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ON THE DIOPHANTINE EQUATION 2x = x2 + y2 − 2

Alexandru Gica, Florian Luca

Abstract: In this paper, we show that the only positive integer solutions of the equation 2x =
x2+y2−2 are (x, y) = (3, 1), (5, 3), (7, 9). We propose also the following conjecture: the equation
2x = y2 + z2(x2 − 2), where y, z are odd positive integers and x is a positive integer such that
x2 − 2 is a prime number, has the only solutions (x, y, z) = (3, 1, 1), (5, 3, 1), (7, 9, 1), (13, 3, 7).
The conjecture implies a recent result of Lee [4] which states that if x2−2 is an odd prime number
such that the class number h(x2 − 2) of the quadratic field Q[

√
x2 − 2] is 1, then x = 3, 5, 7, 13.

Keywords: diophantine equations, applications of Baker’s method.

1. Introduction and Motivation

In this paper, we solve the Diophantine equation

2x = x2 + y2 − 2 (1)

in positive integers x and y. The result is the following.

Theorem 1. The only positive integer solutions of equation (1) are (x, y) =
(3, 1), (5, 3), (7, 9).

Before getting to the proof, let us give some motivation for solving this partic-
ular Diophantine equation. In [4], Jungyun Lee proved the following conjecture of
Mollin and Williams (see Conjecture 5.4.4. on page 176 of [5]).

Theorem 2. Let d = n2±2 be a squarefree integer. Then Q[
√
d] has class number

h(d) > 1 if n > 20.
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The following is a consequence of the above theorem.

Theorem 3. Let p be a prime number with the property that p − a2 is a prime
number for every even positive integer a < √

p and p − a2 is twice times a prime
number for every odd positive integer a < √

p. Then p = 7, 23, 47, 167.

Proof. In [3], the first author analyzed this problem and proved that all prime
numbers p which fulfil the above conditions have to be of the form p = x2−2 with
some odd positive integer x such that every odd prime q < p has the property that
p is a quadratic non-residue modulo q. Let us consider now the quadratic field
K := Q[

√
p] and let OK be its ring of integers. The Minkowski constant for K is

√
p =

√
x2 − 2 < x.

Since p is a quadratic non-residue modulo q for all odd primes q < x, it follows that
qOK is a prime ideal of OK. Since p ≡ 3 (mod 4), we have that 2OK = P 2, where
P is a prime ideal with norm 2. But N(x+

√
p) = x2 − p = x2 − (x2 − 2) = 2, so

P = (x+
√
p)OK is also a principal ideal. Here and in what follows, we use NK/Q

for the norm map from K to Q either at the level of ideals or of elements. Since
all prime ideals whose norms are below the Minkowski constant are principal, we
deduce that OK is a principal ideal domain, so h(p) = 1, and now Theorem 2
ensures that p = 7, 23, 47, 167. �

In an attempt to give a proof of Theorem 3 without using Theorem 2, we were
led to the following conjecture.

Conjecture 4. The only solutions of the Diophantine equation 2x = y2+z2(x2−2)
in odd positive integers x, y, z such that x2 − 2 is prime number are (x, y, z) =
(3, 1, 1), (5, 3, 1), (7, 9, 1), (13, 3, 7).

Next we show how the truth of Conjecture 4 implies the Theorem 2. Let us
suppose that p = x2 − 2 is an odd prime such that h(p) = 1. A beautiful result
of Hirzebruch and Zagier [7], says that if p ≡ 3 (mod 4) is a prime number such
that h(p) = 1 and the continued fraction expansion of √p is [a0; {a1, a2, . . . , as}],
then the class number of the field L = Q[

√
−p] equals

1

3
(as − as−1 + as−2 − · · · ± a1).

Since the expansion of √p =
√
x2 − 2 as continued fraction is√

x2 − 2 = [x− 1; {1, x− 2, 1, 2(x− 1)}],

we get that the class number of L is

h(−p) = 1

3
[2(x− 1)− 1 + (x− 2)− 1] = x− 2.



