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VARIATIONS OF THE RAMANUJAN POLYNOMIALS
AND REMARKS ON ζ(2j + 1)/π2j+1

Matilde N. Lalín, Mathew D. Rogers

Abstract: We observe that five polynomial families have all of their roots on the unit circle.
We prove the statements explicitly for four of the polynomial families. The polynomials have
coefficients which involve Bernoulli numbers, Euler numbers, and the odd values of the Riemann
zeta function. These polynomials are closely related to the Ramanujan polynomials, which were
recently introduced by Murty, Smyth and Wang [MSW]. Our proofs rely upon theorems of
Schinzel [S], and Lakatos and Losonczi [LL] and some generalizations.

Keywords: Ramanujan polynomials, Riemann zeta function values, reciprocal polynomials,
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1. Introduction

In a recent paper, Murty, Smyth and Wang considered the Ramanujan polynomials
[MSW]. They were defined by Gun, Murty and Rath [GMR] using

R2k+1(z) :=
k+1∑
j=0

B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
z2j , (1.1)

where Bj is the jth Bernoulli number. Among other fascinating results, Murty,
Smyth and Wang showed that R2k+1(z) has all of its non-real roots on the unit
circle. The purpose of this paper is to study some variants of R2k+1(z), which also
have many roots on the unit circle.

Conjecture 1.1. Let Bj denote the Bernoulli numbers, and let Ej denote the
Euler numbers. Suppose that k > 2. The following polynomials have all of their
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non-zero roots on the unit circle:

Pk(z) :=
(2π)2k−1

(2k)!

k∑
j=0

(−1)jB2jB2k−2j

(
2k

2j

)
z2j

+ ζ(2k − 1)
(
z2k−1 + (−1)kz

)
,

Qk(z) :=
(
22k + 1

)
Pk(z)− 22kPk (z/2)− Pk(2z),

Yk(z) :=
π

22k
(
Qk(i

√
z) +Qk(−i

√
z)
)

Wk(z) :=
(
22k−1 + 2

)
Pk(z)− 22kPk (z/2)− Pk(2z),

Sk(z) :=

k∑
j=0

E2jE2k−2j

(
2k

2j

)
zj . (1.2)

We will offer a general proof of Conjecture 1.1 for Qk(z), Yk(z), Wk(z), and
Sk(z). It seems that Pk(z) is more difficult to handle. In Section 4 we offer several
partial results concerning Pk(z).

An important secondary goal of this work, is to highlight a connection with
the odd values of the Riemann zeta function ζ(s). While it is a classical fact
that ζ(2j)/π2j is rational when j > 1, very little is known about the arithmetic
nature of ζ(2j+1). The only theorems in this direction are celebrated irrationality
results. For instance, Apéry showed that ζ(3) is irrational [A, P], Ball and Rivoal
proved that infinitely many odd zeta values are irrational [BR, R] (generalized by
Hessami Pilerud and Hessami Pilerud [HH]), and Zudilin established that at least
one element of the set {ζ(5), ζ(7), ζ(9), ζ(11)} is also irrational [Z].

Therefore, let us briefly consider the identity which gave birth to the Ramanu-
jan polynomials [B, p. 276]. The formula can be written as

1

2
Pk(z) = −

∞∑
n=1

1

n2k−1

z2k−1

e2πn/z − 1
+ (−1)k+1

∞∑
n=1

1

n2k−1

z

e2πnz − 1
. (1.3)

This identity holds whenever z ̸∈ iQ 1. The restriction is necessary to ensure
that both infinite series converge. Not surprinsigly, this formula is also mentioned
in [P] while dealing with the irrationality of ζ(3). Notice that Gun, Murty and
Rath used (1.3) to express odd zeta values in terms of Eichler integrals [GMR].
Now consider the case when k = 2. A brief numerical calculation shows that the
polynomial obtained from the left-hand side

z4 + 5z2 + 1− 90ζ(3)

π3

(
z3 + z

)
= 0, (1.4)

has all of its roots on the unit circle. Notice that if we truncate the right-hand

1This identity is often presented in the literature as valid for z ∈ R positive, but it is not hard
to see that it extends by analytic continuation to the largest domain where the infinite series
converge, i.e., z ̸∈ iQ
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side of (1.3), then we can obtain an approximation for ζ(3):

ζ(3) ≈
(
z4 + 5z2 + 1

z3 + z

)
π3

90
, (1.5)

where

0 =
z

e2π/z − 1
+

z−1

e2πz − 1
.

This approximation gives six decimal places of numerical accuracy. The accuracy
can be increased by including higher order terms in the truncation. It would
be extremely interesting if this idea could be used to say something about the
irrationality of ζ(3)/π3. In this paper, we will settle for the more modest goal of
studying the polynomial families listed in Conjecture 1.1.

Before proceeding, it is important to note that all of our polynomials are nat-
urally occurring objects. The following identities are corollaries to (1.3):

2−2k Qk(z) =
∞∑

n=1
n odd

1

n2k−1

z2k−1

eπn/z + 1
+ (−1)k

∞∑
n=1
n odd

1

n2k−1

z

eπnz + 1
,

− 1

π
Yk(−z2) = z2k−1

∞∑
n=1
n odd

tanh
(
πn
2z

)
n2k−1

+ (−1)k z
∞∑

n=1
n odd

tanh
(
πnz
2

)
n2k−1

,

−21−2k Wk(z) = z2k−1
∞∑

n=1

(−1)n csch
(
πn
z

)
n2k−1

+ (−1)k z
∞∑

n=1

(−1)n csch(πnz)
n2k−1

.

