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Abstract: We construct a rearrangement invariant space X on [0, 1] with the property that all
bounded linear operators from `p, 1 < p <∞, to X are compact, but there exists a non-compact
operator from `∞ to X. The techniques used allow to give a new proof of the characterization
given by Hernández, Raynaud and Semenov of the rearrangement invariant spaces on [0, 1] for
which the canonical embedding into L1([0, 1]) is finitely strictly singular.
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1. The problem and the results

Given a Banach space X, let ca(Σ, X) denote the space of all countably additive
measures defined on the σ-algebra Σ with values in X, considered with the norm
given by the semivariation, and cca(Σ, X) denote the subspace of ca(Σ, X) con-
sisting of those measures with relatively compact range. For Y a Banach space, let
L(Y,X) be the space of all bounded linear operators from Y to X, and K(Y,X)
be the subspace of all compact operators in L(Y,X). If Z1, Z2 are Banach spaces,
we write Z1 ⊂ Z2 whenever Z2 has a subspace isomorphic to Z1.

In [5] and [6] Drewnowski proved the following result: Suppose that the
σ-algebra Σ admits a nonzero atomless finite positive measure. Then the following
conditions are equivalent.

(i) ca(Σ, X) ⊃ `∞.
(ii) ca(Σ, X) ⊃ c0.
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(iii) cca(Σ, X) ⊃ c0.
(iv) L(`2, X) 6= K(`2, X).
In analogy with the classical fact that c0 is not complemented in `∞, it can be

deduced from the above equivalences the following result, which was first proved
by Emmanuelle, [7]:

If L(`2, X) 6= K(`2, X) then cca(Σ, X) is not complemented in ca(Σ, X).
The following question naturally arises: for a Banach space X such that

cca(Σ, X) 6= ca(Σ, X), Is it true that cca(Σ, X) is not complemented in ca(Σ, X)?
A possible approach to this question would be to show that the existence of an
X-valued measure with non-relatively compact range implies the existence of a
noncompact operador from `2 to X. Taking into account the well known equiva-
lence

ca(Σ, X) = cca(Σ, X) ⇐⇒ L(`∞, X) = K(`∞, X),

for an arbitrary σ-algebra Σ (see [6]), the problem is that of deciding if

L(`2, X) = K(`2, X)⇒ L(`∞, X) = K(`∞, X). (1)

The question of complementability of cca(Σ, X) in ca(Σ, X) has been solved
by Rodríguez-Piazza using a different approach. He proved that for an arbitrary
σ-algebra Σ the subspace cca(Σ, X) is complemented in ca(Σ, X) if and only if
cca(Σ, X) = ca(Σ, X); [19].

In [10] Jarchow considered, for 1 6 p 6∞, the class Kp consisting of all Banach
spaces X such that every weakly compact linear operator from Lp = Lp([0, 1]) to
X is compact. For p = 1 the class K1 consists of the Banach spaces X which have
the Schur property. In the case 1 < p 6 ∞ the class Kp consists of the Banach
spaces X for which

L(Lp, X) = K(Lp, X). (2)

For 1 < p < ∞, this follows directly since Lp is reflexive. For p = ∞, it can be
deduced using the fact that the space X contains a copy of `∞ whenever there
exists a non weakly compact operator T ∈ L(L∞, X) , [4, Corollary VI.1.3].

For 1 6 p 6 2, condition (2) is equivalent to requiring that L(`p, X) = K(`p, X)
(see the proof of [10, Fact (2), p. 226]). For p =∞, condition (2) is equivalent to
L(`∞, X) = K(`∞, X) since `∞ and L∞ are isomorphic Banach spaces. Jarchow
proved that for 1 < r < p 6 2 we have Kr ( Kp, and for 2 < q < ∞ K∞ ⊆ Kq =
K2. He posed two problems:
(P1) Is K∞ ( K2?
(P2) Is Kp ⊆ K∞ when 1 < p 6 2?
Note that (P1) is precisely the question in (1). Jarchow showed that if X is a

Banach space with finite cotype, then X ∈ Kp for some p 6 2 implies X ∈ K∞.
Other conditions related to these questions can be found in [1], [3].

Problems (P1) and (P2) have remained unsolved. The aim of the present note
is answer them showing that, for 1 < p <∞, we have Kp 6⊂ K∞, that is

L(`p, X) = K(`p, X) 6⇒ L(`∞, X) = K(`∞, X).
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This follows from the main result of this paper.

Theorem A. There exists a rearrangement invariant space X on [0, 1] such that
for every p ∈ (1,∞) if T : `p → X is a bounded linear operator then T is compact.

SinceX is a rearrangement invariant space on [0,1] it satisfies L∞([0, 1]) ⊆ X ⊆
L1([0, 1]) with continuous inclusions, which shows that there exists a non-compact
weakly compact operator from `∞ to X.

The construction of the Banach space X satisfying the properties of Theorem
A will be given in Section 3. Though this space turns out to be a Lorentz space,
we have chosen to present a slightly different approach. We think this approach
is more self-contained and will allow a smoother reading for those who are not
familiar with Lorentz spaces and their properties.