On the Diophantine equation 2x = x2 + y2 − 2 111

Observe that OL = Z[(1 +
√
−p)/2]. Since p = x2 − 2 ≡ 7 (mod 8), we have that

2OK = P1P2, where P1 and P2 are distinct prime ideals each of norm 2. Since
h(−p) = x− 2, we get that P x−2

1 is a principal ideal. Thus,

P x−2
1 =

(
y + z

√
−p

2

)
OK,

for some integers y and z of the same parity. If y and z are even, then putting
y = 2y1 and z = 2z1 we get

P x−2
1 = (y1 + z1

√
−p)OL.

Taking norms in the last equality above we obtain 2x−2 = y21+pz
2
1 . Since x > 3, we

get that y1 ≡ z1 (mod 2). Hence, P1P2 = 2OK divides (y1 + z1
√
−p)OL = P x−2

1 ,
which is a contradiction. Thus, both y and z are odd and taking norms in the
equality

P x−2
1 =

(
y + z

√
−p

2

)
OL,

we get 2x−2 = (y2 + pz2)/4, which is the same as

2x = y2 + z2(x2 − 2).

The truth of Conjecture 4 now would imply that x = 3, 5, 7, 13, so p = 7, 23, 47, 167,
respectively, which is the conclusion of Theorem 3. �

In this paper, we solve the equation

2x = y2 + x2 − 2.

This is the same as the equation of Conjecture 4 for the particular case z = 1. We
do not use the fact that x2−2 is a prime number. Our technique works whenever z
takes on a certain fixed value.

2. The proof of Theorem 1

We assume that x > 1000 and we shall look at the small cases later. Rewrite
equation (1) as

2x − y2 = x2 − 2.

Observe that the right-hand side is positive. If x is even, then the left-hand side
factors as (2x/2 − y)(2x/2 + y). Hence, we get

2x/2 6 2x/2 + y 6 2x − y2 = x2 − 2,

which is false for x > 1000. Thus, x is odd. Equation (1) can be rewritten as(
2(x−1)/2

√
2− y

)(
2(x−1)/2

√
2 + y

)
= x2 − 2,
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so

0 <
√
2− y

2(x−1)/2
<

x2

2(x−1)/2(2(x−1)/2
√
2 + y)

<
x2

2x−1
.

Since x is odd, so is y, therefore the fraction y/2(x−1)/2 is reduced. A result of
Worley [6] (see also Theorem 1 in [2]), asserts that there exist two nonnegative
integers r and s with max{r, s} < 2x2 such that

(y, 2(x−1)/2) = (rpm ± spm−1, rqm ± sqm−1)

for some positive integer m, where {pm/qm}m>0 is the sequence of convergents of√
2. Since

√
2 = [1, {2}], it follows that q0 = 1, q1 = 2 and qm+2 = 2qm+1 + qm

for all m > 0. This is a binary recurrent sequence whose general term is

qm =
αm+1 − βm+1

α− β
, for all m > 0, where (α, β) := (1 +

√
2, 1−

√
2).

Thus, we get the relation

2(x−1)/2 = rqm ± sqm−1 = γαm + δβm, (2)

where (γ, δ) :=

(
rα+ εs

α− β
,
−rβ − εs

α− β

)
, and ε ∈ {±1}.

Since 1/β = −α, we have that

2(x−1)/2 = (−1)mγβm
(
α2m − η

)
, (3)

where

η := (−1)m−1 δ

γ
= ±

(
rβ + εs

rα+ εs

)
.

Let K := Q[
√
2], whose ring of integers OK is principal. We compute the exponent

of the prime
√
2 appearing in the two sides of equation (3). For a number η ∈ K

let ν√2(η) be the exponent with which
√
2 appears in the factorization of η. We

have
x− 1 = ν√2(2

(x−1)/2) = ν√2(γ) +mν√2(β) + ν√2(Λ),

where
Λ := α2m − η.

