We note other instructive translations: (v) simply says that Lp (X) has prop-
erty (S) if and only if X is a P-space, a weak barrelledness result we maximally
extend in Corollary 1. Our next example consolidates important Lp (X) facts
from Cp (X) weak barrelledness results due mainly to Buchwalter and Schmets
(cf. [15]).

Theorem 4. The following six statements are equivalent.

(1) X admits no infinite bounding set.
(2) Cp (X) is barrelled (Buchwalter and Schmets).
(3) Lp (X) is quasicomplete.
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(4) Lp (X) is sequentially complete.
(5) Lp (X) is locally complete.
(6) Lp (X) is feral.

Proof. From [18, §23.6(4)] we have (2) ⇒ (3). Trivially, (3) ⇒ (4) ⇒ (5).
If Lp (X) is locally complete, then each bounded absolutely convex closed set is

a Banach disc [4, 5.1.6] that is β (L (X) , C (X))-bounded by the Banach-Mackey
theorem, and thus, by our interpretation above of (i), is finite-dimensional; i.e.,
Lp (X) is feral, and (5) ⇒ (6).

Trivially, (6) ⇒ (2), proving equivalence of (2)-(6).
Since the bounding subsets ofX may be viewed as linearly independent bounded

subsets of Lp (X), it is apparent that (6) ⇒ (1).
We sketch a proof that (1)⇒ (6). Let (zn)n be a linearly independent sequence

in L (X). Use (1) to inductively find a subsequence (yn)n of (zn)n, a locally finite
sequence (Un)n of disjoint nonempty open sets inX, and a sequence (fn)n ⊂ C (X)
such that, for all n ∈ N,

fm (yn) = 0 for m > n, fn (yn) = 1, and fn (X\Un) = {0} .

By definition of local finiteness, every point in X has a neighborhood that meets
only finitely many of the Un, so the pointwise sum f of the series

∑
n anfn is in

C (X) for every scalar sequence (an)n. If we set a1 = 1 and an+1 = (n+ 1) −∑
k6n akfk (yn+1), then f (yn) = n for each n, which implies (yn)n is not bounded

in Lp (X). Therefore (6) holds. �

We may restate (iv) in light of [18, §23.6(4)], adding parts (3) and (4) via the
Banach-Mackey theorem.

Theorem 5. The following four assertions are equivalent.

(1) X is discrete.
(2) Lm (X) is barrelled (Buchwalter and Schmets).
(3) Lm (X) is quasibarrelled.
(4) Lm (X) is bornological.

Proof. The strongest locally convex topology ensures (1) ⇒ (2,3,4).
Conversely, if (2), (3), or (4) holds, then Lm (X) is quasibarrelled. As before,

the unit ball U in Cbu (X) is β (C (X) , L (X))-bounded, thus equicontinuous on
Lm (X), and is obviously closed in Cp (X). By equicontinuity, U is closed in the
algebraic dual RX with its product topology. Given any f ∈ RX with |f | 6 1 and
finite S ⊂ X, there exists g ∈ U that agrees with f on S, and thus f ∈ U . In
particular, the characteristic function of {x} is in C (X) for each x ∈ X, which
means X is discrete. �

We expand Arkhangel’skii’s notion of strict τ -continuity [2]. IfM = {Xα}α∈A
is a family of subsets of X covering X, we shall say that a real-valued function
f on X is strictly M-continuous if, for each α ∈ A, there is some gα ∈ C (X)
with f |Xα = ga|Xα. The definitions of strictM-continuity and strict τ -continuity
(τ an infinite cardinal) coincide whenM consists of all subsets of X of cardinal-
ity τ .
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From [9]: X is a P-space if and only if, for each x ∈ X, every countable
intersection of neighborhoods of x is, itself, a neighborhood of x. To (v) we add

Theorem 6. The following five assertions are equivalent.

(1) Lp (X) is primitive.
(2) For each increasing sequenceM = (Xn)n of subsets of X covering X, every

strictlyM-continuous function f is continuous.
(3) X is a P-space.
(4) The Mackey space Lm (X) is `∞-barrelled.
(5) Lp (X) has property (C).

Proof. (1) ⇒ (2). LetM and f be given as in (2). By definition, for each n ∈ N
some gn ∈ C (X) satisfies gn|Xn = f |Xn. With the usual embedding of X into
Lp (X) as a Hamel basis and the linearization of gn and f , the latter becomes
a linear form on Lp (X) which agrees with gn on spXn. Primitivity then puts f
in the continuous dual C (X) of Lp (X), and (2) holds.

(2) ⇒ (3). Let (Un)n be a sequence of neighborhoods of a point y in X.
Since finite intersections of open sets are open, we readily choose by induction
a decreasing sequence (Vn)n of open neighborhoods of y and a sequence (gn)n ⊂
C (X) such that, for each n ∈ N,
(a) Vn ⊂ Un,
(b) gn (y) = 1 and gn (X\Vn) = {0}, and
(c) Vn+1 ⊂

⋂n
i=1 {x ∈ X : |gi (x)− 1| < 1/n}.