Proofs follow from the fact that Qk(z), Wk(z), and Yk(z) are all linear combina-
tions of Pk(z)’s. Ramanujan also discovered a similar formula for Sk(z). We have
stated that identity in (2.7).

2. Sk(z), Yk(z) and the theorems of Schinzel, Lakatos and Losonczi

In this section we prove that Sk(z) and Yk(z) have all of their non-zero roots
on the unit circle. Our proofs follow from applying the theorems of Schinzel [S],
Lakatos and Losonczi [LL], and Lakatos [L]. Lakatos proved that any reciprocal
polynomial

∑k
j=0Ajz

j , with real-valued coefficients, which satisfies

|Ak| >
k∑

j=0

|Aj −Ak| , (2.1)

must have all of its roots on the unit circle. If the inequality is strict then the
polynomial has only simple roots. Equation (2.1) is a very strong restriction. There
have been a number of recent improvements to (2.1) with a similar flavor (see [S]
and [LL]). Schinzel proved that any self-inversive polynomial which satisfies

|Ak| > inf
c,d∈C
|d|=1

k∑
j=0

∣∣cAj − dk−jAk

∣∣ , (2.2)
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must have all of its roots on the unit circle [S]. Self-inversive polynomials have
complex-valued coefficients which satisfy Aj = ϵAk−j , for some fixed |ϵ| = 1.
Notice that the class of self-inversive polynomials includes both reciprocal (ϵ = 1)
and anti-reciprocal (ϵ = −1) polynomials. In Theorems 2.1 and 2.2 we apply
Schinzel’s theorem with d = 1.

Theorem 2.1. Suppose that k > 1. Then all of the roots of the polynomial given
by (1.2) lie on the unit circle. Furthermore, they are all simple.

Proof. With (2.2) in mind, let us begin by setting

Aj := E2jE2k−2j

(
2k

2j

)
.

The sign of E2n is (−1)n. This implies that all of the coefficients of Sk(z) have
sign (−1)k. As E0 = 1, we have Ak = E2k.

Our proof consists of three main steps. First we remove the absolute values
from the sum in (2.2). This is easily accomplished by showing that (−1)k(cAj −
Ak−2) > 0 for c = π

4(1+3−1−2k)
. Next we evaluate

∑k
j=0Aj explicitly, and finally

we deduce the desired upper bound.
In order to remove the absolute value signs from (2.2), we need to demonstrate

that (−1)k(cAj − Ak−2) > 0. Using the following bound for Euler numbers [AS,
p. 805]:

4k+1(2k)!

π2k+1
> |E2k| >

4k+1(2k)!

π2k+1(1 + 3−1−2k)
, (2.3)

leads to

4(1 + 3−1−2k)

π
|Ak| =

4(1 + 3−1−2k)

π
|E2kE0|

>
4k+2(2k)!

π2k+2

> |E2jE2k−2j |
(
2k

2j

)
= |Aj |.

The absolute values can be removed because both Ak and Aj have sign (−1)k:

(−1)k4(1 + 3−1−2k)

π
Ak > (−1)kAj > 0.

If we take
c =

π

4(1 + 3−1−2k)
,

then the previous inequality implies (−1)kAk − c(−1)kAj > 0.
Let En(z) denote the classical Euler polynomials, and recall a standard convo-

lution identity [Di]:
n∑

j=0

(
n

j

)
Ej(v)En−j(w) = 2(1− w − v)En(v + w) + 2En+1(v + w).
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Set v = w = 1
2 , and then use En = 2nEn

(
1
2

)
, to obtain an expression for Sk(1).

We have

|Sk(1)| =
∣∣22k+1E2k+1(1)

∣∣ = 22k+1(22k+2 − 1)|B2k+2|
k + 1

.

The evaluation of E2k+1(1) follows from [AS, p. 805]. Thus
k∑

j=0

|cAj −Ak| = (−1)k
k∑

j=0

(Ak − cAj)

= (k + 1)(−1)kAk − c(−1)kSk(1)

= (k + 1)|Ak| − c|Sk(1)|

= (k + 1)|Ak| −
π22k−1(22k+2 − 1)|B2k+2|

(k + 1)(1 + 3−1−2k)
.

To finish the verification of (2.2), we need to show that the last expression is
bounded above by |Ak|. This is equivalent to showing that

π22k−1(22k+2 − 1)|B2k+2|
(k + 1)(1 + 3−1−2k)

> k|Ak| = k|E2k|. (2.4)

We will resort to an inequality for Bernoulli numbers [AS, p. 805]:

2(2n)!

(2π)2n
< |B2n| <

2(2n)!

(2π)2n(1− 21−2n)
. (2.5)

Thus we find

π22k−1(22k+2 − 1)|B2k+2|
(k + 1)(1 + 3−1−2k)

>
π22k−1(22k+2 − 1)

(k + 1)(1 + 3−1−2k)

2(2k + 2)!

(2π)2k+2

=
22k+1(1− 2−2−2k)

(1 + 3−1−2k)

(2k + 1)!

π2k+1
. (2.6)

On the other hand, we have already used the fact that Euler numbers are bounded
by (2.3). Substituting (2.6) and (2.3) into (2.4) reduces the inequality to

2k + 1

2k
>

1 + 3−1−2k

1− 2−2−2k
.

This final inequality is easily verified with elementary calculus for k > 1. Since
the inequality is strict, we conclude immediately that Sk(z) has only simple roots
which all lie on the unit circle. �

We have proved that Sk(z) has all of its roots on the unit circle. Perhaps it is
interesting to note that Sk(z) satisfies

(π/2)2k+1

2(2k)!
Sk(−z2) = z2k

∞∑
n=1

χ−4(n)sech (πn/2z)

n2k+1

+ (−1)k
∞∑

n=1

χ−4(n)sech (πnz/2)

n2k+1
,

(2.7)
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where χ−4(n) is the non-principal character mod 4. This formula appears in
Ramanujan’s notebooks [B, p. 276]. As a result it is easy to approximate the
roots of Sk(z) by the roots of exponential polynomials. It remains to be seen
whether or not there are any interesting applications for this observation.