Next, observe that since r and s are at most 2x2, it follows that

|NK/Q(γ)| =
∣∣∣∣ (rβ + εs)(rα+ εs)

(α− β)2

∣∣∣∣ = ∣∣∣∣r2αβ + rsε(α+ β) + s2

(2
√
2)2

∣∣∣∣
6 r2 + 2rs+ s2

8
6 2x4.
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Since the prime
√
2 is associated to its conjugate, it follows that

√
2 appears with

the same exponent in the factorization of δ and of its conjugate, so

ν√2(γ) <
log(2x4)

2 log
√
2
=

4 log x+ log 2

log 2
=

4 log x

log 2
+ 1. (4)

Next, ν√2(β) = 0 because β is a unit. Hence, we get that

x− 2− 4 log x

log 2
6 ν√2(Λ). (5)

It remains to find an upper bound for ν√2(Λ). For this, we use Theorem 3 of [1].
In those notations, we take α1 := α, α2 := η, b1 := 2m and b2 := 1. Next, for our
situation we have e = 2, f = 1 and D = 2. We compute the logarithmic heights
of α1 and α2. Clearly,

h(α1) =
1

2
log(1 +

√
2) = 0.440687 . . .

Next, observe that the minimal polynomial of α2 over Q[X] is(
X − rα+ εs

rβ + εs

)(
X − rβ + εs

rα+ εs

)
= X2 − 6r2 + 4εrs+ 2s2

−r2 + 2εrs+ s2
X + 1,

so the minimal polynomial of α2 over Z[X] is a divisor of

(−r2 + 2rs+ s2)

(
X − rα+ εs

rβ + εs

)(
X − rβ + εs

rα+ εs

)
=: a0(X − α

(1)
2 )(X − α

(2)
2 ).

Recall that

h(α2) =
1

2

(
log |a0|+

2∑
i=1

log
(
max

{
1, |α(i)

2 |
}))

.

We need an upper bound for h(α2). Clearly,

|a0| 6 r2 + 2rs+ s2 = (r + s)2 < (2x2 + 2x2)2 = 16x4.

Furthermore, one of α(1)
2 and α

(2)
2 is subunitary, and the absolute value of their

sum is

|α(1)
2 + α

(2)
2 | =

∣∣∣∣6r2 + 4εrs+ 2s2

−r2 + 2εrs+ s2

∣∣∣∣ 6 6r2 + 4rs+ 2s2 6 48x4. (6)

We thus get immediately that

h(α2) 6
1

2

(
log(16x4) + log(48x4 + 1)

)
=

1

2

(
log(16) + log(48) + 8 log x+ log

(
1 +

1

48x4

))
< 3.5 + 4 log x.
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We now choose parameters A1 and A2 such that

logAi > max

{
h(αi),

log p

D

}
= max

{
h(αi),

log 2

2

}
, for i = 1, 2.

So, we can take logA1 := 0.45 and logA2 := 3.5 + 4 log x. Next, we take

b :=
b1

D logA2
+

b2
D logA1

=
2m

2(3.5 + 4 log x)
+

1

0.9
. (7)

We need a bound on m versus x. We use equation (2). Since
√
2 = [1, {2}], it

follows from the properties of the convergents to α, that the inequality∣∣∣∣α− p

q

∣∣∣∣ > 1

4q2
holds for all rational numbers

p

q
.

Hence,

|γ| =
(

r

α− β

) ∣∣∣∣α−
(
−εs
r

)∣∣∣∣ > 1

8
√
2r

>
1

16
√
2x2

>
1

23x2
.

The above inequality together with (2) leads to

2(x−1)/2 > |γ|αm − |δ||β|m > αm

23x2
− x2,

where we used the fact that

|δ| =
∣∣∣∣rβ + εs

α− β

∣∣∣∣ 6 r|β|+ s

2
√
2

<
2x2(|β|+ 1)

2
√
2

= x2.

