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ON VAN DER CORPUT PROPERTY OF SHIFTED PRIMES

Siniša Slijepčević

Abstract: We prove that the upper bound for the van der Corput property of the set of shifted
primes is O((logn)−1+o(1)), giving an answer to a problem considered by Ruzsa and Montgomery
for the set of shifted primes p− 1. We construct normed non-negative valued cosine polynomials
with the spectrum in the set p − 1, p 6 n, and a small free coefficient a0 = O((logn)−1+o(1)).
This implies the same bound for the intersective property of the set p − 1, and also bounds for
several properties related to uniform distribution of related sets.
Keywords: Sárközy theorem, recurrence, primes, difference sets, positive definiteness, van der
Corput property, Fourier analysis.

1. Introduction

We say that a set of integers S is a van der Corput (or correlative) set, if given
a real sequence (xn)n∈N , if all the sequences (xn+d − xn)n∈N , d ∈ S, are uni-
formly distributed mod 1, then the sequence (xn)n∈N is itself uniformly distributed
mod 1. The property was introduced by Kamae and Mendès France ([2]), and is
important as it is closely related to the intersective property of integers, discussed
below. Classical examples of van der Corput sets are sets of squares, shifted primes
p + 1, p − 1, and also sets of values P (n), where P is any polynomial with inte-
ger coefficients, and has a solution of P (n) ≡ 0 (mod k) for all k. All van der
Corput sets are intersective sets, but the converse does not hold, as was shown by
Bourgain ([1]).

We first recall the key characterization of the van der Corput property. If S is
a set of positive integers, then let Sn = S ∩ {1, ..., n}. We denote by T (S) the set
of all cosine polynomials

T (x) = a0 +
∑
d∈Sn

ad cos(2πdx), (1.1)

T (0) = 1, T (x) > 0 for all x, where n is any integer and a0, ad are real numbers
(i.e. T is a non-negative normed cosine polynomial with the spectrum in S ∪{0}).
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Kamae and Mendès France proved that a set is a van der Corput set if and only
if ([2], [4])

inf
T∈T (S)

a0 = 0. (1.2)

We can define a function which measures how quickly a set is becoming a van
der Corput set with

γ(n) = inf
T∈T (Sn)

a0, (1.3)

and then a set is van der Corput if and only if γ(n)→ 0 as n→∞.
Ruzsa and Montgomery set a problem of finding any upper bound for the

function γ for any non-trivial van der Corput set ([4], unsolved problem 3; [7]).
Ruzsa in [6] announced the result that for the set of squares, γ(n) = O((log n)−1/2),
but the proof was never published. The author in [12] proved that for the set of
squares, γ(n) = O((log n)−1/3). In this paper we prove the following result:

Theorem 1. If S is the set of shifted primes p−1, then γ(n) = O((log n)−1+o(1)).

The gap between the upper bound and the best available lower bound remains
very large, as in the case of the sets of recurrence discussed below. The lower
bound below relies on a construction of Ruzsa [8]:

Theorem 2. If S is the set of shifted primes p − 1, then γ(n) ≫ n(−1+ log 2−ε
log log n ),

where ε > 0 is an arbitrary real number.

Structure of the proof and its limitations. We define a cosine polynomial

FN,d(θ) =
1

k
Re

∑
p6dN+1

p≡1(mod d)

log p · e((p− 1)θ), (1.4)

where e(θ) = exp(2πiθ) and k is chosen so that FN,d(0) = 1. We show in Sections 2
and 3 by using exponential sum estimates along major and minor arcs that

FN,d(θ) > τ(d, q) + E(d, q, κ,N).

Here κ = θ−a/q, the function E is the error term and τ(d, q) is the principal part
which is (for square-free d) 1 for q|d, 0 if q not square-free, and −1/φ(q/(q, d))
otherwise (φ being the Euler’s totient function and (q, d) the greatest common divi-
sor). In Section 4 we demonstrate that for a given δ > 0, one can find a collection of
positive integers D not exceeding exp((log 1/δ)2+o(1)) and weights

∑
d∈D w(d) = 1

such that for any integer q > 0,∑
d∈D

w(d)τ(d, q) > −δ/2.