To illustrate our method a second time, we prove that the polynomial Yk(z)
has all of its non-zero roots on the unit circle. Notice that Yk(z) is a close analogue
of Sk(z), except that it involves Bernoulli numbers rather than Euler numbers.

Theorem 2.2. Suppose that k > 2. The polynomial

Yk(z) =
π

22k
(
Qk(i

√
z) +Qk(−iz)

)
=

π2k

(2k)!

k∑
j=0

B2jB2k−2j(2
2j − 1)(22k−2j − 1)

(
2k

2j

)
zj ,

has all of its non-zero roots on the unit circle. Furthermore, all of the roots are
simple.

Proof. Observe that Yk(z) has degree k − 1, since the coefficients of zk and z0

are identically zero. We prove that Yk(z)/z satisfies the hypothesis of Schinzel’s
theorem [S]. If we eliminate the trivial factor of z, then we obtain a polynomial of
the form

Yk(z)

z
=

k−2∑
j=0

Ajz
j ,

where

Aj =
(2π)2k

(2k)!

(
2k

2j + 2

)
(1− 2−2−2j)(1− 22−2k+2j)B2j+2B2k−2j−2.

Notice that Yk(z)/z is reciprocal, since Ak−2−j = Aj . By elementary properties
of Bernoulli numbers, the sign of Aj is (−1)k for all j.

Schinzel’s theorem can be applied if the following inequality holds:

|Ak−2| >
k−2∑
j=0

|cAj −Ak−2|, (2.8)

for some c ∈ C. We prove that (2.8) holds when c = π2(1−22−2k)
8(1−23−2k)

. Our proof follows
the same three steps as in the case of Sk(z).

In order to remove the absolute value signs from (2.8), we need to demonstrate
that (−1)k(cAj −Ak−2) > 0. We demonstrate this by comparing an upper bound
on (−1)kAk−2, with a lower bound on (−1)kAj . The lower bound on |Aj | is
a consequence of an inequality from [Da]:

|B2n| >
2(2n)!

(2π)2n(1− 2−2n)
.
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In particular we find
(−1)kAj = |Aj | > 4. (2.9)

By (2.5), we find an upper bound for |Ak−2|:

(−1)kAk−2 = |Ak−2| <
π2

2

1− 22−2k

1− 23−2k
. (2.10)

Comparing (2.10) and (2.9), allows us to easily conclude

(−1)k(cAj −Ak−2) > 0, (2.11)

whenever k > 2.
Since we have proved (2.11), Schinzel’s sum immediately reduces to

k−2∑
j=0

|cAj −Ak−2| = −(k − 1)(−1)kAk−2 + (−1)kc
k−2∑
j=0

Aj . (2.12)

Now we simplify the remaining sum. Let Bj(z) denote the usual Bernoulli poly-
nomials. By standard evaluations of Bernoulli polynomials [AS, p. 805], we have

Aj =
(2π)2k

4(2k)!

(
2k

2j + 2

)(
B2j+2

(
1

2

)
−B2j+2(0)

)
×
(
B2k−2j−2

(
1

2

)
−B2k−2j−2(0)

)
.

Next we use a well known convolution identity for Bernoulli polynomials [Di]:
n∑

j=0

(
n

j

)
Bj(v)Bn−j(w) = n(w + v − 1)Bn−1(v + w)− (n− 1)Bn(v + w). (2.13)

Considering all of the cases where (v, w) ∈ {
(
1
2 ,

1
2

)
,
(
0, 12

)
,
(
1
2 , 0
)
, (0, 0)}, leads to

k−2∑
j=0

Aj =
(2π)2k

(2k)!

(2k − 1)

2

(
B2k

(
1

2

)
−B2k(0)

)

= − (2π)2k

(2k)!
(2k − 1)(1− 2−2k)B2k. (2.14)

Substituting (2.14) into (2.8), leads to a closed form expression for the sum we are
interested in:
k−2∑
j=0

|cAj −Ak−2| = −(k − 1)(−1)kAk−2 − (−1)kc (2π)
2k

(2k)!
(2k − 1)(1− 2−2k)B2k.

The proof can be completed by showing that this last expression is bounded from
above by |Ak−2| or

π2(1− 22−2k)

8(1− 23−2k)

(2π)2k

(2k)!
(2k − 1)(1− 2−2k)|B2k| < k|Ak−2|.

It is elementary to show that this inequality holds for k > 1 by applying (2.5). �
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3. Generalizing the criteria to other families

Conditions such as (2.2) appear to be too restrictive to apply to polynomial families
such as Pk(z), Wk(z) and Qk(z). In this section we prove that Qk(z) and Wk(z)
have all their roots on the unit circle, by extending the theorems used in the
previous section. Let us briefly recall how to derive results such as (2.1) and (2.2).
For a real-valued reciprocal polynomial Vk(z) =

∑k
j=0Ajz

j , the condition

|Ak| >
k∑

j=0

|cAj −Ak|, (3.1)

immediately implies that

1 >

∣∣∣∣ cAk
Vk(z)− vk(z)

∣∣∣∣ , (3.2)

where vk(z) = zk+1−1
z−1 . Notice that if vk(z) is expanded in a geometric series, then

(3.2) can be derived from (3.1) as a simple consequence of the triangle inequality.
Despite the fact that (3.2) does not imply (3.1), it turns out that (3.2) is easily
strong enough to conclude that Vk(z) has all of its roots on the unit circle. To
demonstrate this, first restrict z to the unit circle, and write z = eiθ with θ ∈
(0, 2π), and

ṽk(θ) = z−(k+1)/2vk(z) =
sin
(

(k+1)θ
2

)
sin
(
θ
2

) .

