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ON THE SIMPLEST SEXTIC FIELDS AND RELATED THUE
EQUATIONS

Akinari Hoshi

Abstract: We consider the parametric family of sextic Thue equations

x6 − 2mx5y − 5(m+ 3)x4y2 − 20x3y3 + 5mx2y4 + 2(m+ 3)xy5 + y6 = λ

where m ∈ Z is an integer and λ is a divisor of 27(m2+3m+9). We show that the only solutions
to the equations are the trivial ones with xy(x+ y)(x− y)(x+ 2y)(2x+ y) = 0.
Keywords: sextic Thue equations, simplest sextic fields, field isomorphism problem, multi-
resolvent polynomial.

1. Introduction

We consider the following “simple” family of sextic Thue equations

Fm(X,Y ) := X6 − 2mX5Y − 5(m+ 3)X4Y 2 (1)

− 20X3Y 3 + 5mX2Y 4 + 2(m+ 3)XY 5 + Y 6 = λ

for m, λ ∈ Z with λ ̸= 0. We may assume that m > −1 because if Fm(x, y) = λ
then F−m−3(y, x) = λ. If (x, y) ∈ Z2 is a solution to (1) then

(x+ y,−x), (y,−x− y), (−x,−y), (−x− y, x), (−y, x+ y)

are also solutions to (1) because Fm(X,Y ) is invariant under the action of the
cyclic group C6 = ⟨σ⟩ of order 6 where σ : X 7→ X + Y , Y 7→ −X. For sextic
integer λ = e6 or λ = −27e6, the equation Fm(X,Y ) = λ has the following six
solutions respectively

Fm(0,±e) = Fm(±e, 0) = Fm(±e,∓e) = e6,

Fm(±e,±e) = Fm(±2e,∓e) = Fm(±e,∓2e) = −27e6.
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We call such solutions (x, y) ∈ Z2 to Fm(x, y) = λ with xy(x+ y)(x− y)(x+ 2y)
(2x + y) = 0 the trivial solutions. We remark that Fm(2x + y,−x + y) =
−27Fm(x, y).

For m > 89, Lettl, Pethö and Voutier [LPV99] showed that the only primitive
solutions (x, y) ∈ Z2, i.e. gcd(x, y) = 1, to the Thue inequality |Fm(x, y)| 6
120m+ 323 are

Fm(0,±1) = Fm(±1, 0) = Fm(±1,∓1) = 1, (2)
Fm(±1,±1) = Fm(±2,∓1) = Fm(±1,∓2) = −27

(i.e. trivial solutions) and

Fm(±1,±2) = Fm(±3,∓1) = Fm(±2,∓3) = 120m+ 37,

Fm(±2,±1) = Fm(±3,∓2) = Fm(±1,∓3) = −120m− 323.

In [LPV98], moreover, they obtained that for any m ∈ Z the equation Fm(X,Y ) =
λ for λ ∈ {±1,±27} has only twelve trivial solutions as in (2). A special case of
Fm(X,Y ) = 1 is also studied by Togbé [Tog02]. Wakabayashi [Wak07b] investi-
gated Thue inequalities |Fl,m(x, y)| 6 λ with two parameters l,m and F1,m = Fm.
The following is the main result of this paper (cf. cubic case [Hos11] and quartic
case [Hos]):

Theorem 1.1. For m ∈ Z and a divisor λ of 27(m2 +3m+9), the only solutions
to the equation Fm(x, y) = λ are the trivial ones with xy(x + y)(x − y)(x + 2y)
(2x+ y) = 0.

We take the simplest sextic polynomial

fC6
m (X) := X6 − 2mX5 − 5(m+ 3)X4 − 20X3 + 5mX2 + 2(m+ 3)X + 1 ∈ Q[X]

with discriminant 66(m2 + 3m+ 9)5. Note that fC6
m (X) = Fm(X, 1).

For m ∈ Z \ {−8,−3, 0, 5}, the polynomial fC6
m (X) is irreducible over Q with

cyclic Galois group GalQf
C6
m (X) ∼= C6 of order 6 (see [Gra86, Proposition 3.3]).

The splitting fields

L(6)
m := SplQf

C6
m (X), (m ∈ Z \ {−8,−3, 0, 5})

of fC6
m (X) over Q are totally real cyclic sextic fields and called the simplest sextic

fields (cf. e.g. [Gra86], [Gra87], [LPV98], [LPV99], [Gaa02, Section 8.3], [Tog02],
[HH05], [Lou07]).