In addition, one can find constants R,N not exceeding O(exp((log 1/δ)4+o(1)))
for any given θ such that if a/q is the Dirichlet’s approximation of θ = a/q + κ,
κ 6 1/(qR), then the error term |E(d, q, κ,N)| 6 δ/2. This seemingly implies
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effectively the same upper bound for γ(n) as obtained in [9] for a stronger inter-
sective property of sets of integers (see below).

Unfortunately, in our calculations the constants R,N can not be chosen so
that for all θ ∈ T = R/Z the error term is small. Namely, for dθ close to
an integer, the error term is O(dN/R), and for θ on minor arcs, the error term
is O(d2

√
R/
√
N). We resolve it by choosing a geometric sequence of constants

N1, ..., N4/δ, which results with the bound in Theorem 1. We finalize the proof in
Section 5 by constructing the required cosine polynomial as a convex combination
of FN,d over d ∈ D and Nj .

Applications. We say a set S is intersective set (or a set of recurrence, or
a Poincaré set), if for any set A of integers with positive upper Banach density

ρ(A) = lim sup
n→∞

|A ∩ [1, n]|/n > 0,

its difference set A − A contains an element of S. Given any set of integers S,
one can define the function α : N → [0, 1] as α(n) = sup ρ(A), where A goes over
all sets of integers whose difference set does not contain an element of S ∩ [1, n]
(equivalent definitions of α can be found in [7]). A set is an intersective set if and
only if limn→∞ α(n) = 0. Ruzsa in [7] also proved that if S is a van der Corput
set, then it is also an intersective set, and

α(n) 6 γ(n).

The bound α(n) = O((log n)−1+o(1)) = O(exp((−1 + o(1)) log log n)) for the
set of shifted primes follows then as a corollary of Theorem 1. This is worse than
the bound α(n) = O(exp(−c 4

√
logn)) obtained by Ruzsa and Sanders in [9], but

better than earlier bounds in [3] and [10].
The function γ(n) has different characterizations and further applications dis-

cussed in detail in [4]. We discuss in Section 9 the Heilbronn property of the set of
shifted primes, which specifies how well the expression x(p − 1) can approximate
integers uniformly in x ∈ R, by choosing for a given x some prime p 6 n so that
x(p− 1) is as close to an integer as possible.

2. The major arcs

If Λ is the von-Mangoldt function, we define as in [9]

ΛN,d(x) :=

{
Λ(dx+ 1) if 1 6 x 6 N

0 otherwise,

and let ΛN (x) = ΛN,1(x). The Fourier transform .̂ : l1(Z) → L∞(R) is defined
as the map which takes f ∈ l1(Z) to f̂(θ) =

∑
x∈Z f(x)e(xθ), thus Λ̂N,d(θ) is the

exponential sum
Λ̂N,d(θ) =

∑
x6N

Λ(dx+ 1)e(xθ).
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The classical estimates for Fourier transforms of ΛN,d(x) were optimized by
Ruzsa and Sanders to the class of problems studied in this paper. They studied two
cases related to the generalized Riemann hypothesis: given a pair of integers D1 >
D0 > 2, then there either exists an exceptional Dirichlet character of modulus dD
6 D0 or not ([9], Proposition 4.7). They then obtained the following estimates
(we will be more specific below on the assumptions): if κ = θ− a/q, where θ ∈ T ,
then ∣∣∣Λ̂N,d(θ)

∣∣∣ 6 |τa,d,q|
φ(q)

Λ̂N,d(0) +O ((1 + |κ|N)EN,D1) , (2.1)∣∣∣Λ̂N,d(0)
∣∣∣≫ N

φ(d)
+O (EN,D1) , (2.2)

where

EN,D1 = ND2
1 exp

(
− c1 logN√

logN + logD1

)
,

τa,d,q =

q−1∑
m=0

(md+1,q)=1

e

(
m
a

q

)
.

Proposition 1 (Ruzsa, Sanders). There is an absolute constant c1 such that
for any pair of integers D1 > D0 > 2, one of the following possibilities hold:

(i) ((D1, D0) is exceptional). There is an integer dD 6 D0, such that for all
non-negative integers N, a, q, d, where 1 6 dq 6 D1, dD|d, and (a, q) = 1,
for any θ ∈ T (2.1), (2.2) hold, where κ = θ − a/q.