If j < 2k + 2 is a positive odd integer, then it is easy to show that ṽk
(

jπ
k+1

)
has

sign (−1)(j−1)/2, and
∣∣∣ṽk ( jπ

k+1

)∣∣∣ > 1. This implies that ṽk(θ) has at least k + 1

interlacing positive and negative values in the interval (0, 2π), and it has absolute
value > 1 at each of those points. By (3.2) we can write c

Ak
z−(k+1)/2Vk(z) =

ṽk(θ) + ET , where the error term ET has absolute value less than 1. It follows
that c

Ak
z−(k+1)/2Vk(z) changes sign at least k times for θ ∈ (0, 2π). By the

intermediate value theorem we conclude that Vk(z) has at least k roots on the
unit circle. Since the polynomial has at most k roots, all of its roots must lie on
the unit circle.

We can easily extend this idea by selecting a different vk(z).2 This typically
entails constructing vk(z) to approximate specific polynomial families.

Definition 3.1. Let f : (a, b) → R be a continuous function. We call f(θ) a kth
order alternating function on (a, b), if it assumes alternating positive and negative
(or negative and positive) values at points pi, where a < p1 < · · · < pk+1 < b. We
say that f(θ) has oscillation distance d, if |f(pi)| > d for each i ∈ {1, . . . , k + 1}.

2This principle was inspired by a careful study of the proof in [MSW]
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Lemma 3.2. Suppose that f(θ) is a kth order alternating function on (a, b), with
oscillation distance d. Let F : (a, b) → R be a continuous function such that
|F (θ)− f(θ)| < d for all θ. Then F (θ) has at least k roots.

Proof. This lemma is essentially a restatement of the intermediate value theo-
rem. The proof follows immediately from the method described in the previous
discussion. �

3.1. The roots of Wk(z) lie on the unit circle

The main result of this subsection is the following theorem:

Theorem 3.3. Suppose that k > 2. The polynomial

Wk(z) = (22k−1 + 2)Pk(z)− 22kPk(z/2)− Pk(2z)

=
(2π)2k−122k

(2k)!

k∑
j=0

(−1)jB2jB2k−2j(1− 21−2j)(1− 21−2k+2j)

(
2k

2j

)
z2j

has all of its roots on the unit circle. Furthermore, they are all simple.

In order to prove Theorem 3.3 we first need to establish that a certain trigono-
metric polynomial possesses the alternating property with oscillation distance 0.3.

Lemma 3.4. Suppose that k > 10. The function

wk(θ) := 2 cos(kθ) +
π2

3
cos((k − 2)θ) +

2

(1− 21−2k)

sin((k − 3)θ)

sin θ

is an alternating function of order 2k on (−π, π), with oscillation distance 0.3.

Proof. We need to demonstrate that |wk(θ)| > 0.3 for 2k+1 values of θ ∈ (−π, π).
We must also show that the sign of wk(θ) alternates over successive points in this
set. Since wk(θ) is even with respect to θ, and since wk(0) > 3, we only need to
demonstrate that there are an additional k such points in (0, π). Suppose that
k > 10, let α be defined by

α =
1

π
arccos

(
0.3

π2

3 − 2

)
= 0.42 . . . , (3.3)

and let
j0 = [(k − 1)α] + 1. (3.4)

We claim that wk(θ) satisfies the necessary conditions on the following set of
points:

S =

{
π

k − 1
, . . . ,

(j0 − 1)π

k − 1

}
∪
{
(j0 − 1/2)π

k − 1
, . . . ,

(k − j0 − 1/2)π

k − 1

}
∪
{
(k − j0)π
k − 1

, . . . ,
(k − 2)π

k − 1

}
∪
{
(k − (1− ϵ))π

k − 1

}
,
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where ϵ > 0 is sufficiently small. First expand wk(θ) using trigonometric identities

wk(θ) = cos((k − 1)θ) cos(θ)

(
π2

3
+ 2− 4

1− 21−2k

)
+ sin((k − 1)θ)

((
π2

3
− 2− 4

1− 21−2k

)
sin θ +

2

1− 21−2k
csc θ

)
.

Notice that S (essentially) arises from cases where either cos((k − 1)θ) = 0, or
sin((k − 1)θ) = 0.

Begin by considering the cases where θ = jπ
k−1 and j ∈ {1, . . . , k − 2}. Then

wk

(
jπ

k − 1

)
= (−1)j cos

(
jπ

k − 1

)(
π2

3
+ 2− 4

1− 21−2k

)
. (3.5)

In order to have |wk

(
jπ
k−1

)
| > 0.3, we need to restrict j so that∣∣∣∣cos( jπ

k − 1

)∣∣∣∣ > 0.3
π2

3 + 2− 4
1−21−2k

.

In other words we must have

j

k − 1
̸∈ (αk, 1− αk),

where

αk =
1

π
arccos

(
0.3

π2

3 + 2− 4
1−21−2k

)
.

Since k > 10 we have (k − 1)(αk − α)≪ 1. Therefore it is sufficient that

j

k − 1
̸∈ (α, 1− α),

where α is defined in (3.3). This implies that j ∈ {1, 2, . . . , j0 − 1} ∪ {k − j0, . . . ,
k − 2}, with j0 defined in (3.4). If j ∈ {1, 2, . . . , j0 − 1}, then by (3.5) wk

(
jπ
k−1

)
has sign (−1)j . If j ∈ {k − j0, . . . , k − 2} then the cosine in (3.5) contributes an
extra minus sign, and wk

(
jπ
k−1

)
has sign (−1)j+1.