We get Theorem 1.1 as a consequence of the following two theorems:

Theorem (Theorem 4.7). For m,n ∈ Z, L(6)
m = L

(6)
n if and only if m = n or

m = −n− 3.

Theorem (Theorem 5.1). There exists an integer n ∈ Z \ {m,−m − 3} such
that L(6)

n = L
(6)
m if and only if there exists non-trivial solution (x, y) ∈ Z2, i.e.

xy(x + y)(x − y)(x + 2y)(2x + y) ̸= 0, to Fm(x, y) = λ where λ is a divisor of
27(m2 + 3m+ 9).
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In Section 2, we review some facts on the simplest sextic and cubic fields. In
Section 3, we recall known results of the resolvent polynomials which are funda-
mental tools in the computational aspects of Galois theory. We intend to explain
how to obtain an answer to the field intersection problem of cyclic sextic polyno-
mials fs(X) over a field K of char K ̸= 2, 3, i.e. for a, b ∈ K how to determine the
intersection of SplKfa(X) and SplKfb(X). In Section 4, we give an explicit answer
to the field isomorphism problem of fC6

s (X) as the special case of the field inter-
section problem. In particular, for K = Q, we get Theorem 4.7 by using Okazaki’s
theorem (Theorem 2.1). In Section 5, we will show a correspondence between
isomorphism classes of the simplest sextic fields L(6)

m and non-trivial solutions to
the sextic Thue equations Fm(x, y) = λ where λ is a divisor of 27(m2 + 3m + 9)
(see Theorem 5.1).

2. The simplest sextic and cubic fields

We recall known facts of the simplest sextic and cubic fields (see [Gra86, Section 3],
[Gra87], [LPV98]).

Let K be a field of char K ̸= 2, 3 and K(s) the rational function field over K
with variable s. We take the simplest sextic polynomial

fC6
s (X) := X6 − 2sX5 − 5(s+ 3)X4 − 20X3 + 5sX2 + 2(s+ 3)X + 1

with discriminant 66(s2 + 3s+ 9)5. The Galois group of fC6
s (X) over K(s) is iso-

morphic to the cyclic group C6 of order 6. Gras [Gra86] considered the polynomial

gt(X) = X6 − 1

2
(t− 6)X5 − 5

4
(t+ 6)X4 − 20X3 +

5

4
(t− 6)X2 +

1

2
(t+ 6)X + 1.

The two polynomials above are related by g4s+6(X) = fC6
s (X).

Let K(z) be the rational function field over K with variable z and σ
a K-automorphism of K(z) of order 6 which is defined by

σ : z 7→ z − 1

z + 2
7→ − 1

z + 1
7→ − z + 2

2z + 1
7→ −z + 1

z
7→ −2z + 1

z − 1
7→ z. (3)

Then we get the Galois extension K(z)/K(z)⟨σ⟩ with cyclic Galois group C6 of
order 6 and

fC6
s (X) =

∏
x∈Orb⟨σ⟩(z)

(
X − x

)
where

s =
z6 − 15z4 − 20z3 + 6z + 1

z(2z4 + 5z3 − 5z − 2)
=

(z3 + 3z2 − 1)(z3 − 3z2 − 6z + 1)

z(z + 1)(z − 1)(z + 2)(2z + 1)

as the generating polynomial of the sextic cyclic field K(z) over K(z)⟨σ⟩ = K(s).
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The quadratic field K(z)⟨σ
2⟩ over K(s) is given by K(s)(z2) where

z2 = z + σ2(z) + σ4(z) =
z3 − 3z − 1

z(z + 1)
.

It also follows from

z2 − s =
(z2 + z + 1)3

z(z + 1)(z − 1)(z + 2)(2z + 1)
=
√
s2 + 3s+ 9 (4)

that K(z)⟨σ
2⟩ = K(s)(

√
s2 + 3s+ 9).

The cyclic cubic field K(z)⟨σ
3⟩ over K(s) is given by K(s)(z3) where

z3 =
1

z σ3(z)
= − z(z + 2)

(z + 1)(z − 1)
.

The action of σ on K(s)(z3) is given by

σ : s 7→ s, z3 7→ − 1

z3 + 1
7→ −z3 + 1

z3
7→ z3.