Set

Y =

∞⋂
n=1

g−1
n (1) and Xn = (X\Vn)

⋃
Y for all n ∈ N.

Since (Vn)n is decreasing, (Xn)n is increasing. Moreover, (Xn)n covers X, for it
obviously covers Y , and if x ∈ X\Y , then there exist i and j such that |gi (x)− 1| >
1/j. Set m = max {i, j}, so that 1 6 i 6 m and |gi (x)− 1| > 1/m, which by (c)
implies that x ∈ X\Vm+1 ⊂ Xm+1.

Claim: Let f be the function which vanishes on X\Y and is identically 1 on Y ,
and letM = (Xn)n. Then f agrees with gn on Xn for all n; i.e., f is strictlyM-
continuous. Clearly, f and gn are both identically 1 on Y . From (b), X\Vn ⊂ X\Y
and both f and gn vanish on X\Vn. Hence f and gn agree on Y ∪ (X\Vn) = Xn,
establishing the Claim.

From (2), f is continuous on X. By construction, y is in Y , and continu-
ity yields a neighborhood U of y which is mapped by f into the open interval
(1/2, 3/2). Since f is nonzero on U , we have U ⊂ Y . Again, from (b) and the
definition of Y , we observe Y ⊂ Vn. Combining these facts with (a), we have

U ⊂ Y ⊂
∞⋂
n=1

Vn ⊂
∞⋂
n=1

Un,

which proves (3).
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(3) ⇒ (4). Let (fn)n be a bounded sequence in Cp (X) with (bounded) abso-
lutely convex hull A. To show (fn)n is Mackey-equicontinuous, it suffices to show
that the closure A of A in the product space RX is compact and contained in
C (X). For each x ∈ X we set

N (x) =
⋂

m,n∈N
{z ∈ X : |fn (z)− fn (x)| < 1/m} .

Each N (x) is a neighborhood of x by (3). By construction, each fn has the
constant value fn (x) on N (x). Each g in A is a linear combination of the fn and
thus has constant value g (x) on N (x). Also, A is bounded in RX , thus compact
by Tichonov’s theorem. Now suppose h ∈ RX and h (y) 6= h (x) for some x ∈ X
and y ∈ N (x). Set ε = |h (x)− h (y)| and define a neighborhood U of h in RX by
writing

U =
{
g ∈ RX : |g (x)− h (x)| , |g (y)− h (y)| < ε/2

}
.

If g ∈ U , then it follows from the triangle inequality that g (x) 6= g (y). And
since g is not constant on N (x), it is not in A; i.e., U is a neighborhood of h
which misses A. We conclude that A can contain only functions that are constant
on a neighborhood N (x) of x for each x ∈ X. But such functions are clearly
continuous on X, proving A ⊂ C (X).

(4) ⇒ (5) ⇒ (1). Evidently, any `∞-barrelled lcs with its weak topology has
property (C), and property (C) always implies primitive. �

Corollary 1. The space Lp (X) enjoys precisely the four properties between prop-
erty (C) and primitive if X is a P-space, and none otherwise.

Corollary 2. If X is discrete, then Lm (X) has precisely the eleven weak barrelled-
ness properties between barrelled and primitive. These eleven, with the exception
of barrelled and possibly ℵ0-barrelled, become the ten or nine properties enjoyed by
Lm (X) when X is a nondiscrete P-space. If X is not a P-space, then Lm (X) has
none of the fourteen weak barrelledness properties.

Proof. Theorem 5 ensures that Lm (X) has at least the eleven properties promised
when X is discrete. Theorem 3 and duality invariance insure that Lm (X) can
never be non-Sσ, nor can have either of the other two properties, BL and QB, that
imply non-Sσ; thus 14− 3 = 11 is the precise number in this case.

If X is a nondiscrete P-space, then Lm (X) is Sσ and not barrelled (Theorems 3
and 5), so Lm (X) can have at most the 11−1 = 10 properties between ℵ0-barrelled
and primitive. Now Lm (X) is Mackey and `∞-barrelled by Theorem 6, hence by
[21] enjoys all ten of these properties with the possible exception of ℵ0-barrelled.
(We have `∞-barrelled ⇒ c0-barrelled, and from [21], [Mackey ∧ c0-barrelled] ⇒
C-barrelled.)

When X is not a P-space, Lm (X) is not primitive by Theorem 6 and duality
invariance of primitivity. Thus neither can Lm (X) enjoy any of the stronger
conditions. �
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X is a Lindelöf space if every open cover of X can be reduced to a countable
subcover. Many X [2, IV.2.15] satisfy the popular hypothesis (cf. [2, II.1.5],
[10, p.157], [12, Ch.14]) of our next Theorem since, clearly, a Lindelöf P-space is
nondiscrete if and only if it is uncountable.

Theorem 7. If X is a nondiscrete Lindelöf P-space, then Lm (X) is `∞-barrelled
but not ℵ0-barrelled.