(ii) ((D1, D0) is unexceptional). For all non-negative integers N, a, q, d, where
1 6 dq 6 D0 and (a, q) = 1, for any θ ∈ T (2.1), (2.2) hold, where
κ = θ − a/q.

Proof. [9], Propositions 5.3. and 5.5. (Note that (2.1) is explicitly obtained at
the end of the proof of Proposition 5.3.) �

We now define a function τ closely related to τa,d,q above, which will be the
main term when estimating cosine polynomials FN,d. Let

τ(d, q) =


1, q|d
0, (d, r) > 1 or r not square-free
−1/φ(r) otherwise,

(2.3)

where r = q/(q, d). Note that for d square-free, the second row condition above is
equivalent to q being not square-free.

Lemma 1. Let a, d, q be positive integers, (a, q) = 1, r = q/(q, d) > 1 and a∗ =
ad/(q, d). Then

|τa∗,d,r|
φ(r)

= |τ(d, q)|. (2.4)
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Proof. As was noted in [9], Section 5,

τa,d,q =

{
cq(a)e(−md,qa/q) if (d, q) = 1

0 otherwise,

where cq(a) is the Ramanujan sum and md,q is a solution of md,qd ≡ 1(modq).
Now if q|d, τa∗,d,r = τa∗,d,1 = 1, thus both sides of (2.4) are equal to 1. If (d, r) > 1,
then τa∗,d,r = 0, and if r not square-free, then τa∗,d,r = 0 as the Ramanujan sum
cr(a

∗) = 0 when r not square-free. The remaining case follows from (a∗, r) = 1,
r square-free implying that the Ramanujan sum |cr(a∗)| = 1. �

It is easy to see that there exists a constant c2 depending only on c1 such that if

logN > c2(logD1)
2, (2.5)

then
D2

1 exp

(
− c1 logN√

logN + logD1

)
6 1

D2
1

. (2.6)

We first discuss the case of q not dividing d, and then q|d.

Proposition 2. Assume all the assumptions of Proposition 1 hold for D0, D1, θ,
N , a, q, d, κ, and in addition (2.5), (2.6). If q not dividing d, then

FN,d(θ) > τ(d, q) +O

(
1

D1
+ |κ|N

)
.

Proof. If we write

ψ(x; q, a) =
∑
n6x

n≡a(modq)

Λ(n),

ϑ(x; q, a) =
∑
p6x

p≡a(modq)

log(p),

then Λ̂N,d(0) = ψ(Nd+1; d, 1) and k = ϑ(Nd+1; d, 1) where k is the denominator
in (1.4). By the well-known property of functions ψ, ϑ (see e.g. [5], p.381),

ψ(Nd+ 1; d, 1)− ϑ(Nd+ 1; d, 1)≪
√
dN .

Relations (2.2), (2.6) and φ(d) < D1 imply that

N∣∣∣Λ̂N,d(0)
∣∣∣ ≪ D1. (2.7)

If we use the shorthand notation F = Re
∑

p6dN+1,p≡1(modd)
log p · e((p− 1)θ), and

then FN,d(θ) = F/k, we see from definitions that F is approximately Re Λ̂N,d(dθ),
or more precisely

|Re Λ̂N,d(dθ)− F | 6 Λ̂N,d(0)− k ≪
√
dN.



42 Siniša Slijepčević

Putting these three inequalities together,∣∣∣∣∣Fk − Re Λ̂N,d(dθ)

Λ̂N,d(0)

∣∣∣∣∣ 6
∣∣∣∣Fk
∣∣∣∣ |Λ̂N,d(0)− k|
|Λ̂N,d(0)|

+
|Re Λ̂N,d(dθ)− F |
|Λ̂N,d(0)|

≪
√
d√
N
D1. (2.8)

Now if θ − a/q = κ, then dθ − a∗/r = dκ, where a∗ = ad/(d, q), r = q/(d, q).
Combining (2.1), (2.2), (2.6) and (2.7) we easily get that∣∣∣∣∣ Λ̂N,d(dθ)

Λ̂N,d(0)

∣∣∣∣∣ 6 |τa∗,d,r|
φ(r)

+O

(
1

D1
+ |κ|N

)
.