Hence the minimal polynomial of z3 over K(s) is given by

fC3
s (X) :=

∏
x∈Orb⟨σ⟩(z3)

(
X − x

)
= X3 − sX2 − (s+ 3)X − 1,

that is the simplest cubic polynomial of Shanks [Sha74]. Two polynomials fC6
s (X)

and fC3
s (X) satisfy the relation

fC6
s (X) = (fC3

s (X))2 − (s2 + 3s+ 9)X2(X + 1)2. (5)

For K = Q, we consider the specialization map s 7→ m ∈ Z. By [Gra86,
Proposition 3.3], the sextic polynomial fC6

m (X) is irreducible over Q for m ∈
Z \ {−8,−3, 0, 5}, and the splitting fields L(6)

m = SplQf
C6
m (X) are totally real

cyclic number fields of degree 6 which are called the simplest sextic fields. We
see L(6)

m = L
(6)
−m−3 because if z is a root of fC6

m (X) then 1/z becomes a root of
fC6
−m−3(X).

For m ∈ {−8,−3, 0, 5}, the integer m2 + 3m+ 9 is a square and then from (4)
and (5) the sextic polynomial fC6

m (X) splits over Q. Indeed we see

fC6
−8(X) = fC3

−1(X)fC3
−15(X), fC6

−3(X) = fC3
0 (X)fC3

−6(X),

fC6
0 (X) = fC3

3 (X)fC3
−3(X), fC6

5 (X) = fC3
12 (X)fC3

−2(X).

The cubic subfields L(3)
m := SplQf

C3
m (X) of L(6)

m are called the simplest cubic
fields. Note that fC3

m (X) is irreducible over Q and L(3)
m = L

(3)
−m−3 for any m ∈ Z.

Ennola [Enn91] verified that for integers −1 6 m < n 6 104, L(3)
m = L

(3)
n if

and only if (m,n) ∈ {(−1, 5), (−1, 12), (−1, 1259), (5, 12), (5, 1259), (12, 1259)}
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∪ {(0, 3), (0, 54), (3, 54)} ∪ {(1, 66)} ∪ {(2, 2389)}. Hoshi and Miyake [HM09a,
Example 5.3] checked that Ennola’s claim is also valid for −1 6 m < n 6 105.

In [Oka02], Okazaki investigated Thue equations F (X,Y ) = 1 for irreducible
cubic forms F with positive discriminant D(F ) > 0 and established a very strong
result on gaps between solutions (cf. also [Wak07a]). By using methods in [Oka02],
we may obtain that if L(3)

m = L
(3)
n with −1 6 m < n then m 6 35731 (cf. also

[Hos11]). Moreover Okazaki showed the following theorem:

Theorem 2.1 (Okazaki [Oka]). Let L(3)
m = SplQf

C3
m (X). For m,n ∈ Z with

−1 6 m < n, if L(3)
m = L

(3)
n then m,n ∈ {−1, 0, 1, 2, 3, 5, 12, 54, 66, 1259,

2389}. In particular,

L
(3)
−1 = L

(3)
5 = L

(3)
12 = L

(3)
1259, L

(3)
0 = L

(3)
3 = L

(3)
54 , L

(3)
1 = L

(3)
66 , L

(3)
2 = L

(3)
2389.

The author also gave another proof of Theorem 2.1 in [Hos11].

3. Field intersection problem of cyclic sextic

We recall some results of the resolvent polynomials which are fundamental tools
in the computational aspects of Galois theory (cf. e.g. [Coh93], [Coh00], [Ade01]).
Let K be a fixed algebraic closure of a field K. Let f(X) :=

∏m
i=1(X − αi) ∈

K[X] be a separable polynomial of degree m with some fixed order of the roots
α1, . . . , αm ∈ K. The Galois group of the polynomial f(X) over K may be deter-
mined by resolvent polynomials with suitable invariants.

Let R := K[x1, . . . , xm] be the polynomial ring over K with m variables
x1, . . . , xm. For Θ ∈ R, we take the specialization map ωf : R → K(α1, . . . , αm),
Θ(x1, . . . , xm) 7→ Θ(α1, . . . , αm). The kernel of ωf is the ideal If := {Θ ∈ R |
Θ(α1, . . . , αm) = 0} in R.

Let Sm be the symmetric group of degree m. We extend the action of Sm on m
letters {1, . . . ,m} to that on R by π(Θ(x1, . . . , xm)) := Θ(xπ(1), . . . , xπ(m)). The
Galois group of f(X) over K is defined by Gal(f/K) := {π ∈ Sm | π(If ) ⊆ If},
and Gal(f/K) is isomorphic to the Galois group of the splitting field SplKf(X)
of f(X) over K. If we take another ordering of roots απ(1), . . . , απ(m) of f(X)
for some π ∈ Sm, the corresponding realization of Gal(f/K) is conjugate in Sm.
Hence, for arbitrary ordering of the roots of f(X), Gal(f/K) is determined up to
conjugacy in Sm.