So,
αm < 23x2(2(x−1)/2 + x2). (8)

The right–hand side in estimate (8) above is < α0.8x for all x > 1000. Hence,

2m < 1.6x. (9)

Combining this with (7), we get that

b <
1.6x

7 + 8 log x
+

10

9
for x > 1000. (10)

Now Theorem 3 in [1] tells us that if α1 and α2 are multiplicatively independent,
then

ν√2(Λ) 6
24pgD4

(p− 1)(log p)4

(
max

{
log b+ log log p+ 0.4,

10 log p

D
, 10

})2

× logA1 logA2.
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Observe that

log b+ log log p+ 0.4 < log

(
e0.4(log 2)

(
1.6x

7 + 8 log x
+

10

9

))
< log

(
x

(
1.7

7 + 8 log x
+

1.15

x

))
< log

(
x

4 log x

)
,

where the last inequality above holds because the inequality
1.7

7 + 8 log x
+

1.15

x
<

1

4 log x
holds for all x > 1000.

So, we get using also inequality (5), that

x− 2− 4 log x

log 2
6 ν√2(Λ) 6 24 · 2 · (log 2)−4 · 24 · 0.45 · (3.5 + 4 log x)

×
(
max

{
log

(
x

4 log x

)
, 10

})2

.

When the maximum on the right above is 10, we get that x/(4 log x) < e10, so
x < 2 × 106, while when the maximum on the right above is log(x/(4 log x)), we
get that x < 4× 106. Hence, at any rate x < 4× 106.

All this was when η and α were multiplicatively independent. Otherwise, since
α is the fundamental unit of OK, it follows that η = ±αt for some integer t. By
inequality (6), we get that

|t| 6 log(48x4 + 1)

logα
=

1

logα

(
log 48 + 4 log x+ log

(
1 +

1

48x4

))
< 1.2(3.9 + 4 log x) < 5 + 5 log x. (11)

Thus, η−1Λ = ±α2m+t − 1, which is a divisor of

α8m+4t − 1 = α4m+2t(α4m+2t − β4m+2t) = 2
√
2α4m+2tq4m+2t+1.

Comparing this with inequality (5), we get that the exponent of
√
2 in q4m+2t+1

exceeds
x− 5− 4 log x

log 2
.

However, q4m+2t+1 is an integer. Hence, the exponent of 2 in q4m+2t+1 is

> x− 5

2
− 2 log x

log 2
.

It is an elementary exercise to prove that the exponent of 2 in qn is the exponent
of 2 in n + 1 (Hint: Use induction over the exponent of 2 in the factorization of
n+ 1 together with the fact that for odd n one has

qn =
αn+1 − βn+1

α− β
=
α(n+1)/2 − β(n+1)/2

α− β
(α(n+1)/2 + β(n+1)/2)

= q(n−1)/2(α
(n+1)/2 + β(n+1)/2),
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and αm + βm is an integer which is congruent to 2 modulo 4 for all nonnegative
integers m.) Hence, we get that

x− 5

2
− 2 log x

log 2
6 1 +

log(2m+ t+ 1)

log 2
.

Using inequalities (9) and (11), we arrive at

x− 5

2
− 2 log x

log 2
6 1 +

log (1.6x+ 6 + 5 log x)

log 2
,

yielding x < 42, which is much better than just x < 4× 106.
Thus, we always have x < 4×106. For these remaining values of x, we checked

with Mathematica that for all x 6 4 × 106 except x ∈ {3, 5, 7}, there exists
an odd prime p among the first 50 odd primes such that the Legendre symbol(
2x − x2 + 2

p

)
evaluates to −1. Hence, 2x−x2+2 cannot be a perfect square for

x 6 4 × 106 except for the three values x = 3, 5, 7. This computation took a few
minutes. This completes the proof of the theorem.
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