The last two relations combined (noting that if d 6 D1 and (2.5), then√
dD1/

√
N ≪ 1/D1) and Lemma 1 complete the proof. �

Proposition 3. Say d,N are positive integers, θ ∈ T , and κ = θ−a/q, (a, q) = 1
and q|d. Then

FN,d(θ) > 1 +O(dN |κ|). (2.9)

Proof. We first recall that Re e(θ) = cos(2πθ) > 1 − 2π ∥θ∥, where ∥.∥ is the
distance from the nearest integer. Thus if |dNκ| 6 1/2, then for each p 6 dN +1,
d|(p− 1), we get ∥(p− 1)θ∥ = (p− 1)|κ| and Re e((p− 1)θ) > 1− 2πdN |κ|, which
easily implies (2.9). �

3. The minor arcs

We start with the minor arc estimate from [9], Corollary 6.2, which is derived from
the classical result of Vinogradov ([4], Theorem 2.9).

Proposition 4. Suppose that d 6 N and q 6 R are positive integers, θ ∈ T ,
(a, q) = 1 and |θ − a/q| 6 1/qR. Then∣∣∣Λ̂N,d(θ)

∣∣∣≪ d(logN)4
(
N
√
q
+N4/5 +

√
NR

)
. (3.1)

The minor arc estimate for FN,d(θ) now follows.

Corollary 1. Suppose d 6 D1, q 6 R, N are positive integers, θ ∈ T , (a, q) = 1
and |θ − a/q| 6 1/qR. Assume also (2.5) and (2.6) hold. Then

|Fd,N (θ)| ≪ D2
1(logN)4

(
1
√
q
+N−1/5 +

√
R√
N

)
. (3.2)

Proof. First note that as d 6 D1, Proposition 1 implies that (2.2) holds. Then
similarly as in the proof of Proposition 2,

N∣∣∣Λ̂N,d(0)
∣∣∣ ≪ D1 (3.3)
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and ∣∣∣∣∣Fk − ReΛ̂N,d(dθ)

Λ̂N,d(0)

∣∣∣∣∣≪
√
d√
N
D1 6 D

3/2
1√
N

. (3.4)

We complete the proof by combining (3.1), (3.3) and (3.4). �

4. Cancelling out the main term

Recall the definition of the arithmetic function τ in (2.3). We first cancel out the
main terms in the unexceptional case.

Theorem 3. For a given δ > 0 smaller than some δ0 > 0 there exists a collection
of positive integers D not greater than exp((log 1/δ)2+o(1)) and weights w : D →R,∑

d∈D w(d) = 1, such that for all positive integers q,∑
d∈D

w(d)τ(d, q) > −δ/2. (4.1)

Proof. We first define the set D depending on three constants p− < p+, l to be
defined below. Let

d∗ =
∏

p6p−

p

(p denoting a product over primes as usual), and let D(j) be the set of all
square-free numbers d∗d, d containing in its decomposition only primes p− <
p 6 p+, and such that ω(d) = j, where ω(d) denotes the number of distinct primes
dividing d. We set now

p+ = 2/δ + 1,

l =

⌈
2 log(1/δ)

(
2 log log(2/δ)

log 2
+ 1

)⌉
= log(1/δ)1+o(1),

p− = 2l2 + 1 = log(1/δ)2+o(1),

D = D(l),

W (j) =
∑

d∗d∈D(j)

1/φ(d),

w(d∗d) =
1

W (l)

1

φ(d)
,

where ⌈x⌉ is the smallest integer > x. We denote the left-hand side of (4.1) with
A(q).

By using
∏

p6x p = exp(x(1+o(1))) (see e.g. [5], Corollary 2.6), we easily see
that for each d∗d ∈ D,

d∗d 6
∏

p6p−

p · (p+)l = exp(log(1/δ)2+o(1)).
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If q is not square-free or q contains a prime larger than p+, the claim
A(q) > −δ/2 is straightforward as for all d, τ(d, q) = 0, respectively τ(d, q) >
−1/φ(p+) > −δ/2.

We can now without loss of generality assume that q is square-free, containing
no prime > p+ or 6 p− in its decomposition (the latter can be eliminated as primes
6 p− do not affect the value of τ(d∗d, q) for square-free q). We define the following
constants and sets to assist us in calculations:

k = log(1/δ),

D(j; q) = {d∗d ∈ D(j), (d, q) = 1},

W (j; q) =
∑

d∗d∈D(j,q)

1/φ(d),

W =W (1) =
∑

p−<p6p+

1

φ(p)
=

∑
p−<p6p+

1

p− 1
.