For H 6 U 6 Sm, an element Θ ∈ R is called a U -primitive H-invariant if
H = StabU (Θ) := {π ∈ U | π(Θ) = Θ}. For a U -primitive H-invariant Θ, the
polynomial

RPΘ,U (X) =
∏

π∈U/H

(X − π(Θ)) ∈ RU [X]

where π runs through the left cosets of H in U , is called the formal U -relative
H-invariant resolvent by Θ. The polynomial

RPΘ,U,f (X) := ωf (RPΘ,U (X))
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is called the U -relative H-invariant resolvent of f by Θ. The following theorem is
fundamental in the theory of resolvent polynomials (see e.g. [Ade01, p.95]).

Theorem 3.1. Let G = Gal(f/K), H 6 U 6 Sm be finite groups with G 6 U

and Θ a U -primitive H-invariant. Suppose that RPΘ,U,f (X) =
∏l
i=1 h

ei
i (X) gives

the decomposition of RPΘ,U,f (X) into a product of powers of distinct irreducible
polynomials hi(X), (i = 1, . . . , l), in K[X]. Then we have a bijection

G\U/H −→ {he11 (X), . . . , hell (X)}

GπH 7−→ hπ(X) =
∏

τH⊆GπH

(
X − ωf (τ(Θ))

)
where the product runs through the left cosets τH of H in U contained in GπH,
that is, through τ = πσπ where πσ runs through a system of representative of the
left cosets of G ∩ πHπ−1; each hπ(X) is irreducible or a power of an irreducible
polynomial with deg(hπ(X)) = |GπH|/|H| = |G|/|G ∩ πHπ−1|.

Corollary 3.2. If G 6 πHπ−1 for some π ∈ U then RPΘ,U,f (X) has a linear
factor over K. Conversely, if RPΘ,U,f (X) has a non-repeated linear factor over K
then there exists π ∈ U such that G 6 πHπ−1.

Remark 3.3. When RPΘ,U,f (X) is not squarefree, there exists a suitable Tschirn-
hausen transformation f̂ of f over K such that RPΘ,U,f̂ (X) is squarefree
(cf. [Gir83], [Coh93, Alg. 6.3.4]).

Now we apply Theorem 3.1 to the cyclic sextic case. Let f1(X), f2(X) ∈ K[X]
be separable sextic polynomials over K. We put

f(X) := f1(X)f2(X), Gi := Gal(f i/K), Li := SplKf
i(X), (i = 1, 2).

We assume that G1, G2 6 C6 and apply Theorem 3.1 to m = 12, f(X) =
f1(X)f2(X), U = ⟨σ⟩ × ⟨τ⟩, H = ⟨στ⟩ or ⟨στ5⟩ where σ, τ ∈ S12 act on R =
K[x1, . . . , x12] by

σ : x1 7→ x2 7→ · · · 7→ x6 7→ x1, τ : x7 7→ x8 7→ · · · 7→ x12 7→ x7.

Let Θ1 (resp. Θ2) be a U -primitive ⟨στ⟩-invariant (resp. ⟨στ5⟩-invariant) where
U = ⟨σ⟩×⟨τ⟩. Then the U -relative ⟨στ⟩-invariant (resp. ⟨στ5⟩-invariant) resolvent
polynomial of f(X) = f1(X)f2(X) by Θ1 (resp. Θ2) is given by

Ri
f (X) := RPΘi,U,f (X), (i = 1, 2).

This is also called the (absolute) multi-resolvent polynomial (cf. [RV99], [Ren04]).
For a squarefree polynomial R(X) ∈ K[X] of degree l, we define the decom-

position type DT(R) of R(X) by the partition of l induced by the degrees of the
irreducible factors of R(X) over K. By Theorem 3.1, we get the intersection field
L1 ∩ L2 via the decomposition types DT(R1

f ) and DT(R2
f ).
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Theorem 3.4. For f(X) = f1(X)f2(X) ∈ K[X] with G1, G2 6 C6, we as-
sume that #G1 > #G2 and both R1

f (X) and R2
f (X) are squarefree. Then the

Galois group G = Gal(f/K) and the intersection field L1 ∩ L2 are given by the
decomposition types DT(R1

f ) and DT(R2
f ) as on Table 1.