The techniques used to solve the previous problem also allow to address a differ-
ent question.

Recall that a bounded linear operator T : X → Y between two Banach spaces
is said to be strictly singular (SS in short) if it fails to be an isomorphism when
restricted to any infinite dimensional subspace of X. Equivalently, T is SS if there
is no infinite dimensional subspace F of X and no δ > 0 such that

‖Tx‖ > δ‖x‖, for all x ∈ F .

The operator T is said to be finitely strictly singular (FSS) or super strictly singular
if there is no δ > 0 and no sequence {Fn}n of finite dimensional subspaces of X
with dim(Fn)→∞ such that

‖Tx‖ > δ‖x‖, for all x ∈ Fn, for all n ∈ N.

Of course, if T is FSS then T is SS.
Let E be a rearrangement invariant space on [0, 1]. The inclusion E ↪→ L1

is strictly singular if there is no infinite dimensional subspace F of E where the
norms of E and L1 are equivalent. Let G be the closure of L∞([0, 1]) in the Orlicz
space LΨ2 for Ψ2(t) := et

2 − 1. Note that when G ⊂ E the norms of E, G and L1

are equivalent on the subspace spanned by the Rademacher functions, and hence
in this case the inclusion of E ↪→ L1 is not strictly singular. In [8] Hernández,
Novikov and Semenov proved the converse: if E ↪→ L1 is not strictly singular
then G ⊂ E. This result was improved by Hernández, Raynaud and Semenov, [9],
proving:

Theorem B. Let E be a r.i. space on [0, 1]. If the inclusion E ↪→ L1 is not
finitely strictly singular, then G ⊂ E.

We will prove Theorem B in Section 4. A first application of the covering
numbers techniques used in Section 3 allows to give a weaker result. Namely,
we will prove in Corollary 11 that if E ↪→ L1 is not FSS then G1 ⊂ E, where
G1 is the Lorentz space with the same fundamental function as G (in particular
G1 ⊂ G). The complete proof of Theorem B will require a new ingredient. We
need to perform a random choice using Gaussian measures on Rn.
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Though our proof of Theorem B is not elementary, it is transparent in the sense
that we have tried to provide all the ingredients needed to carry it out. The proof
does not depend on deep structural results such as those about spaces containing
copies of `p and p-stable variables.

2. Preliminaries

A rearrangement invariant (r.i.) spaceX is a Banach space of classes of measurable
functions on [0,1] such that if g∗ 6 f∗ and f ∈ X then g ∈ X and ‖g‖X 6 ‖f‖X .
Here f∗ is the decreasing rearrangement of f , that is, the right continuous inverse
of its distribution function: mf (λ) = m({t ∈ [0, 1] : |f(t)| > λ}), where m is
the Lebesgue measure on [0,1]. The fundamental function of X is the function
ϕX(t) := ‖χ[0,t]‖X .

Important examples of r.i. spaces are the Lorentz, Marcinkiewicz and Orlicz
spaces. Let ϕ : [0, 1]→ [0,+∞) be an increasing concave function with ϕ(0+) = 0,
the Lorentz space Λ(ϕ) consists of all measurable functions f on [0,1] such that

‖f‖Λ(ϕ) :=

∫ 1

0

f∗(s)ϕ′(s) ds < ∞.

If ϕ : [0, 1] → [0,+∞) is a quasi–concave function (i.e., ϕ increases, ϕ(t)/t
decreases and ϕ(0) = 0), we will denote by M(ϕ) the Marcinkiewicz space whose
fundamental function is ϕ, that is, the space of all measurable functions f on [0,1]
for which

‖f‖M(ϕ) := sup
0<t61

ϕ(t)

t

∫ t

0

f∗(s) ds <∞.

Let N be an Orlicz function, that is, an increasing convex function on [0,∞)
with N(0) = 0. The norm of the Orlicz space LN is

‖f‖LN := inf

{
λ > 0 :

∫ 1

0

N

(
|f(s)|
λ

)
ds 6 1

}
.

The MarcinkiewiczM(ϕ) and Lorentz Λ(ϕ) spaces are, respectively, the largest
and the smallest r.i. spaces with fundamental function ϕ, that is, if a r.i. space
X has fundamental function equal to ϕ, then Λ(ϕ) ⊂ X ⊂ M(ϕ), [12, Theorems
II.5.5 and II.5.7].

A relevant space in the sequel is the closure of L∞([0, 1]) in the Orlicz space
LΨ2 , for Ψ2(t) := exp(t2) − 1, usually denoted by G. Its importance is due to
the following general version of Khintchine’s inequality: the Rademacher functions
span a subspace isomorphic to `2 in an r.i. space X if and only if G ⊂ X; [18]. The
fundamental function of LΨ2 is ϕ(t) = log−1/2(1/t+1). Since Ψ2(t) increases very
rapidly, LΨ2 coincides with the Marcinkiewicz space M(ϕ); [15]. This together
with [12, Theorem II.5.3], gives that ‖f‖LΨ2 is equivalent to

sup
0<t61

f∗(t) log−1/2(1/t+ 1).
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Note that when ‖f‖LΨ2 6 1 we have

m({t ∈ [0, 1] : |f(t)| > λ}) 6 2 exp(−λ2), λ > 0.