The remaining cases will be distinguished by ω(q).
(i) Assume ω(q) 6 2k. We will show that the terms for which q|d dominate all

the others. We first show the following: for j1 < j2,

W (j2; q) 6
W j2−j1W (j1; q)

j2(j2 − 1)...(j1 + 1)
. (4.2)

Indeed, if we define

W ∗(j; q) =
∑

(p1,p2,...,pj)

1

φ(p1p2...pj)
,

where the sum goes over all ordered j-tuples of pairwise different primes pi, p− <
pi 6 p+, pi coprime with q, then W (j; q) = W ∗(j; q)/j!. However, as φ is multi-
plicative for coprime integers,

W ∗(j2; q) 6W j2−j1W ∗(j1; q) (4.3)

(we first choose the first j2 − j1 primes and then the remaining j1). We obtain
(4.2) by dividing (4.3) with j2!.

The definition of A(q) now yields:

A(q) =
∑
q|d

1

φ(d)
−

∑
q/(q,d)>1

1

φ(d)

1

φ(r)
,

where the sums above and below are over d∗d ∈ D unless specified otherwise and
r always denotes r = q/(q, d) (recall that we assumed that q and d∗ are coprime).
We first detail out the first term:∑

q|d

1

φ(d)
=

∑
d∗d∈D(l−ω(q);q)

1

φ(d)

1

φ(q)
=W (l − ω(q); q) 1

φ(q)
.
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If ω((d, q)) = j, we can choose (d, q) as a factor of q in
(
ω(q)
j

)
ways. Using that,

(4.2) and in the last rows ω(q) 6 2k and (1 + x/n)n < exp(x) we obtain

∑
q/(q,d)>1

1

φ(d)

1

φ(r)
=

ω(q)−1∑
j=0

∑
ω((d,q))=j

1

φ(d)

1

φ(r)
=

ω(q)−1∑
j=0

W (l − j; q)
(
ω(q)

j

)
1

φ(q)

6
ω(q)−1∑
j=0

Wω(q)−j

(l − j)...(l − ω(q) + 1)

(
ω(q)

j

)
· W (l − ω(q); q)

φ(q)

6 W (l − ω(q); q)
φ(q)

ω(q)−1∑
j=0

(
ω(q)

j

)
Wω(q)−j

(l − ω(q))ω(q)−j

6 W (l − ω(q); q)
φ(q)

[(
1 +

W

(l − 2k)

)2k

− 1

]

<
W (l − ω(q); q)

φ(q)

[
exp

(
W

l/(2k)− 1

)
− 1

]
.

As by e.g. [5], Theorem 2.7.(d),∑
p6x

1

p− 1
= log log x · (1 + o(1)), (4.4)

we get that

W =
∑

p−<p6p+

1

p− 1
= log log(p+)(1 + o(1)) 6 2 log log(2/δ). (4.5)

It is easy to check that the definitions of l, k imply that

1−
[
exp

(
2 log log(2/δ)

l/(2k)− 1

)
− 1

]
> 0.

Putting all of the above together we get A(q) > 0.
(ii) Assume 2k < ω(q) 6 2l. We now show that all the terms are small. First

assume ω((q, d)) = j > k. By the same reasoning as in (4.2) one gets for j 6 l,

W (l; q) =
(W −

∑
p|q 1/φ(p))

l−jW (j; q)

l(l − 1)...(j + 1)
.

Now by definition, W (l) > W (l; q). Applying again (4.4) we see that for δ
small enough,

W −
∑
p|q

1/φ(p) > log log(p+)(1 + o(1))− log log(2l)(1 + o(1)) > 1.
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Combining all of it one gets
W (j; q)

W (l)
6 ll−j .

Furthermore, as by the Stirling’s formula k! > kk exp(−k) and as k = log(1/δ),
we get for δ small enough

l

k!
6 log(1/δ)(1+o(1))

log(1/δ)log(1/δ) exp(−(log(1/δ))
6 δ/4.