Proof. The previous Theorem ensures that Lm (X) is `∞-barrelled.
Let y be a non-isolated point inX. Zorn’s lemma produces a maximal collection

C of nonempty open sets whose closures are pairwise disjoint and miss y.

Claim: C is uncountable. Otherwise, since X is a P-space, the intersection of
the complements of the closures of sets in C would be a neighborhood V of y. Since
y is not isolated, there is some y′ 6= y such that V is a neighborhood of y′. Hence
there exists an open set V ′ ⊂ V such that y′ ∈ V ′ and y /∈ V ′ ⊂ V . But then the
collection C

⋃
{V ′} would contradict the maximallity of C. The Claim follows.

For each U ∈ C choose xU ∈ U and set S = {xU : U ∈ C}. The closed set
S is Lindelöf by hypothesis, whereas our Claim shows that S is not Lindelöf.
Consequently, there exists some z ∈ S\S. Furthermore, since the elements of C
are pairwise disjoint, z /∈

⋃
C.

Next, we construct a special Hamel basis for L (X). Let A = X\
⋃

C. For each
U select fU ∈ C (X) such that

fU (xU ) = 1 and fU (X\U) = {0} ,

and set
BU = {xU}

⋃
{u− fU (u) · xU : u ∈ U\ {xU}} .

Each BU is a Hamel basis for the span of U in L (X). Clearly, the set

B =
⋃
{BU : U ∈ C}

⋃
A

is a Hamel basis for all of L (X), and the coefficient functional for each xU is just
the continuous fU .

Now z ∈ A ⊂ B, and the coefficient functional h corresponding to z is discon-
tinuous, since it vanishes on S (⊂ B\ {z}) and not on S. Assume the Mackey space
Lm (X) is ℵ0-barrelled. From the Saxon-Tweddle splitting theorem [24, Th.3.1],
then, it is the direct sum of EC and ED, where EC is the span of those basis
elements having continuous coefficient functionals and ED is the span of the rest.
Therefore EC is closed in Lm (X) and contains S and not z. The Hahn-Banach
theorem provides a linear form in the continuous dual C (X) which is 1 at z and
vanishes on EC , hence on S, which is clearly absurd. �

The plentiful [9] nondiscrete P-spaces X yield spaces Cp (X) that are sequen-
tially complete but not quasicomplete, and Mackey spaces Lm (X) that are
`∞-barrelled but not barrelled. Uncountable Lindelöf P-spaces X all yield Mackey
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spaces Lm (X) that are `∞-barrelled but not ℵ0-barrelled (cf. [21]). Whether
this holds for arbitrary uncountable P-spaces X is an open question whose answer
would determine (A) whether Lm (X) spaces reduce weak barrelledness to two dis-
tinct notions or three, and (B) whether Lm (X) spaces can augment our meager
supply of Mackey ℵ0-barrelled spaces that are not barrelled [24].

4. Separable quotients

By “separable quotient” we will mean “infinite-dimensional separable quotient by
a closed subspace”. A most famous open question of Banach space theory is
whether every infinite-dimensional Banach space admits a separable quotient. In
the broader search to determine which lcs’s admit separable quotients we, jointly
with Todd [16], recently proved that, among the GM -spaces of Eberhardt and
Roelcke, precisely those that are Sσ spaces (equiv., that are not QB) admit sep-
arable quotients. Since infinite-dimensional Baire (hence QB) GM -spaces exist,
these provide the first examples of infinite-dimensional lcs’s that disallow separable
quotients.

The main result of [25] is that a Banach space admits a separable quotient if
and only if it admits a dense subspace which is non-barrelled. It is quite easy to
prove that (a) A lcs admits a separable quotient if and only if it admits a dense
subspace which is an Sσ space (cf. [25, P6]), and (b) A lcs is an Sσ space if and only
if it admits a closed ℵ0-codimensional subspace. It then follows from Theorem 3
that

Theorem 8. Lp (X) admits a separable quotient; even more, admits an ℵ0-
dimensional quotient.

Corollary 3. Lm (X) and the strong dual Cp (X)
′
β of Cp (X) must admit separable

quotients, as, indeed, must Lp (X) with any finer locally convex topology.

The dual Cc (X)
′ is generally larger than L (X), but L (X) is clearly dense

in the weak dual Cc (X)
′
σ, and thus by (a) and Theorem 3, we see immediately

that Cc (X)
′
σ admits separable quotients. In [16] we prove much more: Cc (X)

′

admits separable quotients when it is given any locally convex topology between
the weak topology σ

(
Cc (X)

′
, C (X)

)
and the strong topology β

(
Cc (X)

′
, C (X)

)
.

In particular, the strong dual Cc (X)
′
β always admits separable quotients. This is

the Cc (X) analog of a spectacular Banach space result in [1].
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[6] J.C. Ferrando, J. Kakǫl, M. López-Pellicer and S.A. Saxon, Tightness and
distinguished Fréchet spaces, J. Math. Anal. Appl. 324 (2006), 862–881.
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