Will be denote by G1 the Lorentz space Λ(ϕ) for ϕ the fundamental function
of LΨ2 .

For facts related to r.i. spaces, see [2], [12], [14].

3. The construction

We proceed to the construction of the space X appearing in Theorem A. Given
an integrable function f : [0, 1]→ R and 0 < ε < 1, let

pε(f) :=

∫ ε

0

f∗(t) dt = sup
{∫

A

|f | dm : m(A) 6 ε
}
.

Proposition 1. The following properties hold.
(i) pε(f) 6 ε‖f‖∞.
(ii) pε(f) 6 ‖f‖1.
(iii) ε‖f‖1 6 pε(f).
(iv) m

({
t ∈ [0, 1] : |f(t)| > pε(f)/ε

})
< ε.

Proof. (i) and (ii) follow directly from the definition of pε(f).
(iii) Since f∗ is decreasing, the averages pε(f)/ε = 1

ε

∫ ε
0
f∗(t) dt decrease as ε

increases to 1. Hence, pε(f)/ε > p1(f) =
∫ 1

0
f∗(t) dt =

∫ 1

0
|f(t)| dt.

(iv) Set B :=
{
t ∈ [0, 1] : |f(t)| > pε(f)/ε

}
and suppose that m(B) > ε. Then

there exists A0 ⊆ B with m(A0) = ε. Then∫
A0

|f(t)| dt >
∫
A0

pε(f)/ε dt = m(A0)pε(f)/ε = pε(f),

which contradicts the definition of pε(f). Hence, m(B) < ε. �

Let {εk} be a positive sequence decreasing to zero and {ak} a sequence of
strictly positive numbers such that

∑∞
1 εkak = 1. Associated to these two se-

quences, we define the function space

X :=

{
f ∈ L1([0, 1]) : ‖f‖X :=

∞∑
k=1

akpεk(f) <∞
}
. (3)

Proposition 2. The space X defined by (3) satisfies the following properties.
(i) X is a rearrangement invariant Banach function space satisfying ‖f‖1 6
‖f‖X 6 ‖f‖∞.

(ii) If fn → f a.e. with |fn| 6 g a.e., for some g ∈ X, then fn converge to f
in X.

(iii) Simple functions are dense in X.
(iv) The X-valued vector measure A 7→ χA has non relatively compact range

in X.
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Proof. (i) Conditions (i) and (iii) in Proposition 1 and
∑∞

1 εkak = 1 show that
‖f‖1 6 ‖f‖X 6 ‖f‖∞. That X is linear and ‖ · ‖X is a norm follows easily from
the definition and the fact that each pε is a norm. The rearrangement invariance
of X and ‖ · ‖X is a consequence of the rearrangement invariance of each pε. In
order to check completeness, let {fn} ⊂ X be such that

∑∞
1 ‖fn‖X < ∞. It is

easy to see that
∑∞

1 |fn(t)| <∞ a.e. t ∈ [0, 1], and that, if g(t) :=
∑∞

1 fn(t), then
g ∈ X and ‖g −

∑N
1 fn‖X 6

∑∞
N+1 ‖fn‖X → 0 as N → +∞.

(ii) The Dominated Convergence theorem together with Proposition 1(ii) gives
that pεk(f − fn)→ 0 for all k > 1. Since akpεk(f − fn) 6 2akpεk(g) for all k > 1,
using the Dominated Convergence theorem for the series summation it follows that
‖f − fn‖X → 0.

(iii) Follows from (ii).
(iv) It follows from the fact that the inclusion L∞([0, 1]) ↪→ X is not compact

(as so is the inclusion L∞([0, 1]) ↪→ L1([0, 1]); see [4, Theorem VI.2.18]. �

Remark 3. The space X defined above is, in fact, a Lorentz space for ϕ′ =∑∞
1 akχ[0,εk]. Moreover, any Lorentz space Λ(ϕ) can be obtained by the construc-

tion given in (3). Indeed, given f ∈ L1([0, 1]) consider the measure µf∗(A) :=∫
A
f∗(t) dt, which is finite. Then, f ∈ Λ(ϕ) is equivalent to∫ 1

0

ϕ′(t) dµf∗(t) <∞ ⇐⇒
∞∑
n=1

2nµf∗
({
t ∈ [0, 1] : ϕ′(t) > 2n

})
<∞.

Observe that
µf∗
({
t ∈ [0, 1] : ϕ′(t) > 2n

})
=

∫ εn

0

f∗(t) dt,

where εn is defined in such way that {t ∈ [0, 1] : ϕ′(t) > 2n
}
is either [0, εn] or

[0, εn). Consequently,

f ∈ Λ(ϕ) ⇐⇒
∞∑
n=1

2npεn(f∗) <∞.