Now consider the case where θ = (j−1/2)π
(k−1) and j ∈ {j0, . . . , k− j0}. By elemen-

tary properties of trigonometric functions, wk(θ) reduces to

wk

(
(j − 1/2)π

k − 1

)
= (−1)j+1

((
π2

3
− 2− 4

1− 21−2k

)
sin

(
(j − 1/2)π

k − 1

)
+

2

1− 21−2k
csc

(
(j − 1/2)π

k − 1

))
.

(3.6)
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In order to place a lower bound on this expression, first choose an interval (β, 1−β),
which contains the set of rational numbers { j0−1/2

k−1 , . . . , k−j0−1/2
k−1 }. This can be

accomplished by selecting

β =

{
α if j0 > α(k − 1) + 1

2 ,

α− 1
2(k−1) if j0 < α(k − 1) + 1

2 .

Notice that one of these situations must occur, because (3.4) guarantees that
j0 ∈ (α(k − 1), α(k − 1) + 1). We obtain the following lower bound from (3.6):

∣∣∣∣wk

(
(j − 1/2)π

k − 1

)∣∣∣∣
> min

θ∈(πβ,π(1−β))

∣∣∣∣(π2

3
− 2− 4

1− 21−2k

)
sin θ +

2

1− 21−2k
csc θ

∣∣∣∣ .
The right-hand side is minimized at the end points of the interval (πβ, π(1− β)),
so it follows that

∣∣∣∣wk

(
(j − 1/2)π

k − 1

)∣∣∣∣ > ∣∣∣∣(π2

3
− 2− 4

1− 21−2k

)
sinπβ +

2

1− 21−2k
cscπβ

∣∣∣∣
Consider both choices of β, and recall the assumption that k > 10. A few easy
calculations are sufficient to obtain

∣∣∣∣wk

(
(j − 1/2)π

k − 1

)∣∣∣∣ >
{
0.57 if j0 > α(k − 1) + 1

2 ,

0.34 if j0 < α(k − 1) + 1
2 ,

for all values of j ∈ {j0, . . . , k− 2j0}. It is easy to deduce from (3.6) that the sign
of wk

(
(j−1/2)π

k−1

)
is (−1)j .

Finally consider the value of wk

(
(k−(1−ϵ))π

k−1

)
. Notice that

wk(π) = (−1)k
(
π2

3
+ 2 +

2k − 6

1− 21−2k

)
.

Since k > 10 it follows easily that |wk(π)| > 19, and wk(π) has sign (−1)k. If ϵ
is sufficiently small then wk

(
(k−(1−ϵ))π

k−1

)
also has sign (−1)k, and absolute value

much larger than 0.3.
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To briefly summarize the sign values of wk(θ), we have the following table:

θ Sign (wk(θ))

0 (−1)0
π

k−1 (−1)1
2π
k−1 (−1)2
...

...
(j0−1)π
k−1 (−1)j0−1

(j0−1/2)π
k−1 (−1)j0
...

...
(k−j0−1/2)π

k−1 (−1)k−j0

(k−j0)π
k−1 (−1)k−j0+1

...
...

(k−2)π
k−1 (−1)k−1

(k−(1−ϵ))π
k−1 (−1)k

This table shows that wk(θ) changes sign at least k times over the interval (0, π).
�

Now we use Lemma 3.4 to prove our main result.

Proof of Theorem 3.3. Let us define Aj using

Wk(iz) =
(2π)2k−122k

(2k)!

k∑
j=0

B2jB2k−2j(1− 21−2j)(1− 21−2k+2j)

(
2k

2j

)
z2j

=

k∑
j=0

Ajz
2j .

By Lemma 3.2 it suffices to prove that
∣∣∣ z−kWk(iz)

A0
− wk(z)

∣∣∣ < 0.3, where

wk(z) = (zk + z−k) +
π2

6
(zk−2 + z2−k) +

2

(1− 21−2k)

zk−3 − z3−k

z − z−1
, (3.7)

and z = eiθ. Thus we write∣∣∣∣z−kWk(iz)

A0
− wk(z)

∣∣∣∣ =
∣∣∣∣∣∣

k∑
j=0

Aj

A0
z2j−k − (zk + z−k)− π2

6
(zk−2 + z2−k)

− 2

(1− 21−2k)

zk−3 − z3−k

z − z−1

∣∣∣∣
6 2

∣∣∣∣A1

A0
− π2

6

∣∣∣∣+ k−2∑
j=2

∣∣∣∣Aj

A0
− 2

(1− 21−2k)

∣∣∣∣ , (3.8)

where the second step makes use of a geometric series and the triangle inequality.
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If we recall that B0 = −1/2, and use both inequalities from (2.5), then we find

Aj

A0
=
B2jB2k−2j(1− 21−2j)(1− 21−2k+2j)

(
2k
2j

)
−B2k(1− 21−2k)

<
2

(1− 21−2k)
.

Additionally we have, by ζ(2n) = (−1)n+1B2n(2π)
2n

2(2n)! ,∣∣∣∣A1

A0
− π2

6

∣∣∣∣ = ∣∣∣∣π2

6

ζ(2k − 2)

ζ(2k)
− π2

6

∣∣∣∣ .
This second expression goes to zero as k →∞. For example, it is not hard to see
that the absolute value is less than 0.01 for k > 4.

