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ARBITRARY POTENTIAL MODULARITY FOR ELLIPTIC
CURVES OVER TOTALLY REAL NUMBER FIELDS

Cristian Virdol

Abstract: In this paper we prove the arbitrary potential modularity for an elliptic curve defined
over a totally real number field.
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1. Introduction

It is conjectured that an elliptic curve E defined over a totally real number field F
is modular i.e. the associated l-adic representation ρE := ρE,l of ΓF := Gal(F̄ /F ),
for some rational prime l, is isomorphic to the l-adic representation ρπ := ρπ,l of
ΓF associated to some automorphic representation π of GL(2)/F (see §2 below for
details). This conjecture was proved when F = Q (see [BCDT], [W]).

In this paper we prove the following result:

Theorem 1.1. Let E be an elliptic curve defined over a totally real number field
F . Then there exist a totally real number field F ′′, which contains F , and rational
primes l and p that are totally split in F ′′ such that E/F ′ is modular for any
totally real number field F ′ which contains F ′′ and has the property that l and p
split completely in F ′.

2. Modularity

Let E be an elliptic curve over a number field F . For a rational prime l, we denote
by Tl(E) the Tate module associated to E and by ρE := ρE,l the natural l-adic
representation of ΓF on Tl(E).

Consider F a totally real number field. If π is an automorphic representation
(discrete series at infinity) of weight 2 of GL(2)/F , then there exists ([T]) a λ-adic
representation

ρπ := ρπ,λ : ΓF → GL2(Oλ) ↪→ GL2(Ql),
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which is unramified outside the primes dividing nl. Here O is the coefficients ring
of π and λ is a prime ideal of O above some prime number l, n is the level of π.

We say that an elliptic curve E defined over a totally real number field F is
modular if there exists an automorphic representation π of weight 2 of GL(2)/F
such that ρE ∼ ρπ.

3. The proof of Theorem 1.1

Let E be an elliptic curve defined over a totally real number field F . When E
has CM Theorem 1.1 is well known (and the base change is arbitrary). Hence we
assume from now on that the curve E has no CM.

We know the following result (see Theorem 1.6 of [T1] and its proof):

Proposition 3.1. Suppose that l > 3 is an odd prime and that k/Fl is a finite
extension. Let F be a totally real number field in which l splits completely and ρ :
ΓF → GL2(k) a continuous representation. Suppose that the following conditions
hold:

1. the representation ρ is irreducible,
2. for every place v of F above l we have

ρ|Gv ∼
(

εlχ
−1
v ∗

0 χv

)

where Gv is the decomposition group above v, and χv is an unramified char-
acter,

3. for every complex conjugation c, we have detρ(c) = −1.

Then there exist a rational prime p and a finite totally real extension F ′′/F in
which every prime of F above l and p splits completely, such that: for all totally
real number fields F ′ which contain F ′′ and in which l and p split completely,
there exists a cuspidal automorphic representation π′ of GL(2)/F ′ and a place λ′

of the minimal field of rationality of π′ above l such that ρ|ΓF ′ ∼ ρ̄π′,λ′ , where
ρπ′,λ′ : ΓF ′ → GL2(Mλ′) is the representation associated to π′, the field M is the
minimal field of rationality of π′, and ρ̄π′,λ′ is the reduction of ρπ′,λ′ modulo λ′.

Moreover, if v′ is a place of F ′ above a place v|l of F , the representation π′

can be chosen such that

ρπ′,λ′ |Gv′ ∼
(

εlχ
−1
v′ ∗

0 χv′

)

where Gv′ is the decomposition group above v′, and χv′ is a tamely ramified lift
of χv.

We want to prove that the hypotheses of the Proposition 3.1 are satisfied
for some rational prime l > 3 and the representation ρ̄E,l. From [S], because
E does not have CM, we know that ρE,l(ΓF ) contains SL2(Zl) for almost all l,
and hence ρ̄E,l(ΓF ) contains SL2(Fl) for almost all l, and thus the representation
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ρ̄E,l is irreducible for almost all l. Hence we can choose the prime l which splits
completely in F such that the representation ρ̄E,l is irreducible.

We say that the elliptic curve E is ordinary at some place v|l of F of good
reduction for E, if l - av, where if kv denotes the residue field of F at v and Ev is
the reduction of E modulo v, then av = |kv|+ 1− |Ev(kv)|.