The sequence {εn} decreases strictly to zero since ϕ is increasing, concave and
limt→0 ϕ

′(t) = +∞ (for Λ(ϕ) 6= L1([0, 1])). Note that
∑∞

1 εkak <∞ since χ[0,1] ∈
Λ(ϕ).

Let X be defined as in (3). The following holds.

Lemma 4. Suppose that {fn} ⊆ X converges weakly in X to zero and ‖fn‖X > C
for some C > 0 and all n > 1. Then, there exists δ > 0 such that ‖fn‖L1 > δ for
all n > 1.

Proof. Let us assume by way of contradiction that there exists a subsequence of
(fn), which we will still denote by (fn) for convenience, which converges to zero
in L1([0, 1]). Set n1 = 1 and, since ‖fn1

‖X > C, choose m1 ∈ N such that
m1∑
k=1

akpεk(fn1) > C/2.
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Since ‖fn‖L1 → 0 and pεk(f) 6 ‖f‖L1 , for all k > 1, we can choose n2 ∈ N such
that

m1∑
k=1

akpεk(fn2) < C/4,

and choose m2 ∈ N such that
m2∑

k=m1+1

akpεk(fn2) > C/2.

Iterating this process we obtain sequences of integers {nj} and {mj} such that

mj+1∑
k=mj+1

akpεk(fnj+1
) > C/2, j > 1 (4)

Given any sequence {Ak} of measurable sets with Ak ⊆ [0, 1] and m(Ak) 6 εk,
and any sequence (gk) of measurable functions satisfying ‖gk‖∞ 6 ak, we can
define an operator T : X → `1 by

T (f) :=

(∫
Ak

gk(t)f(t) dt

)∞
k=1

, f ∈ X.

The operator T is well defined since each function gkf is integrable, and

∞∑
k=1

∣∣∣∣∫
Ak

gk(t)f(t) dt

∣∣∣∣ 6 ∞∑
k=1

ak

∫ εk

0

f∗(t) dt = ‖f‖X .

The above bound shows that T is bounded.
We now make a particular choice of sets Ak and functions gk for those val-

ues of k satisfying mj + 1 6 k 6 mj+1, for some j > 1. In this case, gk :=
akχAksign(fnj+1), where the set Ak is chosen so that∫

Ak

gk(t)fnj+1
(t) dt >

1

2
ak

∫ εk

0

f∗nj+1
(t) dt.

From (4) we deduce that, for all j > 1,

‖T (fnj+1
)‖`1 >

mj+1∑
k=mj+1

∣∣∣∣∫
Ak

gk(t)fnj+1
(t) dt

∣∣∣∣
>

1

2

mj+1∑
k=mj+1

ak

∫ εk

0

f∗nj+1
(t) dt > C/4.

However this contradicts the fact that {T (fn)} converges in norm to zero in
`1, since (fn) converges weakly to zero in X, the operator T is continuous and `1
has the Schur property. �
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Remark 5. In view of Remark 3, the result of Lemma 4 is a general fact for
Lorentz spaces. It can be alternatively proved by using the so called subsequence
splitting property, developed by Kadec and Pełczyński for the spaces Lp in [11],
and throughly studied in [20].

Next we consider a particular space X obtained by making an specific choice
of sequences {εk} and {ak}.

Lemma 6. Set εk := exp(−e2k+1

) and ak := 2−k exp(e2k+1

), for k > 1. Let X be
the corresponding space defined by (3). Then, for every f ∈ X and every λ > 2
we have

m
({
t ∈ [0, 1] : |f(t)| > λ‖f‖X

})
6 exp(−eλ).

Proof. Since f∗ is decreasing, for any k ∈ N we have

‖f‖X > ak
∫ εk

0

f∗(t) dt > akεkf
∗(εk) =

1

2k
f∗(εk).

It suffices to prove the claim for norm one functions, so we assume ‖f‖X = 1.
Given λ > 2, let k0 ∈ N be such that 2k0 6 λ < 2k0+1. Then, since f∗ is
decreasing, we have

1 >
1

2k0
f∗(exp(−e2k0+1

)) >
1

λ
f∗(exp(−eλ)).

From the definition of the decreasing rearrangement it follows that

m
({
t ∈ [0, 1] : |f(t)| > λ

})
6 exp(−eλ). �

The following standard result will be needed for proving Theorem A, see [10].

Lemma 7. Let p ∈ (1,∞) and Y be a Banach space. If there exists T : `p → Y
a non-compact bounded linear operator, then there exists a bounded linear operator
S : `p → Y such that ‖Sen‖Y > 1 for n > 1.

The next result, which will be used for proving Theorem A, is of independent
interest.

Theorem 8. Let p ∈ (1,∞) and 1/p + 1/q = 1. There exists a constant Cp > 0
such that if T : `p → L0([0, 1]) is a linear operator satisfying ‖T (en)‖Lq > 1 for all
en belonging to the canonical basis in `p, then for every λ0 > 0 there exists x ∈ `p
with ‖x‖p 6 1 and λ > λ0 such that

m
({
t ∈ [0, 1] : |Tx(t)| > λ

})
> exp(−Cpλq).