Therefore we can remove the absolute value signs from (3.8). We find that

∣∣∣∣z−kWk(iz)

A0
− wk(z)

∣∣∣∣ 6 2
A1

A0
− π2

3
+

2(k − 3)

1− 21−2k
−

k−2∑
j=2

Aj

A0

= 2 + 4
A1

A0
− π2

3
+

2(k − 3)

1− 21−2k
−

k∑
j=0

Aj

A0

= 2 +
2π2

3

ζ(2k − 2)

ζ(2k)
− π2

3
+

2(k − 3)

1− 21−2k
− 2k − 1

1− 21−2k

= 2 +
2π2

3

ζ(2k − 2)

ζ(2k)
− π2

3
− 5

1− 21−2k

6 −3 +
(
2
1− 2−2k

1− 23−2k
− 1

)
π2

3
.

Notice that we evaluated
∑

j Aj using the same Bernoulli convolution identity
(2.13). In addition, we have used the inequality

1

1− 2−n
< ζ(n) <

1

1− 21−n
,

which are easy to deduce from the Euler product formula and the Dirichlet eta
function. As k → ∞ this final upper bound approaches a limit of π2

3 − 3 ≈ .289.
It is easy to see that it becomes < 0.3 for k > 6.

In summary, we have proved the theorem for k > 10. The cases for k 6 10 are
easily checked with the numerical method outlined in section 4. �

3.2. The roots of Qk(z) lie on the unit circle

Notice that the coefficients of Qk(z) involve the odd values of the Riemann zeta
function. The primary goal of this subsection is to prove the following theorem:
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Theorem 3.5. Suppose that k > 2. The polynomial

Qk(z) = (22k + 1)Pk(z)− 22kPk(z/2)− Pk(2z)

=
(2π)2k−1

(2k)!

k∑
j=0

(−1)jB2jB2k−2j(2
2j − 1)(22k−2j − 1)

(
2k

2j

)
z2j

+ ζ(2k − 1)(22k−1 − 1)((−1)kz + z2k−1),

has all of its non-zero roots on the unit circle. Furthermore, all of the roots are
simple.

As in the proof of Theorem 3.3, the first step is to construct a trigonometric
polynomial which approximates Qk(z). Notice that Qk(z) has degree 2k − 1, and
that it has a trivial root at z = 0. Therefore we need to prove that it has 2k − 2
roots on the unit circle.

Lemma 3.6. Suppose that k > 5. Then

qk(θ) := 2 cos((k − 2)θ) +
4

π
sin((k − 1)θ) +

8(1− 23−2k)

π2(1− 22−2k)

sin((k − 3)θ)

sin θ

is an alternating function of order 2k − 2 on (−π, π), with oscillation distance
0.03.

Proof. We need to demonstrate that |qk(θ)| > 0.03 for 2k−1 values of θ ∈ (−π, π).
We must also show that the sign of qk(θ) alternates over successive points in this
subset. The proof is similar to the proof of Lemma 2, so we will be brief. Let α
be defined by

α =
1

π
arccos

(
0.03

2− 16
π2

)
= 0.47 . . . , (3.9)

and let
j0 = [(k − 1)α] + 1. (3.10)

We claim that |qk(θ)| > 0.03 on the following set of 2k + 1 points:

S = {0} ∪
{
± π

k − 1
, . . . ,± (j0 − 1)π

k − 1

}
∪
{
± (j0 − 1/2)π

k − 1
, . . . ,± (k − j0 − 1/2)π

k − 1

}
∪
{
± (k − j0)π

k − 1
, . . . ,± (k − 2)π

k − 1

}
∪
{
± (k − (1− ϵ))π

k − 1

}
.

If we consider S \{ (j0−1/2)π
k−1 , (k−j0−1/2)π

k−1 }, then we obtain a subset of 2k−1 points
where the sign of qk(θ) alternates over successive points.

In order to prove this claim, first expand qk(θ) using trigonometric identities

qk(θ) = 2 cos((k − 1)θ) cos(θ)

(
1− 8(1− 23−2k)

π2(1− 22−2k)

)
+ sin((k − 1)θ)

(
2 sin(θ)

(
1− 8(1− 23−2k)

π2(1− 22−2k)

)
+

4

π
+

8(1− 23−2k)

π2(1− 22−2k)
csc θ

)
.
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Now consider the cases where θ = jπ
k−1 , with −(k − 2) 6 j 6 (k − 2) and j ̸= 0.

We have

qk

(
jπ

k − 1

)
= 2(−1)j cos

(
jπ

k − 1

)(
1− 8(1− 23−2k)

π2(1− 22−2k)

)
. (3.11)

To ensure that |qk
(

jπ
k−1

)
| > 0.03, we need to restrict j so that

∣∣∣∣cos( jπ

k − 1

)∣∣∣∣ > 0.03

2
(
1− 8(1−23−2k)

π2(1−22−2k)

) .
By similar reasoning to that in the proof of Lemma 3.4, it is sufficient that

j

k − 1
̸∈ (−(1− α),−α) ∪ (α, 1− α),

where α is defined in (3.9). This immediately implies that j ∈ {±1, . . . ,
±(j0−1)}∪{±(k−j0), . . . ,±(k−2)}, where j0 is defined in (3.10). A careful inspec-
tion of (3.11) reveals that the function has sign (−1)j for j ∈ {±1, . . . ,±(j0− 1)},
and sign (−1)j+1 for j ∈ {±(k − j0), . . . ,±(k − 2)}.

Next consider the cases where θ = ± (j−1/2)π
(k−1) and j ∈ {j0, . . . , (k − j0)}. We

obtain

qk

(
± (j − 1/2)π

2(k − 1)

)
= (−1)j−1

(
±2 sin

(
(j − 1/2)π

(k − 1)

)(
1− 8(1− 23−2k)

π2(1− 22−2k)

)
± 8(1− 23−2k)

π2(1− 22−2k)
csc

(
(j − 1/2)π

(k − 1)

)
+

4

π

)
.