We prove the following result:

Theorem 3.2. Let E be a non-CM elliptic curve defined over a totally real number
field F . Then there exists an infinite set of rational primes l which split completely
in F such that E is ordinary at v for each place v|l of F .

Proof. Let l > 5 be a rational prime which is completely split in F such that
if v is a place of F above l, then E has good reduction at v. Hence if kv is the
residue field of F at v, then |kv| = |Fl|, and thus from Hasse inequality we obtain
that |av| 6 2

√
kv = 2

√
l. Hence if E is not ordinary at v, i.e. if l | av, we get

that av = 0, i.e. E is supersingular at v. But from Theorem 2.4 of [KLR], we
know that the set of supersingular primes of E over F is of density 0, and hence,
because from Dirichlet density theorem we get that the set of rational primes l > 5
which split completely in F has positive density, we deduce that the set of rational
primes l such that E is ordinary at v for each place v|l of F has positive density.
Thus we conclude Theorem 3.2. ¥

We have that detρE,l = εl and because E does not have CM, from Theorem 3.2
we know that the representation ρE,l is ordinary (in the sense of Theorem 3.2) at
an infinite set of primes l, and hence for every place v of F above l we have

ρE,l|Gv ∼
(

εlχ
−1
v ∗

0 χv

)

where χv is an unramified character. Thus one could choose the prime l such that
the representation ρ̄E,l satisfies also the condition 2 of Proposition 3.1. Also the
condition 3 of Proposition 3.1 is satisfied. Hence, for some rational prime l and
the representation ρ̄E,l, we could find a totally real extension F ′′/F and a rational
prime p as in the conclusion of Proposition 3.1.

We now use the following result (Theorem 5.1 of [SW]):

Proposition 3.3. Let F ′ be a totally real number field and let ρ : Gal(F ′/F ′) →
GL2(Ql) be a representation satisfying:

1. ρ is continuous and irreducible,
2. ρ is unramified at all but a finite number of finite places,
3. det ρ(c) = −1 for all complex conjugations c,
4. det ρ = ψεl, where ψ is a character of finite order,

5. ρ|Di ∼
(

ψ
(i)
1 ∗
0 ψ

(i)
2

)
, with ψ

(i)
2 |Ii having finite order, where Di, for i =

1, . . . , t are decomposition groups at the places v1, . . . , vt of F dividing l, and
Ii ⊂ Di are inertia groups,
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6. ρ̄ is irreducible and ρ̄|Di ∼
(

χ
(i)
1 ∗
0 χ

(i)
2

)
, i = 1, . . . , t, with χ

(i)
1 6= χ

(i)
2 and

χ
(i)
2 = ψ

(i)
2 mod λ,

7. there exists an automorphic representation π0 of GL2(AF ) and a prime λ0

of the field of coefficients of π0 above l such that ρ̄π0,λ0 ∼ ρ̄ and ρπ0,λ0 |Di
∼(

φ
(i)
1 ∗
0 φ

(i)
2

)
, i = 1, . . . , t, and χ

(i)
2 = φ

(i)
2 mod λ.

Then we have ρ ∼ ρπ,λ1 for some automorphic representation π and some prime
λ1 of the field of coefficients of π above l.

We want to show that, for our choosen prime l and F ′ as in Proposition 3.1, the
representation ρE,l|ΓF ′ satisfies the hypotheses of Proposition 3.3. Since ρ̄E,l(ΓF )
contains SL2(Fl), we know from Proposition 3.5 of [V] that ρ̄E,l(ΓF ′) contains
SL2(Fl), and thus the representation ρ̄E,l|ΓF ′ is irreducible. Also since the charac-
ter χv that appears in condition 2 of Proposition 3.1 is unramified and the mod l
character εl is ramified, the entire condition 6 is satisfied. Since ρ̄ is irreducible, we
get that condition 1 is trivially satisfied. Also the conditions 2, 3, 4 are satisfied
from the basic properties of the representation ρE,l|ΓF ′ . Condition 5 is satisfied
from the ordinarity of the representation ρE,l|ΓF ′ , and condition 7 is satisfied from
the conclusion of Proposition 3.1. Hence we finished the proof of Theorem 1.1. ¥
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