Table 1

G1 G2 G DT(R1
f ) DT(R2

f )

C6 × C6 L1 ∩ L2 = K 6 6
C6 × C3 [L1 ∩ L2 : K] = 2 3, 3 3, 3

C6 C6 × C2 [L1 ∩ L2 : K] = 3
6 2, 2, 2
2, 2, 2 6

C6 L1 = L2
3, 3 1, 1, 1, 1, 1, 1

C6 1, 1, 1, 1, 1, 1 3, 3
C6 × C3 L1 ∩ L2 = K 6 6

C3
C6 L1 ⊃ L2

6 2, 2, 2
2, 2, 2 6

C2
C6 × C2 L1 ∩ L2 = K 6 6
C6 L1 ⊃ L2 3, 3 3, 3

{1} C6 L1 ⊃ L2 = K 6 6
C3 × C3 L1 ∩ L2 = K 3, 3 3, 3

C3
C3 L1 = L2

3, 3 1, 1, 1, 1, 1, 1
C3 1, 1, 1, 1, 1, 1 3, 3

C2 C6 L1 ∩ L2 = K 6 6
{1} C3 L1 ⊃ L2 = K 3, 3 3, 3

C2
C2 × C2 L1 ∩ L2 = K 2, 2, 2 2, 2, 2

C2 C2 L1 = L2 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1
{1} C2 L1 ⊃ L2 2, 2, 2 2, 2, 2

{1} {1} {1} L1 = L2 = K 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1

We checked the decomposition types DT(Ri
f ), (i = 1, 2), on Table 1

using the computer algebra system GAP [GAP] via the command
DoubleCosetRepsAndSizes.

4. An explicit answer to the isomorphism problem

By using Theorem 3.4, we give an answer to the field intersection problem of

fC6
s (X) = X6 − 2sX5 − 5(s+ 3)X4 − 20X3 + 5sX2 + 2(s+ 3)X + 1,

i.e. for a, b ∈ K how to determine the intersection of SplKfa(X) and SplKfb(X),
via multi-resolvent polynomials. An explicit answer to the field isomorphism prob-
lem of fC6

s (X) will be given as the special case of the field intersection problem
(see Theorem 4.3).
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For n > 3, Rikuna [Rik02] constructed one-parameter families of cyclic poly-
nomials fR(n)

s (X) of degree n over K with char K ̸ | n and K ∋ ζn+ ζ−1
n where ζn

is a primitive n-th root of unity. The simplest sextic polynomial fC6
s (X) may be

obtained as the sextic case fR(6)
s (X) (see also [Miy99], [HM99]).

Komatsu [Kom04] established descent Kummer theory via fR(n)
s (X), and gave

a necessary and sufficient condition for SplKf
R(n)
a (X) ⊂ SplKf

R(n)
b (X) for a, b ∈

K (see also [Oga03], [Kid05]). It is interesting to compare the results of [Oga03],
[Kom04], [Kid05] with results given in this section. We note that a method
via multi-resolvent polynomials is valid also for non-abelian groups (see [HM07],
[HM09b], [HM09c], [HM10c]).

Let K be a field of char K ̸= 2, 3, K(z) the rational function field over K with
variable z and σ a K-automorphism of K(z) of order 6 which is given by (3). We
also take another rational function field K(w) over K, a K-automorphism of K(w)
of order 6

τ : w 7→ w − 1

w + 2
7→ − 1

w + 1
7→ − w + 2

2w + 1
7→ −w + 1

w
7→ −2w + 1

w − 1
7→ w

and fC6
t (X) = X6 − 2tX5 − 5(t+ 3)X4 − 20X3 + 5tX2 + 2(t+ 3)X + 1 where

t =
w6 − 15w4 − 20w3 + 6w + 1

w(2w4 + 5w3 − 5w − 2)
=

(w3 + 3w2 − 1)(w3 − 3w2 − 6w + 1)

w(w + 1)(w − 1)(w + 2)(2w + 1)

by the same manner of K(z), σ and fC6
s (X).

Then the field K(z, w) is (C6 × C6)-extension of K(z, w)U = K(s, t) where
U = ⟨σ⟩ × ⟨τ⟩. Now we should find suitable U -primitive ⟨στ⟩-invariant Θ1 (resp.
⟨στ5⟩-invariant Θ2). By [HK95, Theorem 1′], there exists ⟨στ⟩-invariant Θ1 such
that K(z, w) = K(z,Θ1). Moreover we may obtain the following Θ1 and Θ2:

Lemma 4.1. Let U = ⟨σ⟩ × ⟨τ⟩,

Θ1 = −zw + z + 1

z − w
and Θ2 =

zw − 1

z + w + 1
.