Putting it all that together and summing over d∗d ∈ D similarly as above we
get

l∑
j=k

∑
ω((d,q))=j

|w(d∗d)τ(d∗d, q)| = 1

W (l)

min{l,ω(q)}∑
j=k

∑
ω(d,q)=j

1

φ(d)

1

φ(r)

=

min{l,ω(q)}∑
j=k

(
ω(q)

j

)
W (l − j; q)

W (l)

1

φ(q)

6
min{l,ω(q)}∑

j=k

(2l)j

j!
lj

1

(p− − 1)ω(q)

6 1

k!

min{l,ω(q)}∑
j=k

(
2l2

p− − 1

)ω(q)

6 l

k!
6 δ/4. (4.6)

For ω((q, d)) = j < k, ω(r) = ω(q) − j > k (where r = q/(q, d)). We now see
that for δ > 0 small enough,

|τ(d∗d, q)| = 1/φ(r) 6 1/(p− − 1)k = log(1/δ)(−2−o(1)) log(1/δ) 6 δ/4, (4.7)

thus
k−1∑
j=0

∑
ω((d,q))=j

|w(d∗d)τ(d∗d, q)| 6 δ

4

∑
d∗d∈D

|w(d∗d)| = δ/4. (4.8)

Relations (4.6) and (4.8) give |A(q)| 6 δ/2.
(iii) Assume 2l < ω(q). Then it is enough to see that for all d∗d ∈ D, ω(r) >

l > k. We now obtain in the same way as in (4.7) that |τ(d∗d, q)| 6 δ/4, but now
for all d∗d ∈ D, thus |A(q)| 6 δ/4. �

We now modify this for the exceptional case.

Theorem 4. Assume δ > 0 is smaller than some δ0 > 0 and let dD be a positive
integer, dD = exp((log 1/δ)2+o(1)). Then there exists a collection of positive inte-
gers D, such that dD|d for all d ∈ D, not greater than exp((log 1/δ)2+o(1)) and
weights w : D →R,

∑
d∈D w(d) = 1, such that for all positive integers q,∑

d∈D

w(d)τ(d, q) > −δ/2. (4.9)



On van der Corput property of shifted primes 47

Proof. We define d∗ = dD
∏

p6p− p, where p− and all the other constants remain
the same as in the proof of Theorem 3. Let D be the set of all the numbers d∗d, d
square-free, relatively prime with d∗, containing in its decomposition only primes
p− < p 6 p+, and such that ω(d) = l. The rest of the proof is analogous as the
proof of Theorem 3 with all calculations the same, thus omitted. �

5. Proof of Theorem

We complete the proof of Theorem 1 in this section. We will choose below the
constants Q,R, and will use the major arcs estimates for q 6 Q and minor arcs
estimates for Q < q 6 R. We will assume that a/q is the Dirichlet’s approximation
of θ ∈ T , |θ − a/q| 6 1/qR, (a, q) = 1. The error terms in Propositions 2, 3 are
then

E1 = O

(
1

D1
+
N

R

)
,

E2 = O (D1N/R) ,

as |κ| = 1/qR and d 6 D1. The error term for minor arcs is the entire right-hand
side of (3.2), thus as q > Q, it is

E3 = O

(
D2

1(logN)4

(
1√
Q

+N−1/5 +

√
R√
N

))
.

To complete the proof, we need to choose the constants D1, N,Q,R so that the
error terms E1, E2, E3 6 δ/2 for all θ ∈ T on major; respectively minor arcs. As
was noted in the introduction, this is impossible, so we proceed as follows. We
define

Q = exp(log(1/δ)2+o(1))

(the constant obtained as the upper bound on D in Theorem 3), and let

D0 = Q2, D1 = Q4.