(3.12)

Now select β so that
{

j0−1/2
k−1 , . . . , k−j0−1/2

k−1

}
⊂ (β, 1− β). Following Lemma 3.4,

this is accomplished by selecting

β =

{
α if j0 > α(k − 1) + 1

2 ,

α− 1
2(k−1) if j0 < α(k − 1) + 1

2 .

Therefore we obtain∣∣∣∣qk (± (j − 1/2)π

2(k − 1)

)∣∣∣∣
> min

θ∈(πβ,π(1−β))

∣∣∣∣2(1− 8(1− 23−2k)

π2(1− 22−2k)

)
sin θ +

8(1− 23−2k)

π2(1− 22−2k)
csc θ ± 4

π

∣∣∣∣
>
∣∣∣∣2(1− 8(1− 23−2k)

π2(1− 22−2k)

)
sinπβ +

8(1− 23−2k)

π2(1− 22−2k)
cscπβ ± 4

π

∣∣∣∣ .
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Checking both possible values of β, and both possible signs of ±, leads to a lower
bound which holds for k > 5:∣∣∣∣qk (± (2j − 1)π

2(k − 1)

)∣∣∣∣ > 0.08...

The final signs are summarized in the table below.
The only remaining cases are when j ∈ {0} ∪ {± (k−(1−ϵ))π

k−1 }. These cases can
be easily dispensed with by elementary properties of trigonometric functions.

To briefly summarize the sign values of qk(θ), we have the following table:

θ Sign (qk(θ)) θ Sign (qk(θ))

− (k−(1−ϵ))π
k−1 (−1)k 0 (−1)0

− (k−2)π
k−1 (−1)k−1 π

k−1 (−1)1
...

... 2π
k−1 (−1)2

− (k−j0)π
k−1 (−1)k−j0+1

...
...

− (k−j0−1/2)π
k−1 (−1)k−j0 (j0−1)π

k−1 (−1)j0−1

...
... (j0−1/2)π

k−1 (−1)j0−1

− (j0−1/2)π
k−1 (−1)j0

...
...

− (j0−1)π
k−1 (−1)j0−1 (k−j0−1/2)π

k−1 (−1)k−j0−1

...
... (k−j0)π

k−1 (−1)k−j0+1

− 2π
k−1 (−1)2

...
...

− π
k−1 (−1)1 (k−2)π

k−1 (−1)k−1

(k−(1−ϵ))π
k−1 (−1)k

Notice that there are precisely 2k + 1 values of θ in this table. If we exclude the
cases where θ ∈ { (j0−1/2)π

k−1 , (k−j0−1/2)π
k−1 }, then the sign of qk(θ) alternates over the

remaining 2k − 1 values of θ. �

Next we use Lemma 3.6 to establish that Qk(z) has all of its non-zero roots on
the unit circle for k > 2.

Proof of Theorem 3.5. Let us define Aj using

Qk(iz) =
(2π)2k−1

(2k)!

k∑
j=0

B2jB2k−2j(2
2j − 1)(22k−2j − 1)

(
2k

2j

)
z2j

+ i(−1)kζ(2k − 1)(22k−1 − 1)(z − z2k−1)

=
k∑

j=0

Ajz
2j + i(−1)kζ(2k − 1)(22k−1 − 1)(z − z2k−1).
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In order to simplify the following analysis, we have intentionally defined Aj to only
involve the even coefficients of Qk(iz). Notice that A0 = Ak = 0, and that

A1 =
(2π)2k−1

(2k)!
B2k−2(2

2k−2 − 1)
k(2k − 1)

2

= (−1)kζ(2k − 2)(22k−2 − 1).

Suppose that k > 5. Then by Lemma 3.2 it suffices to prove that∣∣∣∣z−kQk(iz)

A1
− qk(z)

∣∣∣∣ < 0.03

where

qk(z) = (zk−2 + z2−k)− 2i

π
(zk−1 − z1−k) +

8

π2

(1− 23−2k)

(1− 22−2k)

zk−3 − z3−k

z − z−1
, (3.13)

and z = eiθ.
Therefore let us begin by writing∣∣∣∣z−kQz(iz)

A1
− qk(z)

∣∣∣∣
=

∣∣∣∣∣∣
k∑

j=0

Aj

A1
z2j−k + (−1)ki ζ(2k − 1)(22k−1 − 1)

A1
(z1−k − zk−1)

−(zk−2 + z2−k) +
2i

π
(zk−1 − z1−k)− 8

π2

(1− 23−2k)

(1− 22−2k)

zk−3 − z3−k

z − z−1

∣∣∣∣
6

k−2∑
j=2

∣∣∣∣Aj

A1
− 8

π2

(1− 23−2k)

(1− 22−2k)

∣∣∣∣+ 2

∣∣∣∣(−1)k ζ(2k − 1)(22k−1 − 1)

A1
− 2

π

∣∣∣∣ .
The second step follows from substituting a geometric series, and then applying
the triangle inequality. We know from equation (2.11) (after noting the change in
definition of Aj), that

Aj

A1
>

8

π2

(1− 23−2k)

(1− 22−2k)
.