Then the following assertions hold:

(i) the element Θ1 is a U -primitive ⟨στ⟩-invariant;
(ii) the element Θ2 is a U -primitive ⟨στ5⟩-invariant;
(iii) the U -orbit of Θi is the same as the ⟨σ⟩-orbit of z;

OrbU (Θi) =
{
Θi,

Θi − 1

Θi + 2
,− 1

Θi + 1
,− Θi + 2

2Θi + 1
,−Θi + 1

Θi
,−2Θi + 1

Θi − 1

}
, (i = 1, 2).

Proof. We can check the assertions by direct computations. �

Put fa,b(X) := fC6
a (X)fC6

b (X). The multi-resolvent polynomials

Ri
fa,b

(X) := RPΘi,⟨σ⟩×⟨τ⟩,fa,b
(X), (i = 1, 2)
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with respect to Θ1 and Θ2 as in Lemma 4.1 are given by

Ri
fa,b

(X) = fC6

Ai
(X), (i = 1, 2) (6)

where

A1 = −ab+ 3a+ 9

a− b
, A2 =

ab− 9

a+ b+ 3
.

Note that

disc(R1
fa,b

(X)) =
66(a2 + 3a+ 9)5(b2 + 3b+ 9)5

(a− b)10
,

disc(R2
fa,b

(X)) =
66(a2 + 3a+ 9)5(b2 + 3b+ 9)5

(a+ b+ 3)10
.

By Theorem 3.4, we get the intersection field SplKf
C6
a (X) ∩ SplKf

C6

b (X) via
Table 1.

Theorem 4.2. Let K be a field of char K ̸= 2, 3 and Ri
fa,b

(X) = fC6

Ai
(X),

(i = 1, 2), as in (6). For a, b ∈ K with (a − b)(a + b + 3) ̸= 0 and (a2 + 3a +
9)(b2 + 3b + 9) ̸= 0, we assume that #GalKf

C6
a (X) > #GalKf

C6

b (X). Then the
intersection field SplKf

C6
a (X) ∩ SplKf

C6

b (X) is given by the decomposition types
DT(R1

fa,b
) and DT(R2

fa,b
) as on Table 1.

As the special case of Theorem 4.2, we obtain an explicit answer to the field
isomorphism problem of fC6

s (X).

Theorem 4.3. Let K be a field of char K ̸= 2, 3. For a, b ∈ K with (a − b)(a +
b + 3) ̸= 0 and (a2 + 3a + 9)(b2 + 3b + 9) ̸= 0, the following three conditions are
equivalent:

(i) the splitting fields of fC6
a (X) and of fC6

b (X) over K coincide;
(ii) the polynomial fC6

Ai
(X) splits completely into 6 linear factors over K for

i = 1 or i = 2 where

A1 = −ab+ 3a+ 9

a− b
and A2 =

ab− 9

a+ b+ 3
;

(iii) there exists z ∈ K such that

B = a+
(a2 + 3a+ 9)z(z + 1)(z − 1)(z + 2)(2z + 1)

fa(z)

where B = b or B = −b− 3.
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Moreover if GalKf
C6
a (X) ∼= C6 or C3 (resp. GalKf

C6
a (X) ∼= C2 or {1}) then

(ii) occurs for only one of A1 and A2 (resp. for both of A1 and A2) and (iii) occurs
for only one of b and −b− 3 (resp. for both of b and −b− 3).

Remark 4.4. The condition (iii) is just a restatement of (ii). Indeed, for i = 1, 2,
rational roots z ∈ K of fC6

Ai
(X) satisfy the condition (iii) for B = b and B = −b−3

respectively. The equivalence of the conditions (i) and (iii) is valid also for a = b
and b = −a− 3.

Theorem 4.3 is a generalization of the results of the simplest cubic (resp. quar-
tic) case in [Mor94], [Cha96], [HM09a] (resp. [Hos]). This is an analogue of
Kummer theory; for a field K which contains a primitive 6th root ζ6 of unity
and a, b ∈ K, SplK(X6 − a) = SplK(X6 − b) if and only if X6 − ab or X6 − ab5

splits completely over K. It is remarkable that Theorem 4.3 does not need the
assumption that K contains ζ6.

By Theorem 4.3, for a fixed a ∈ K with a2+3a+9 ̸= 0, we have SplKf
C6

b (X) =
SplKf

C6
a (X) where b is given as in Theorem 4.3 (iii) for arbitrary z ∈ K with

fa(z) ̸= 0 and b2 + 3b+ 9 ̸= 0.

Corollary 4.5. Let K be an infinite field of char K ̸= 2. For a fixed a ∈ K
with a2 + 3a + 9 ̸= 0, there exist infinitely many b ∈ K such that SplKf

C6

b (X) =
SplKf

C6
a (X).