If (D0, D1) is unexceptional, we construct the set D according to Theorem 3, and
if it is exceptional with the modulus of the exceptional character dD 6 D0, then
according to Theorem 4. Now let N0 = exp(c2(logD1)

2), where c2 is the constant
in (2.5). We now define

Nj = N0D
8j
1 ,

R∗
j = N0D

8k+2
1 ,

where j = 1, ...,m, 4/δ 6 m < 4/δ + 1. Then for 0 < δ 6 δ0 for some δ0 small
enough, and j 6 j∗, it is easy to see that the error terms E1, E2 6 δ/4 for the
constants Q,D1, Nj , R

∗
j∗ . Furthermore, if j > j∗ + 1, the error term E3 6 δ/4 for

the constants Q,D1, Nj , R
∗
j∗ .
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Let for a given θ ∈ T the rational a∗j/q∗j , (a∗j , q∗j ) be the Dirichlet’s approxima-
tion of θ, |θ − a∗j/q∗j | 6 1/q∗jR

∗
j . Without loss of generality, we can also assume

that a∗j/q∗j is the rational with the smallest q∗j for a given R∗
j . Then the sequence

q∗j is increasing.
Let j0 be the smallest index such that q∗j0 > Q (q∗j0 = m+1 if q∗j 6 Q for all j).

We define

aj/qj = a∗j0−1/q
∗
j0−1, Rj = R∗

j0−1 for j 6 j0 − 1,

aj/qj = a∗j0/q
∗
j0 , Rj = R∗

j0 for j > j0.

Now one can easily check that for any d ∈ D and any j 6 j0−1, the assumptions
of Proposition 2 in the case q not dividing d, respectively of Proposition 3 in the
case q|d, do hold for the constantsD0, D1, Q, aj , qj , Rj , Nj , and as was noted above,
E1, E2 6 δ/4, thus

Fd,Nj (θ) > τ(d, qj)− δ/4. (5.1)

Similarly for j > j0 + 1 and d 6 D1, the assumptions of Corollary 1 hold and
E3 6 δ/4, therefore

Fd,Nj (θ) > −δ/4. (5.2)

Also by definition,
Fd,Nj0

(θ) > −1. (5.3)

Now the required polynomial is

T =
1

m

∑
d∈D

m∑
j=1

w(d)Fd,Nj .

By applying (5.1), (5.2), (5.3) for 1/m the sum over j, and (4.1) respectively (4.9)
for the sum over d ∈ D, we get that for any θ ∈ T , T (θ) > −δ. As the largest non-
zero coefficient in T is dNm 6 N0D

8(4/δ+1)+1
1 = exp((1/δ)1+o(1)), this completes

the proof.

6. The lower bound

In this section we prove Theorem 2 on the lower bound for γ(n) associated to the
set p− 1. Ruzsa in [8], Section 5, constructed for a given n a subset A of integers
not larger than n, |A| ≫ n((log 2−ε)/ log logn) such that A − A contains no shifted
prime p− 1. We now construct a set B of positive integers by the following rule:
if x ≡ a(mod2n), then x ∈ B for a ∈ A, otherwise x ̸∈ B. Now clearly the upper
Banach density of B satisfies

ρ(B)≫ n(−1+(log 2−ε)/ log logn) (6.1)

and B contains no shifted prime p − 1 smaller than n. Recall the measure of
intersectivity α(n) defined in the introduction, satisfying γ > α. As α(n) is by
definition ≫ than the right-hand side of (6.1), the proof is completed.
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7. Application: Heilbronn property of shifted primes

An estimate for the Heilbronn property of shifted primes is an example of an
application of Theorem 1. If H is a set of positive integers, we say that it is
a Heilbronn set if η = 0, where

η = sup
θ∈T

inf
h∈H
||hθ||

(for more detailed discussion, see [4], Section 2.7 or [11]). One can quantify the
Heilbronn property similarly as the van der Corput and Poincaré properties of
integers, and define

η(n) = sup
θ∈T

inf
h∈Hn

||hθ||, (7.1)

where Hn = H∩{1, ..., n}. One can show that a set is a Heilbronn set if and only
if limn→∞ η(n) = 0 ([4], Section 2.7). All van der Corput sets are Heilbronn sets
(the converse does not hold), and as was shown in [4], Theorem 2.9,

η(n) 6 γ(n). (7.2)

Various estimates for the function η have been obtained by Schmidt [11] for
sets of values of polynomials with integer coefficients. An upper bound for the set
of shifted primes follows from Theorem 1 and (7.2).

Corollary 2. If η is the arithmetic function (7.1) associated to the set of shifted
primes H, then η(n) = O((log n)−1+o(1)).

Acknowledgement. The author thanks the anonymous referee for suggesting
an improvement of an early version of the paper which substantially improved the
upper bound in the main result.
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