In addition∣∣∣∣(−1)k ζ(2k − 1)(22k−1 − 1)

A1
− 2

π

∣∣∣∣ = ∣∣∣∣ 2π ζ(2k − 1)(1− 21−2k)

ζ(2k − 2)(1− 22−2k)
− 2

π

∣∣∣∣ .
This limit tends to zero. A simple calculation shows that the quantity is less than
0.001 for k > 3.
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Therefore we can remove the absolute value signs from the inequality. We are
left with∣∣∣∣z−kQz(iz)

A1
− qk(z)

∣∣∣∣
6

k−2∑
j=2

Aj

A1
− (k − 3)

8

π2

(1− 23−2k)

(1− 22−2k)
+

4

π
− 2(−1)k ζ(2k − 1)(22k−1 − 1)

A1

=
k−1∑
j=1

Aj

A1
− 2− (k − 3)

8

π2

(1− 23−2k)

(1− 22−2k)
+

4

π
− 4

π

ζ(2k − 1)(1− 21−2k)

ζ(2k − 2)(1− 22−2k)

= (2k − 1)
4

π2

ζ(2k)(1− 2−2k)

ζ(2k − 2)(1− 22−2k)
− 2− (k − 3)

8(1− 23−2k)

π2(1− 22−2k)

+
4

π
− 4

π

ζ(2k − 1)(1− 21−2k)

ζ(2k − 2)(1− 22−2k)
.

As usual, we have evaluated
∑

j Aj using (2.13). The limit of the upper bound is
20
π2 − 2. It is easy to see that it becomes < 0.03 for k > 6. The cases for k < 6 are
easily proved with the numerical method described in Section 4. �

We conclude this section by deriving a second approximation for ζ(3)/π3. If
we truncate the exponential series for Qk(z), we can obtain

ζ(3) ≈ z

1 + z2
π3

14
, (3.14)

where

0 =
z

eπ/z + 1
+

z−1

eπz + 1
. (3.15)

Selecting the root given by z ≈ 0.92 + 0.38i, yields 4 decimal places of numerical
accuracy. Notice that this approximation is slightly worse than (1.5).

4. Partial results on Pk(z)

We have made a number of unsuccessful attempts to apply the theorems of Schinzel,
Lakatos and Losonczi, and their generalizations to the case of Pk(z).3 A piece of
evidence indicating that these methods may not work is given by the result in
[MSW] which shows that R2k+1(z) has four roots that do not lie in the unit circle
(by comparison Yk(z) has all of its roots on the unit circle).

3The most general result that we can prove is that Pk(z) has at least k − 1 roots in half of
the unit circle, using the construction from [MSW].
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We will briefly describe one instance were Lakatos’s condition (2.1) fails, be-
cause it leads to an interesting formula. Let us define the Aj ’s as follows:

4k∑
j=0

Ajz
j = |Pk(iz)|2

=

 2

π

k∑
j=0

ζ(2j)ζ(2k − 2j)z2j

2

+ ζ2(2k − 1)
(
z2k−1 − z

)2
.

Notice that |Pk(iz)|2 has all of its roots on the unit circle, if and only if Pk(z)
also has all of its roots on the unit circle. Computational experiments helped us
to make the following observation:

Observation 4.1. Suppose that k > 2, then

4k(k − 1)|A4k| =
4k∑
j=0

|A4k −Aj | . (4.1)

Formula (4.1) can be proved with the identities for Bernoulli numbers that we
used in Theorem 2.2. This immediately rules out the possibility of applying (2.1)
(condition (2.2) can also be ruled out by slightly different methods). It is curious to
note that the right-hand side of (4.1) appears to involve odd zeta values, whereas
the left-hand side does not. It turns out that when (4.1) is explicitly calculated,
the odd zeta values drop out.

Theorem 4.2. Suppose that 2 6 k < 1000. Then all of the roots of Pk(z) lie on
the unit circle. Furthermore, all of the roots are simple.

While we have not been able to prove a general theorem concerning Pk(z), we
have been able to prove Theorem 4.2 for k < 1000. The proof uses a standard
computational method based on the intermediate value theorem. Notice that the
map

z + z−1 7→ 2u,

sends the unit circle to the real interval [−1, 1]. Under this transformation, we
also have

zk + z−k 7→ 2Tk (u) ,

where Tk(u) is the usual Chebyshev Polynomial. If we write (z2k+(−1)k)Pk(z) =
z2k (Pk(z) + Pk(1/z)) = 2z2kP ∗

k (u), then it follows that Pk(z) has all of its roots
on the unit circle, if and only if

P ∗
k (u) : =

(2π)2k−1

(2k)!

k∑
j=0

(−1)jB2jB2k−2j

(
2k

2j

)
T2j(u)

+ ζ(2k − 1)
(
T2k−1(u) + (−1)kT1(u)

)
,
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has all of its roots in the interval [−1, 1]. It is easy to count real roots of real-
valued polynomials. The intermediate value theorem allows one to find roots by
detecting sign changes. Since P ∗

k (u) has degree 2k, it is only necessary to detect
2k sign changes in [−1, 1] (fewer sign changes are required if roots lie at u = ±1).
We have successfully carried out these calculations for k < 1000.

5. Conclusion

In conclusion, we have shown that Sk(z), Yk(z), Wk(z), and Qk(z) have all of their
non-zero roots on the unit circle. These polynomials have a strong connection to
the Ramanujan polynomials. We were disappointed that we were unable to deduce
a similar theorem concerning Pk(z) with our methods, however we are hopeful that
the approach outlined in Section 3 might eventually succeed in this case.

We remark that the theorem for Pk(z) is true as it has recently proved in [LS]
by different methods.

An additional avenue might involve studying the roots of a truncated version
of the right-hand side of (1.3). Notice that the roots of Pk(z) are very well ap-
proximated by the roots of

0 =
zk−1

e2π/z − 1
+ (−1)k+1 z1−k

e2πz − 1
.

Thus, it should be a worthwhile endeavor to study the roots of these auxiliary
functions.
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