However, by applying Siegel’s theorem for curves of genus 0 (cf. [Lan78, The-
orem 6.1], [Lan83, Chapter 8, Section 5]) to Theorem 4.3 (iii), we get

Corollary 4.6. Let K be a number field and OK the ring of integers in K. Assume
that a ∈ OK with a2 + 3a + 9 ̸= 0. Then there exist only finitely many integers
b ∈ OK such that SplKf

C6

b (X) = SplKf
C6
a (X). In particular, there exist only

finitely many integers b ∈ OK such that fC6

Ai
(X), (i = 1, 2), has a linear factor

over K.

When K = Q, by Okazaki’s theorem (Theorem 2.1) and Theorem 4.3 we have

Theorem 4.7. Let L(6)
m = SplQf

C6
m (X). For m,n ∈ Z, L(6)

m = L
(6)
n if and only if

m = n or m = −n− 3.

Proof. We should check the assertion only for −1 6 m < n and m,n ∈ {−1, 0, 1,
2, 3, 5, 12, 54, 66, 1259, 2389} because L(3)

m is the cubic subfield of L(6)
m and hence

L
(6)
m = L

(6)
n implies L(3)

m = L
(3)
n (cf. Theorem 2.1). The irreducible factorization

of the corresponding multi-resolvent polynomials Ri
fm,n

(X) = fC6

Ai
(X) over Q are

given as on Table 2.
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Table 2

m n i irreducible factorization of fC6

Ai
(X) over Q

−1 5 1 (X2 − 4X − 3)(X2 + 3X + 1
2 )(X

2 + 2X
3 − 2

3 )

−1 12 2 (X2 − 2X − 2)(X2 + 4X + 1)(X2 +X − 1
2 )

−1 1259 1 (X2 − 5
2X − 9

4 )(X
2 + 18

5 X + 4
5 )(X

2 + 8
9X − 5

9 )

5 12 2 (X2 − 8X − 5)(X2 + 5
2X + 1

4 )(X
2 + 2

5X − 4
5 )

5 1259 1 (X2 − 38
3 X − 22

3 )(X2 + 44
19X + 3

19 )(X
2 + 3

11X − 19
22 )

12 1259 2 (X2 − 26X − 14)(X2 + 28
13X + 1

13 )(X
2 + 1

7X − 13
14 )

0 3 2 (X2 − 2X − 2)(X2 + 4X + 1)(X2 +X − 1
2 )

0 54 1 (X2 − 4X − 3)(X2 + 3X + 1
2 )(X

2 + 2
3X − 2

3 )

3 54 2 (X2 − 8X − 5)(X2 + 5
2X + 1

4 )(X
2 + 2

5X − 4
5 )

1 66 2 (X2 − 5X − 7
2 )(X

2 + 14
5 X + 2

5 )(X
2 + 4

7X − 5
7 )

2 2389 2 (X2 − 7X − 9
2 )(X

2 + 18
7 X + 2

7 )(X
2 + 4

9X − 7
9 )

Although we already know L
(6)
0 = L

(3)
0 ̸= L

(3)
5 = L

(6)
5 , we do not omit the de-

generate cubic case m,n ∈ {0, 5} on Table 2. By Theorem 3.4, the other sextic
multi-resolvent polynomial Rj

fm,n
(X) = fC6

Aj
(X), (j ∈ {1, 2}, j ̸= i), is irreducible

over Q. By Theorem 4.3, we conclude that the overlap L(6)
m = L

(6)
n occurs only for

the trivial cases m = n and m = −n− 3. �

5. Correspondence

The aim of this section is to establish the correspondence between isomorphism
classes of the simplest sextic fields L(6)

m and non-trivial solutions to sextic Thue
equations Fm(x, y) = λ where λ is a divisor of 27(m2 + 3m + 9) as follows
(cf. cubic case [Hos11] and quartic case [Hos]):

Theorem 5.1. Let m ∈ Z and L
(6)
m = SplQf

C6
m (X). There exists an integer

n ∈ Z \ {m,−m − 3} such that L(6)
n = L

(6)
m if and only if there exists non-trivial

solution (x, y) ∈ Z2, i.e. xy(x + y)(x − y)(x + 2y)(2x + y) ̸= 0, to Fm(x, y) = λ
where λ is a divisor of 27(m2 + 3m+ 9).