Proof. We prove that the statement of the theorem is true for Cp satisfying

Cp > 2q+1 ln 5. (5)
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Suppose that the claim is not true for an operator T satisfying the hypotheses.
Then we can find N ∈ N such that for all α > N1/q/21+1/q and all x ∈ `p with
‖x‖p 6 1 we have

m
({
t ∈ [0, 1] : |Tx(t)| > α

})
6 exp(−Cpαq). (6)

Let B`Np be the unit ball of `Np and E be an 1/2–net in B`Np , that is, for every
x ∈ B`Np there exists y ∈ E with ‖x − y‖`Np 6 1/2. Note that E can be taken to
have cardinal bounded by 5N , see, for instance, [17, Lemma 4.16]. Let z ∈ `Nq and
take x ∈ B`Np such that ‖z‖`Nq = |〈z, x〉|. Let y0 ∈ E with ‖x− y0‖`Np 6 1/2. Then,

‖z‖`Nq 6 |〈z, x− y0〉|+ |〈z, y0〉| 6
1

2
‖z‖`Nq + max

y∈E
|〈z, y〉|.

Consequently, for a.e. t ∈ [0, 1] we have

( N∑
k=1

∣∣Tek(t)
∣∣q)1/q

6 2 max
x∈E

∣∣∣ N∑
k=1

xkTek(t)
∣∣∣ = 2 max

x∈E

∣∣Tx(t)
∣∣,

from where it follows that

{
t ∈ [0, 1] :

N∑
k=1

∣∣Tek(t)
∣∣q > λ

}
⊆
⋃
x∈E

{
t ∈ [0, 1] : 2q|Tx(t)|q > λ

}
,

from where we can deduce, using (6), that for λ > N/2

m

({
t ∈ [0, 1] :

N∑
k=1

∣∣Tek(t)
∣∣q > λ

})
6 5N exp(−Cpλ/2q). (7)

Then, since by assumption ‖Tek‖Lq > 1, using (7) we get

N 6
∫ 1

0

N∑
k=1

∣∣Tek(t)
∣∣q dt

=

∫ +∞

0

m

({
t ∈ [0, 1] :

N∑
k=1

∣∣Tek(t)
∣∣q > λ

})
dλ

6
∫ N/2

0

dλ+ 5N
∫ +∞

N/2

exp(−Cpλ/2q) dλ

6
N

2
+ 5N

2q

Cp
exp(−CpN/2q2) 6

N

2
+

1

3
< N,

since, by condition (5), we have 5N exp(−CpN/2q2) 6 1 and 2q/Cp 6 1/2 ln 5 6
1/3. Hence, we have arrived at a contradiction. �
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We now prove Theorem A using the previous lemmas and Theorem 8.

Proof of Theorem A. Let X be the space defined by (3) as done in Lemma 6.
Suppose that T : `p → X is a bounded linear operator which is not compact.

From Lemma 7 there exists a bounded linear operator S : `p → X such that
‖Sen‖X > 1 for n > 1. Since en → 0 weakly in `p, we have Sen → 0 weakly in X.
Applying Lemma 4 there exists δ > 0 such that ‖Sen‖L1 > δ for n > 1. Hence, for
J := S/δ we have J : `p → X ⊂ L0([0, 1]) satisfying ‖Jen‖Lq > 1 for n > 1 and q
the conjugate index of p. Applying Theorem 8, there exists Cp > 0 such that for
every λ0 > 0 there exists x ∈ `p with ‖x‖p 6 1 and λ > λ0 such that

m
({
t ∈ [0, 1] : |Jx(t)| > λ

})
> exp(−Cpλq). (8)

From Lemma 6, since ‖Jx‖X 6 ‖J‖, we have, for all µ > 2,

m
({
t ∈ [0, 1] : |Jx(t)| > µ‖J‖

})
6 m

({
t ∈ [0, 1] : |Jx(t)| > µ‖Jx‖X

})
6 exp(−eµ).

(9)

Setting µ‖J‖ = λ in (8) and (9) we arrive at Cpµq‖J‖q > eµ. Since µ can be
arbitrarily large there is a contradiction, which establishes the result. �

4. Finitely strictly singular embeddings

We start by establishing a sufficient condition for a r.i. space containing the space
G1 and also a sufficient condition for containing G. These conditions can also be
shown to be necessary.

Proposition 9. Let E be a r.i. space on [0, 1].

(i) The inclusion G1 ⊂ E holds whenever there exist a sequence {gk} in E and
constants a > 0 and C > 0 such that, for all k ∈ N, we have ‖gk‖E 6 C
and

m
(
{t ∈ [0, 1] : |gk(t)| > 2k}

)
> exp(−a22k).

(ii) The inclusion G ⊂ E holds whenever there exist a sequence {gk} in E and
constants a > 0 and C > 0 such that, for all k ∈ N, we have ‖gk‖E 6 C
and

m
(
{|gk| > 2j}

)
> exp(−a22j), for j = 0, 1,. . . , k. (10)

Proof. (i) Since G1 is a Lorentz space and E a r.i. space, in order to check that
G1 ⊂ E it suffices to prove the existence of a constant M > 0 such that, for all
t ∈ (0, 1], if A is a set with m(A) = t, we have

‖χA‖E 6M‖χA‖LΨ2 = M log−1/2(1/t+ 1). (11)

In fact, it suffices to prove (11) for t small enough (changing M if necessary).
Therefore we may assume that 0 < t < exp(−a22).
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There exists k ∈ N such that

exp
(
− a22(k+1)

)
6 t < exp(−a22k). (12)

In consequence, m(A) = t 6 m
(
{|gk| > 2k}

)
and

‖χA‖E 6 ‖χ{|gk|>2k}‖E 6 2−k‖gk‖E 6 C2−k 6 2C log−1/2(1/t).

The last inequality follows directly from the first inequality in (12). We obtain
(11) and G1 ⊂ E since log(1/t) ≈ log(1/t+ 1) for t small.

(ii) We have to prove the existence of M > 0 such that ‖h‖E 6 M , whenever
h ∈ L∞[0, 1] and ‖h‖LΨ2 6 1.

Let h be such a function. The fact that ‖h‖LΨ2 6 1 yields

m
(
{|h| > λ}

)
6 2 exp(−λ2), for all λ > 0.

Therefore
m
(
{|h| > λ}

)
6 exp(−λ2/2), for all λ > 2. (13)

Let k ∈ N and λ ∈ [1, 2k]. There exists 1 6 j 6 k such that 2j−1 6 λ 6 2j .
Then, from (10)

m({2|gk| > λ}) > m({|gk| > 2j−1}) > exp(−aλ2).

Therefore, for any B > 0 we have

m
(
{2B|gk| > λ}

)
> exp(−aλ2/B2), for all λ ∈ [B, 2kB]. (14)

Fix B > 2 sufficiently large so that a/B2 6 1/2, choose k ∈ N with 2kB >
‖h‖L∞ , and consider the function g =: 2B|gk| + Bχ[0,1]. By (13), (14), and the
fact that a/B2 6 1/2, we have

m
(
{g > λ}

)
> m

(
{|h| > λ}

)
, for all λ ∈ [B, 2kB].

Since m
(
{g > λ}

)
= 1, if λ < B, and m

(
{|h| > λ}

)
= 0, if λ > 2kB, we deduce

m
(
{g > λ}

)
> m

(
{|h| > λ}

)
, for all λ > 0.

Since E is a r.i. space, it follows that

‖h‖E 6 ‖g‖E 6 2B‖gk‖E +B‖χ[0,1]‖E 6 2BC +B‖χ[0,1]‖E := M. �

Any r.i. space E on [0,1] satisfies L∞([0, 1]) ⊆ E ⊆ L1([0, 1]) with continuous
inclusions. We will assume from this point on that ‖ · ‖L1 6 ‖ · ‖E .

Proposition 10. Let E be a r.i. space on [0, 1] such that E 6= L1 and the inclusion
E ↪→ L1 is not FSS. Then, there exists C > 0 such that for every n ∈ N there
exists functions f1, f2, . . . , fn in E satisfying
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(i) |f1(t)|2 + |f2(t)|2 + · · ·+ |fn(t)|2 = n, for all t ∈ [0, 1].
(ii) For all (α1, α2, . . . , αn) ∈ Rn we have∥∥∥ n∑

j=1

αjfj

∥∥∥
L1
6
∥∥∥ n∑
j=1

αjfj

∥∥∥
E
6 C

( n∑
j=1

|αj |2
)1/2

.

Proof. Recall that we are assuming ‖ · ‖L1 6 ‖ · ‖E . Since E ↪→ L1 is not FSS,
there exist K > 0 and a sequence {Fn}n of finite dimensional subspaces of E with
dim(Fn)→ +∞ such that

‖f‖E 6 K‖f‖L1 , for all f ∈ Fn, for all n.

By applying Dvoretzky’s Theorem and passing to a subsequence, if necessary,
we may assume that dim(Fn) = n for every n and each Fn is 2-isomorphic to `n2 .
Therefore, for every n there exist functions g1, g2, . . . , gn in E such that, for all
(α1, α2, . . . , αn) ∈ Rn, we have

( n∑
j=1

|αj |2
)1/2

6
∥∥∥ n∑
j=1

αjgj

∥∥∥
L1
6
∥∥∥ n∑
j=1

αjgj

∥∥∥
E
6 2K

( n∑
j=1

|αj |2
)1/2

. (15)

Fix n ∈ N and define

G(t) :=
( n∑
j=1

|gj(t)|2
)1/2

, for all t ∈ [0, 1].

Let {rn} be the Rademacher sequence. By Khintchine’s inequality we have, for
certain K1 > 1,

1

K1
G(t) 6

∫ 1

0

∣∣∣ n∑
j=1

rj(s)gj(t)
∣∣∣ ds 6 G(t), for all t ∈ [0, 1].