Proof. We apply Theorem 4.3 to the case K = Q.
Assume that L(6)

m = L
(6)
n for n ∈ Z \ {m,−m− 3}. Then by Theorem 4.3 (iii)

with z = x/y, there exist x, y ∈ Z with gcd(x, y) = 1 such that

N = m+
(m2 + 3m+ 9)xy(x+ y)(x− y)(x+ 2y)(2x+ y)

Fm(x, y)
∈ Z (7)

where either N = n or N = −n−3. The condition (7) occurs for only one of N = n
and N = −n− 3 because only one of fC6

A1
(X) and fC6

A2
(X) in Theorem 4.3 (ii) has
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a linear factor over Q. By (7), the assumption n ∈ Z \ {m,−m − 3} implies
xy(x+ y)(x− y)(x+ 2y)(2x+ y) ̸= 0.

Now we should show that Fm(x, y) divides 27(m2 + 3m+ 9).
We use a standard method via resultant and the Sylvester matrix (cf. [PV00],

[SWP08, Section 1.3], see also [Lan78, Theorem 6.1], [Lan83, Chapter 8, Sec-
tion 5]). Put

h(z) := (m2 + 3m+ 9)z(z + 1)(z − 1)(z + 2)(2z + 1)

and take fC6
m (z) = Fm(z, 1). We take the resultant

Rm := Resz(h(z), f
C6
m (z)) = −39(m2 + 3m+ 9)6

of h(z) and fC6
m (z) with respect to z. The resultant Rm is also given by the

determinant of the following modified Sylvester matrix of size 11× 11:

S′(h, fC6
m ) =



a5 a4 · · · a0 0 h(z)z5

0
. . . . . . · · ·

. . .
...

0 0 a5 a4 · · · h(z)
b6 b5 · · · b0 0 fC6

m (z)z4

0
. . . . . . · · ·

. . .
...

0 0 b6 b5 · · · fC6
m (z)


where h(z) =

∑5
i=0 aiz

i, fC6
m (z) =

∑6
i=0 biz

i. By the cofactor expansion along the
11th column of the matrix S′(h, fC6

m ), we have

h(z)(A1z
5 + · · ·+A5z +A6) + fC6

m (z)(A7z
4 + · · ·+A10z +A11) = Rm. (8)

Dividing the both sides of (8) by −gcd(A1, . . . , A11) = −36(m2 + 3m + 9)5, we
have

h(z)p(z) + fC6
m (z)q(z) = 27(m2 + 3m+ 9)

where

p(z) = 84z5 − 42(4m+ 1)z4 − 112(3m+ 11)z3

+ 7(22m− 153)z2 + 2(161m+ 219)z + 27m+ 242,

q(z) = (m2 + 3m+ 9)(−168z4 − 336z3 + 154z2 + 322z + 27).

Put H(x, y) := y6h(x/y), P (x, y) := y5p(x/y), Q(x, y) := y5q(x/y). Then it
follows from z = x/y and Fm(x, y) = y6fC6

m (x/y) that

H(x, y)P (x, y) + Fm(x, y)Q(x, y) = 27(m2 + 3m+ 9)y11.

Hence by (7) we have

H(x, y)P (x, y)

Fm(x, y)
+Q(x, y) =

27(m2 + 3m+ 9)y11

Fm(x, y)
∈ Z.
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Because the sextic forms Fm(X,Y ) and H(X,Y ) are invariants under the action
of σ : X 7→ X + Y , Y 7→ −X, we may also get

H(x, y)P (x+ y,−x)
Fm(x, y)

+Q(x+ y,−x) = 27(m2 + 3m+ 9)(−x)11

Fm(x, y)
∈ Z.

We conclude that Fm(x, y) divides 27(m2 + 3m+ 9) because gcd(x, y) = 1.
Conversely if there exists (x, y) ∈ Z2 with xy(x+ y)(x− y)(x+2y)(2x+ y) ̸= 0

such that Fm(x, y) divides 27(m2 + 3m+ 9) then we can take

N = m+
(m2 + 3m+ 9)xy(x+ y)(x− y)(x+ 2y)(2x+ y)

Fm(x, y)
∈ Q \ {m}

which satisfies L(6)
N = L

(6)
m by Theorem 4.3. It follows from GalQf

C6
m (X) ∼= C6 or

C3 that N ̸= −m− 3 (see also Table 1). Hence we have N ∈ Q \ {m,−m− 3}.
We see that N ∈ Z as follows: If x ≡ y (mod 3) then xy(x + y)(x − y)(x +

2y)(2x+ y) ≡ 0 (mod 27). Hence we have N ∈ Z \ {m,−m− 3}.
By a direct calculation, we obtain that if x ̸≡ y (mod 3) then Fm(x, y) ≡ 1

(mod 3). Hence Fm(x, y) divides m2 + 3m+ 9 and N ∈ Z \ {m,−m− 3}. �
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