Combining these inequalities with (15) and using Fubini’s theorem we get

√
n 6

∫ 1

0

G(t) dt 6 ‖G‖E 6 2KK1

√
n. (16)

Since E is a r.i. space and E 6= L1, an application of the generalized Hölder in-
equality (see [2, Proposition I.2.4]) shows that the unit ball of E is equi-integrable.
Hence, for every ε > 0 there exists δ > 0 such that

‖f‖E 6 1, m(A) < δ =⇒
∫
A

|f | dm < ε. (17)

Set ε = 1/8KK1 and choose δ > 0 satisfying (17). Necessarily we have

m
(
{t ∈ [0, 1] : G(t) >

√
n/2}

)
> δ,
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since, in other case, setting A0 := {G >
√
n/2}, from (17) and the last inequality

in (16) it would follow that∫
A0

G(t) dt 6 ε‖G‖E 6 ε2KK1

√
n =
√
n/4.

As
∫

[0,1]\A0
G(t) dt 6

√
n/2, we would then obtain

∫ 1

0
G(t) dt 6 3

√
n/4, which

contradicts the first inequality in (16).
We can assume that δ = 1/ν for certain ν ∈ N. We can also assume that

A0 = {G >
√
n/2} contains the interval [0, 1/ν]. If this were not the case, we just

need to consider a measure-preserving transformation φ : [0, 1] → [0, 1] such that
φ([0, 1/ν]) ⊂ A0 and use gj ◦ φ instead of gj , for j = 1, 2, . . . , n.

Define, for each j:

fj(t) :=
√
n
gj(t)

G(t)
, for t ∈ [0, 1/ν],

and

fj(t+ k/ν) := fj(t), for t ∈ (0, 1/ν] and k = 1, . . . , ν − 1. (18)

From the definition of the functions fj it is clear that (i) holds.
Next we check (ii) with C = 4Kν. Let (α1, α2, . . . , αn) ∈ Rn and set f :=∑n
j=1 αjfj . From (18)

‖fχ[0,1/ν]‖E = ‖fχ[(k−1)/ν,k/ν]‖E , for all k = 1, 2, . . . , ν.

Therefore ‖f‖E 6 ν‖fχ[0,1/ν]‖E . Observe that
√
n/G(t) 6 2 and |f(t)| 6

2|
∑
j αjgj(t)|, for all t ∈ [0, 1/ν]. Then (ii) follows since, by (15),

‖f‖L1 6 ‖f‖E 6 ν‖fχ[0,1/ν]‖E 6 2ν
∥∥∥ n∑
j=1

αjgj

∥∥∥
E
6 4Kν

( n∑
j=1

|αj |2
)1/2

. �

As an application of the previous propositions and of the covering numbers
techniques used in Section 3 we show that whenever the inclusion E ↪→ L1 is not
FSS then G1 ⊂ E. The corresponding version for SS was proven by Montgomery-
Smith and Semenov; [16].

Corollary 11. If the inclusion E ↪→ L1 is not FSS, then G1 ⊂ E.

Proof. We can assume E 6= L1. In order to apply (i) in Proposition 9, fix k ∈ N,
set n = 22k+2, and consider C > 0 and f1, f2,. . . , fn as given by Proposition 10.

Let E be a 1/2-net of minimal cardinal in the Euclidean unit sphere of Rn.
Then card (E) 6 5n, and, for every β ∈ Rn, we have

‖β‖2 6 2 max
α∈E
|〈α, β〉|. (19)
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For α = (α1, α2, . . . , αn) ∈ E consider the set

Aα =
{
t ∈ [0, 1] :

∣∣∣ n∑
j=1

αjfj(t)
∣∣∣ > √n/2 = 2k

}
.

By Proposition 10(i) and (19), we have

[0, 1] =
⋃
α∈E

Aα.

Since card (E) 6 5n, there exists α0 ∈ E with m(Aα0) > 5−n. Defining

gk :=

n∑
j=1

α0
jfj

we obtain

m({|gk| > 2k}) = m(Aα0) > 5−n = exp(−(log 5)× 4× 22k),

and, from Proposition 10(ii), ‖gk‖E 6 C.
Hence the hypotheses of Proposition 9 are satisfied with a = 4 log 5. �

The proof of Theorem B that we are going to present uses a probability ar-
gument. We shall use the standard Gaussian measure γn in Rn. This is the
probability with density

ρ(x1 . . . , xn) =
1√
2π

exp
(
−1

2

n∑
j=1

x2
j

)
with respect to Lebesgue measure in Rn. Observe that γn can also be viewed as
the product measure of n times γ1, where γ1 is the standard Gaussian distribution
on R with mean equal to 0 and variance equal to 1. The measure γn is rotation
invariant. As a consequence, for all α ∈ Rn with ‖α‖2 = 1, the real variable

x 7→ 〈x, α〉

defined on the probability space (Rn, γn) has as distribution the standard Gaussian
measure γ1.

We will use the following result, which is a deviation inequality for Lipschitz
functions on Rn with respect to the Gaussian measure γn. For its proof, see [13]
(formule (1.5) on page 21) or [17, Remark 4.8].

Proposition 12. Let F : Rn → R be a Lipschitz function with constant 6 L (for
the Euclidean distance), that is, |F (α) − F (β)| 6 L‖α − β‖2, for all α, β ∈ Rn.
Then, for all s > 0, we have

γn

({
α ∈ Rn :

∣∣F (α)−
∫
F dγn

∣∣ > s
})
6 2 exp

(
− 2s2

π2L2

)
.
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We can now proceed to proof Theorem B.

Proof of Theorem B. Let E be a r.i. space so that E ↪→ L1 is not FSS. If
E = L1 obviously we have G ⊂ E. Thus we can suppose that E 6= L1. In order
to apply Proposition 9(ii) we fix k ∈ N and look for the function gk satisfying
‖gk‖E 6M and

m({|gk| > 2j}) > exp(−a22j), for j = 0, 1, . . . , k, (20)

for certain M and a independent of k.
Consider n ∈ N sufficiently large (to be determined later) and let C > 0 and

f1, f2, . . . , fn ∈ E given by Proposition 10. The function gk will be of the form

gk =

n∑
l=1

βlfl,

for adequate β = (β1, β2, . . . , βn) ∈ Rn with ‖β‖2 6 2. By Proposition 10(ii),
setting M = 2C, we get ‖gk‖E 6 M . The choice of β will be done via a proba-
bility argument involving the Gaussian measure γn. For technical reasons we will
determine α =

√
nβ.

Define F : Rn → R by F (α) = ‖α‖2. Then∫
F dγn 6

(∫
‖α‖22 dγn(α)

)1/2

=
√
n. (21)

Applying Proposition 12 with s =
√
n and L = 1, we have, by (21):

γn
(
{α ∈ Rn : F (α) > 2

√
n}
)
6 γn

({
α ∈ Rn :

∣∣F (α)−
∫
F dγn

∣∣ > s
})

6 2 exp(−2n/π2).

(22)

Consider now, for j = 0, 1, . . . , k, the function φj : R→ R defined by φj(t) = 0,
for t 6 2j ; φj(t) = t − 2j , for 2j 6 t 6 2j + 1; and φj(t) = 1, for t > 2j + 1.
Observe that |φj(t)− φj(s)| 6 |s− t| for all s, t ∈ R. Define Fj : Rn → R by

Fj(α) :=

∫ 1

0

φj

( 1√
n

n∑
l=1

αlfl(t)
)
dt.

Observe that, by Proposition 10(ii), we have, for α, α′ ∈ Rn,

|Fj(α)− Fj(α′)| 6
∫ 1

0

∣∣∣φj( 1√
n

n∑
l=1

αlfl(x)
)
− φj

( 1√
n

n∑
l=1

α′lfl(x)
)∣∣∣ dx

6
∫ 1

0

∣∣∣ n∑
l=1

αl − α′l√
n

fl(t)
∣∣∣ dt 6 C‖α− α′‖2√

n
.

Thus, Fj is Lipschitzian with constant L = C/
√
n.
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Next, we evaluate the mean
∫
Fj dγn. Observe that, due to Proposition 10(i),

the random variables α 7→ 1√
n

∑n
l=1 αlfl(t), with t ∈ [0, 1], all have the same

distribution with respect to γn, that is, the distribution of the standard Gaussian
measure γ1. Thus, by Fubini’s theorem,∫

Fj dγn =

∫ 1

0

∫
Rn
φj

( 1√
n

n∑
l=1

αlfl(t)
)
dγn(α) dt =

∫
R
φj dγ1

=

∫
R
φj(τ)

1√
2π

exp(−τ2/2) dτ >
1√
2π

∫ 2j+2

2j+1

exp(−τ2/2) dτ

>
1√
2π

exp(−(2j + 2)2/2) > 2 exp(−a22j),

(23)

for a > 0 sufficiently large (independent of j).
Applying Proposition 12 to Fj with s = exp(−a22j) and L = C/

√
n, by (23)

we have

γn
(
{α ∈ Rn : Fj(α) < exp(−a22j)}

)
6 γn

({
α ∈ Rn :

∣∣Fj(α)−
∫
Fj dγn

∣∣ > s
})

6 2 exp
(
− 2n

π2C2
exp(−2a22j)

)
(24)

6 2 exp
(
− 2n

π2C2
exp(−a22k+1)

)
.

It is clear from (22) and (24) that if n is sufficiently large we have

γn
(
{F > 2

√
n}
)

+

k∑
j=0

γn
(
{Fj < exp(−a22j)}

)
< 1.

Therefore there exists α0 ∈ Rn such that ‖α0‖2 = F (α0) 6 2
√
n and

Fj(α
0) > exp(−a22j), for j = 0, 1, . . . , k.

Setting β = α0/
√
n, and gk =

∑n
l=1 βlfl, we have ‖gk‖E 6 M = 2C and, for all

j = 0, 1, . . . , k:

m({|gk| > 2j}) >
∫ 1

0

φj
(
gk(x)

)
dx = Fj(α

0) > exp(−a22j).

We have proved (20) and the theorem follows. �
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